Department of Environment, Health and	Nati
Division of Environmental Health	

esources

Sheet: Property I Lot #:

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

On-Site Wastewater Section File #: Code: Applicant:

Owner: Applicant: Address: Date Evaluated: Proposed Facility: LOCK Design Flow (.1949): Location of Site: Water Supply: Public Individual Well Spring Other Evaluation Method: Auger Boring Pit Cut Type of Wastewater: Sewage Industrial Process Mixed									
P R O F I L E	.1940 Landscape Position/ Slope %		SOIL MORPHOLOGY .1941		OTHER PROFILE FACTORS				
		Horizon Depth (In.)	.1941 Structure/ Texture	.1941 Consistence Mineralogy	.1942 Soil Wetness/ Color	.1943 Soil Depth (IN.)	.1956 Sapro Class	.1944 Restr Horiz	Profile Class & LTAR
j	0.2	0-29	65	VELLS/M					
		1	SBXSCL	M 55 M					15
	D.								
γ	25	034	G \$	VFRZ NS/NP					
		3448	SBXSQ	VFR NS/NP					P5
)					
								*	
					П				

Description	Initial	Repair System	Other Factors (.1946):
100	System	/	Site Classification (.1948).
Available Space (.1945)		V	Evaluated By: 💍
System Type(s)	35 1000	PUMP 25%	Others Present:
Site LTAR	. 6	.5	

COMMENTS: ____

LANDSCAPE POSITIONS	GROUP	<u>TEXTURES</u>	.1955 LTAR	CONSISTENCE MOIST	WET
R-RIDGE S-SHOULDER SLOPE L-LINEAR SLOPE	I	S-SAND LS-LOAMY SAND	1.2 - 0.8	VFR-VERY FRIABLE FR-FRIABLE	NS-NON-STICKY SS-SLIGHTY STICKY
FS-FOOT SLOPE N-NOSE SLOPE H-HEAD SLOPE	П	SL-SANDY LOAM L-LOAM	0.8 - 0.6	FI-FIRM VFI-VERY FIRM EFI-EXTREMELY FIRM	S-STICKY VS-VERY STICKY NP-NON-PLASTIC
CC-CONCLAVE SLOPE CV-CONVEX SLOPE T-TERRACE FP-FLOOD PLAN	Ш	SI-SILT SIL-SILT LOAM CL-CLAY LOAM SCL-SANDY CLAY LOAM	0.6 - 0.3		SP-SLIGHTLY STICKY P-PLASTIC VP-VERY PLASTIC

STRUCTURE SG-SINGLE GRAIN M- MASSIVE CR-CRUMB GR-GRANULAR SBK-SUBANGULAR BLOCKY ABK-ANGULAR BLOCKY

PL-PLATY

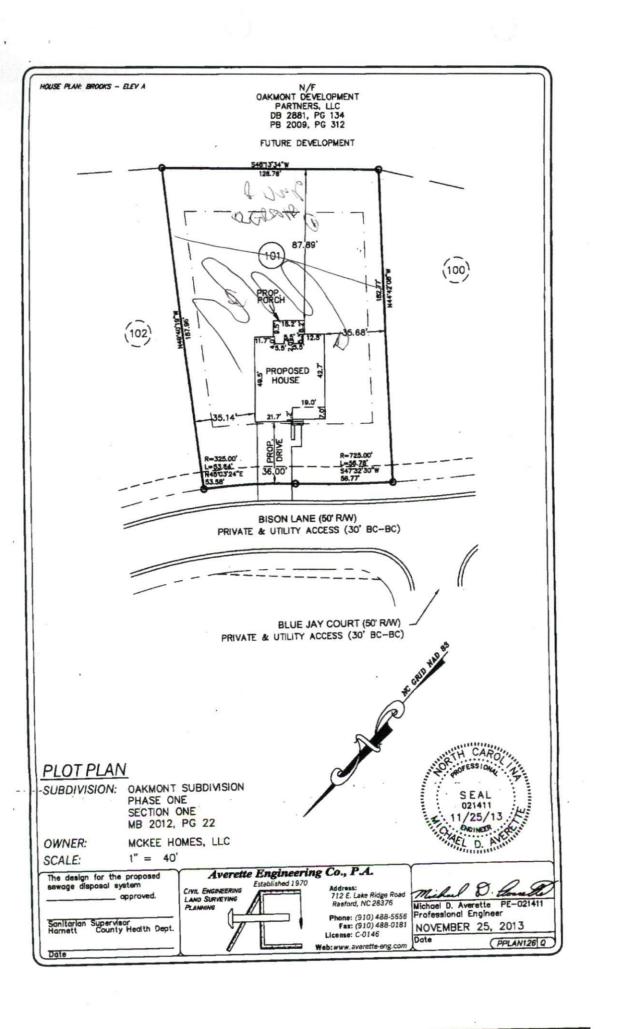
MINERALOGY SLIGHTLY EXPANSIVE

SC-SANDY CLAY

SIC-SILTY CLAY 0.4 - 0.1

EXPANSIVE

C-CLAY


IV

Show profile locations and other site features (dimensions, references or benchmark, and North)

Show profile locations and other site features (dimensions, references or benchmark, and North)

The second secon

.

