SOUTHEASTERN SOIL & ENVIRONMENTAL ASSOC., INC.
PROPOSED SUBSURFACE WASTE DISPOSAL SYSTEM DETAIL SHEET

SUBDIVISION We - FIRITE	LOT	102	<u></u>	
INITIAL SYSTEM 252 reduction REPA				
BENCHMARK ELEV. 100,0 LOCATI	ON rear i	acre-	10./102	
TYPE OF DISTRIBUTION D-6.x (GA)	VITY FLOO	(د_		

ELEVATION	LENGTH	FLAG COLOR
109.08	6'	Green
	50'	B
104.84	(0)	2
107,08	90'	w
102,00	90'	13.
	330'	
100.75	50	R
99.75	90'	ساھ
98.50	60'	The
97,84	35'	
	195'	
	·	
	109.08 107.25 104.84 103.08 102.00 100.75 99.75 98.50	109.08 (0' 107.25 50' 107.25 50' 107.84 (0' 102.08 90' 102.00 90' 330'

. FLAG COLOR: Y = YELLOW R = RED W = WHITE B = BLUE O = ORANGE P = PINK

BY MEAKEL

Southeastern Soil & Environmental Associates, Inc.

9104835716

P.O. Box 9321 Fayetteville, NC 28311 Phone/Fax (910) 822-4540 Email meaker3851@aol.com

> Lot 102 Woodships

* 3 BR MAX

* MAX HOUSE SIZE = 45'460'

INITIAL PROPOSED LTAR = 0.4 gpd /ft PSPAIR PROPOSED LTAR = 0.3 gpd /ft

KSAT LICATION,

Southeastern Soil & Environmental Associates, Inc.

P.O. Box 9321 Fayetteville, NC 28311 Phone/Fax (910) 822-4540 Email meaker3851@aol.com

> LOT 102 WOOSHIRE

* 3 BR MAX

* MAX HOUSE SIZE = 45 x60'

INITIAL PROPOSED LTAR = 0.4 gpd /ft PSPAIR PROPOSED LTAR = 0.3 grd /ft

KSAT LOCATIONS

SOUTHEASTERN SOIL & ENVIRONMENTAL ASSOC., INC.

PROPOSED SUBSURFACE WASTE DISPOSAL SYSTEM DETAIL SHEET

SUBDIVI	SION WOORTHINE		LOT1	02	
INITIAL	SYSTEM 25% reduc	in REPA			
BENCHM	ARK ELEV. 100.C	LOCATIO	N rear corn	21 101/	(0)
	DISTRIBUTION				
			IN, TIAL REPAIR	LTAR=	0.4 gpd
LINE	ELEVATION	LENGTH	FLAG COLO		//
1 2 3 4 5	109,08	50'	6 reen		
L	107.25	50'	B		
	104.84	50'	R		
4	103,08	90'	w		
3	102,00	90'	(3	and the second s	***************************************
		330'			
					1
7 8	100.75	90 '	12		
7	99.75	90'	Blw		
8	98.50	60'	Ilwi		
9	97,84	35'	B		
		7.75			
		- 1			
3Y i ^	EAKER	DA	TE JAN 2	عا 0 د	

