Department of Environment, Health and Nat Division of Environmental Health On-Site Wastewater Section System Type(s) Site LTAR Available Space (.1945) System lesources Sheet: Property Iu: Lot #: File #: Code: ## SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM | Locati
Water
Evalua | | : Auge | Proper
Public In | Evaluated: 6) 26) 13
n Flow (.1949): 2240
rty Recorded:
dividual Well
Pit
Undustrial Pro | II Spring | g Othe | ा | | | | |---------------------------|-----------------------------------|---------------------------|--------------------------------|---|------------------------------------|------------------------------|-------------------------|-------------------------|----------------------------|--| | P
R
O
F
I | .1940 | | | RPHOLOGY
1941 | | OTHER
PROFILE FACTOR | s | | | | | L
E
| Landscape
Position/
Slope % | Horizon
Depth
(In.) | .1941
Structure/
Texture | .1941
Consistence
Mineralogy | .1942
Soil
Wetness/
Color | .1943
Soil
Depth (IN.) | .1956
Sapro
Class | .1944
Restr
Horiz | Profile
Class
& LTAR | Control of the second s | | ١ | L5
5-7 | 016 | 6 5 | VEZ-12/NP | | | | | | | | | | 16-34 | SBKSci | galersay
ples sa | | | | | P5 .45 | | | | | 34" | Pm | | | | | | | | | 2 5 | \ | 122 | ROCY | - NGOD | PKS | | | | | The second secon | | 6 | | 0-26-0 | 6 5 | VP1 NSWP | | | | | | | | | | 2032 | 58×566 | VPZ 45/5P | | | | | P5
.4 | _ | | | | | | | 7 | | | | | | | | | | | | | | | | | - | | | | | | | | | | - | - | _ | | | | | | | | | | | | _ | | Descri | ption | Ir | nitial Re | pair System | Other Factors (.1946): | 0. | | | | - | Site Classification (.1948): Evaluated By: Others Present: COMMENTS: ____ | LANDSCAPE POSITIONS | GROUP | TEXTURES | . <u>1955 LTAR</u> | CONSISTENCE MOIST | WET | |--|-------|---|--------------------|---|--| | R-RIDGE
S-SHOULDER SLOPE
L-LINEAR SLOPE | I | S-SAND
LS-LOAMY SAND | 1.2 - 0.8 | VFR-VERY FRIABLE
FR-FRIABLE | NS-NON-STICKY | | FS-FOOT SLOPE
N-NOSE SLOPE
H-HEAD SLOPE | П | SL-SANDY LOAM
L-LOAM | 0.8 - 0.6 | FI-FRIABLE FI-FIRM VFI-VERY FIRM EFI-EXTREMELY FIRM | SS-SLIGHTY STICKY
S-STICKY
VS-VERY STICKY | | CC-CONCLAVE SLOPE
CV-CONVEX SLOPE
T-TERRACE
FP-FLOOD PLAN | Ш | SI-SILT
SIL-SILT LOAM
CL-CLAY LOAM
SCL-SANDY CLAY LOAM | 0.6 - 0.3 | EIT-EATREMELT FIRM | NP-NON-PLASTIC
SP-SLIGHTLY STICKY
P-PLASTIC
VP-VERY PLASTIC | 0.4 - 0.1 STRUCTURE SG-SINGLE GRAIN M-MASSIVE CR-CRUMB GR-GRANULAR SBK-SUBANGULAR BLOCKY ABK-ANGULAR BLOCKY PL-PLATY PR-PRISMATIC MINERALOGY SLIGHTLY EXPANSIVE SIC-SILTY CLAY **EXPANSIVE** C-CLAY SC-SANDY CLAY ΙV | 1 | T | 1 | _ | _ | _ | 3110 | w proi | 116 100 | ation | s and | otner | site i | eature | s (dii | nensi | ons, r | eferen | ces or | benc | hmar | k, and | Nort | h) | | | | | | |---------------|-----|-----|-----|---|-----|------|--------|---------|-------|-------|--------|--------|--------|--------|-------|--------|--------|--------|------|------|--------|------|-----|-----|----------|-----|----|-----| | | 1 | | | 1 | | | | | | | | | | | | | | | | | T | T | T | T | T | T | T | T | | - | - | - | - | - | 1 | | 1 | | 1 | | | | | | | | | | | 1 | | | | + | | + | + | - | + | - | - | +- | + | +- | + | | 1 | | 1 | | 1 | 1 | | 1 | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 1 | | | | | | | | | | + | + | + | _ | + | + | +- | + | + | + | + | +- | + | - | - | - | - | - | | _ | | | | 1 | | | | | | 1 | | 1 | 1 | 1 | 1 | | 1 | | | 1 | | 1 | 1 | | 1 | 1 | 1 | | | | | | | | | | + | - | - | +- | + | +- | + | + | - | _ | 1 | | | | | | | | | 1 | | | | 1 | | 1 | 1 | 1 | | | 1 | 1 | 1 | + | + | + | +- | | | | | | | | | 1 | | | | | 1 | | | 1 | 1 | | 1 | 1 | | | 1 | | 1 | 1 | | 1 | 1 | | | | | | 1 | | | 100 | | | | \top | | | + | + | + | + | - | - | - | - | - | - | - | - | - | | | | | | | | | | | 1 | | 1 | | | | | | | 1 | | | | | 1 | 1 | 1 | 1 | 1 | | | | | | | - | - | + | + | +- | +- | + | +- | + | + | - | - | + | - | - | - | | | | | | | | | | 1 | | | 1 | | | 1 | | | | | 1 | 1 | - | - | - | - | - | - | - | _ | - | | - | | - | - | | | | | | | | | 1 | 1 | 1 | 1 | | | | 1 | 1 | 1 | 1.5 | | 1 | 1 | | + | _ | + | - | + | - | | - | - | _ | | | | | - | | | | 1 | | | 1 | | | | | 1 | 1 | | | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | - | | - | - | + | + | - | + | - | - | - | - | - | - | _ | | | | | | | | | | 1 | 1 | | | | | | | | 1 | | | | 1 | 1 | | | | 1 | 1 | | 1 | 1 | | | | | | | | | | | 1. | | | | | | | _ | | | | | | | | | 1 | | 1 | | 1 | | | | | | | | | 1 | - | - | - | _ | | | | | | | | | 1 | | | 1 | | 1 | 1 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | _ | +- | + | + | - | - | - | - | _ | - | | | | | | | | | | | - 1 | | | | | 1 | 1 | 1 | | 1 | 1 | | | 1 | 1 | | 1 | | | | | | | | | | | | | | | | - | - | - | - | - | - | - | - | - | _ | _ | _ | _ | _ | | | | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | () | _ | | _ | | | | \vdash | - | | | | | - 1 | | | 1 | | | 1 | 1 | | | | | 1 | | 1 | | | | 1 | | | | 1 | | | | | | | | | | | | | | 1 | 1 | - | | - | - | - | _ | - | - | | | _ | | | | | | | | | | | | | | | | | | 1 | 1 | - | - | | | - | | | - | - 1 | - 1 | | | | | | l | | | | | | | | | | | | | | | - | | | | | | _ | - 1 | | | | - 1 | - | | - | | | | | | | | - 1 | 1 | | | 1 | | | | | | 1 | | | | | | | - | - | | - | | | | _ | - | \rightarrow | - | _ | - 1 | - | | - | } | - | | | | - | - | - | | - | - | | | | | | | | - 1 | - 1 | - 1 | - 1 | | - 1 | | | | | 1 | - 1 | | | | | | - 1 | | | | 1 | | - 1 | - 1 | - 1 | - 1 | | |