DEPARTMENT OF ENVIRONMENT.
HEALTH AND NATURAL RESOURCES
DIVISION OF ENVIRONMENTAL HEALTH
ON-SITE WASTEWATER SECTION

DATE EVALUATED:_	JM	2006
PROPERTY I.D. #_		
PROPERTY RECOI	RDFD	

SITE/SOIL EVALUATION FOR ON-SITE WASTE WATER

PPLICANT: L	N (PHONE:_		APPLICATION DATE:				
		-						- 1			
DDRESS: Harre	tt		PROPERT	Y SIZE:		PROPOSEI	DFACILTIY	3 1	SYL		
OCATION OF SITE:											
VATER SUPPLY: On-Sit	e Well					EVAL	LUATION B	Y: Auger B	oring	Pit.	_ Cut
FACTORS		7	Y PICA L	@ K14	L T	PROF	ILES				
		1	2	3	4	5	6	7	8	9	10
ANDSCAPE POSITION	.1940	15	4.	LS						-	
SLOPE (%)	.1940		12%								
HORIZON 1 DEPTH		0-12	0-8	0-15						-	
Texture Group	1941(A)(1)	U	45	W						-	
Consistence	,1941	Vt	18 FBP							-	
Structure	,1941(A)(2)	war	WER	6461							
Mineralogy	,1941(A)(3)	NEX	NEX	WEX						-	
HORIZON-2 DEPTH		12-33		15-48+						-	
_ Texture Group	1941(A)(1)	SUL	su	su		.1 .					
Consistence	,1941	FC	Shu	Fr							
Structure	,1941(A)(2)	544	shu	Shu				<i>'</i>			
Mineralogy	1941(A)(3)	SEA	JEX	JEX							
HORIZON 3 DEPTH		33+	32+	Stage .							
Texture Group	,1941(A)(1)	PM	PM								
Consistence	,1941								-		
Structure	,1941(A)(2)	1		A					-	_
Mineralogy	,1941(A)(3)		(w)	<u></u>						
HORIZON 4 DEPTH								-			
Texture Group	.1941(A)(1)									
Consistence	.1941										
Structure	.1941(A)(2)		1							
Mineralogy	1941(A)(3										
SOIL WETNESS	,1942										
RESTRICTIVE HORIZO		1.									
SAPROLITE	1943/195	6					,1				
CLASSIFICATION	.1948			3.71							
LONG TERM	1955	- 2		0.4				2	1		İ
ACCEPTANCE RATE		0.3	0.4	0.7	١,٦						
AVAILABLE SPACE (19	45):	:	*		7	SITE LONG TERM					
OTHER FACTORS (194		.^		11		ACCEPTANCE RATE:					
SITE CLASSIFICATION (1948):					SYSTEM TYPE:						
EVALUATED BY:			•		OTHER	RS PRESENT	:				
COMMENTS:							1				
		,								<u></u>	
			(*								
								<u> </u>			

Southeastern Soil & Environmental Associates, Inc.

P.O. Box 9321 Fayetteville, NC 28311 Phone/Fax (910) 822-4540 Email meaker3851@aol.com

January 18, 2007

Harnett County Health Department PO Box 09 Lillington, NC 27546

Re: Hydraulic conductivity (Ksat) analysis for subsurface waste disposal, Woodshire Subdivision, Lot 102, Harnett County, North Carolina

To whom it may concern,

An evaluation of soil and hydraulic conductivity (Ksat) has been conducted, at the request of the LWS Homes of Fayetteville, on the aforementioned property. The purpose of the investigation was to determine soil absorption rates for a proposed 25 % reduction gravelless septic system to serve a 3 bedroom single family residence. All ratings and determinations were made in accordance with "Laws and Rules for Sanitary Sewage Collection, Treatment, and Disposal, 15A NCAC 18A .1900".

3 compact constant head permeameter (CCHP) measurements were made to determine a Ksat rate at depths of 32 inches. The three Ksat measurement in the Bt and BC horizons Were 0.73, 0.98 & 1.46 cm/hr. The lowest measurement (in the areas of the proposed repair system) equates to 4.28 gpd/sq.ft. Using 10% of this average (typical for systems without pretreatment), Ksat measurement equates to 0.428 gpd/sq.ft.

Our initial system is based on a proposed 0.40 gpd/sq. ft. which is considerably less than the measured rate (repair area is proposed at 0.3 gpd/ft2). In my professional opinion, this rate should allow for sufficient drainage from the proposed system.

Sincerely,

Mike Eaker President

Mu Fe

			SAMPLE DA'	TA SHE	EET			
Measurem	nent No.	-	Conducted b	у/	M.E	AKER		
Weather (Condition _	CUMA	102				date	
	Bt		Source of Wa	ton	-10		Temperature	60'
	73		Source of wa	iter	741			
and soil	between referen				Meas		al) water lo	cm
the refer Desired w	ence level (D) ater depth in h	ole (H)	$= \frac{92}{\sqrt{3}} \text{ c}$ $= \frac{77}{\sqrt{3}} \text{ c}$	cm	Start	time saturation y-state rea	ding	
Both Flo	easuring Reserve w Measuring a	oir Only and Main	of the Steady-S Reservoirs hange in water	_	Conv	ersion Fact ersion Fact	tor (C.F.) =	$= 105 \text{ cm}^2$
Clock Time h:min	Reservoir Reading cm	Δt	Change in Water Level cm	Flow	ie	Q cm³/min	Q	K _{sat}
7:53	30,7	_3_	0,0					
1.56	30. 3	3	0-4					
9-59	29,9	_3	0.4	-				
10:02	29,5	3	0.4					
10:05	29.1	3	_0.4				-	
10:08	28.7	_3_	0.4					2
10:11	28,3	_3_	0.4	42		14	840	. 98
			: K _{sat} = 0.		em/h		(other	units)

SAMPLE	DATA	SHEET
Canduat	ad bar	in

	ent No	_	Conducted by	y	M Eale-		
Location _	Woods	hire lot	102			date _ 1/11	62
Weather C	Condition	unny				Temperature	65
Horizon _	BE		Source of Wa	ter	TAP	1	
and soil	oetween referer surface		81cr	n	Measured (A	Actual) water le	cm
the refer Desired w	from the hole be ence level (D) ater depth in he nead tube settir	ole (H)	$= \frac{4 \text{C}}{1 \text{C}} \text{ cr}$ $= \frac{77}{2} \text{ cr}$	m em	Clock time Start saturati		
Reservoirs Flow Me Both Flo	Used for Mea easuring Reserv w Measuring a	surement voir Only and Main	of the Steady-S Reservoirs	State Flo	w Rate Conversion Conversion		$= 20 \text{ cm}^2$ = 105 cm ²
Clock Time h:min	Reservoir Reading cm	Δt	Change in Water Level cm		e	Q nin cm³/h	K _{sat}
<u>10:40</u>	25.1						
10:43	24.8	_3_	0.3				
10:46	14.4	_3_	0,4	-			21
10:49	24, 1	3	0,3		-		
10:52	23.6	_3_	0.5		-		
			0.3				
10:58	23.0	3_	0.3	31.5	10.5	630	0.73
Average of	TS: <u>Équi</u>	asurements +0	S: $K_{\text{sat}} = \frac{0}{4.28}$,73 c	:m/h	(other	units)

	SAMPLE DATA SHEET							
Measuremen	nt No		Conducted by	/	M	Eaker		
Location	Woodshi	re bot	102			(late _ 1/1	1/07
Weather Co	ndition .) wany					Temperature	600
Horizon	Bt		Source of Wat	ter	T.	Ar	•	
Hole depth Distance between reference level and soil surface Distance from the hole bottom to			81cn	Measured (Actual) water level in Initial cm Final cm				
the reference level (D) Desired water depth in hole (H) Constant-head tube setting (d)		ole (H)	= <u>92</u> cm - <u>15</u> cm = <u>72</u> cm		Clock time Start saturation Steady-state reading			
Flow Mea Both Flow	suring Reserve Measuring an	oir Only _ nd Main F	of the Steady-S Reservoirs	_	Conv Conv	ersion Fac ersion Fac	tor (C.F.) = tor (C.F.) = C.F. from	= 105 cm ²
Clock Time h:min	Reservoir Reading cm	Δt	Change in Water Level cm	Flow	ie	Q cm³/min	Q	K _{sat}
11:15	32.4							
11:18	31.6	_3_	0.8					
11:21	29.8	_3_	0.8	•.			-	3
11:24	29,2	_3_	0.6	63		21	1260	1.46
11:27	28.5	_3_	0.7					
11:30	27.8	_3	0.7					e:
-				-			***************************************	-
Average of	last three mea	surements	$: K_{sat} = \underline{/}$.46 (em/h		(other	units)
COMMENT	s: 2 = 8.50	ged ,	4+2					
	f							