

STRUCTURAL CALCULATIONS

for ANNA ROBERTS at 347 SHUE ROAD BROADWAY, NC 27505 for EVOLUTION DRAFTING LLC

BY: JACOB PROCTOR, P.E. Professional Engineer

NC Firm License No.COA #P-0742

PROJECT #: U6489.0090.251

DATE: July 2, 2025

DESIGNED BY HEE; CHECKED BY KSA

Note:

The calculations presented in this package are intended for a single use at the location indicated above, for the client listed above. These calculations shall not be reproduced, reused, "card filed", sold to a third party, or altered in any way without the written authorization of Vector Structural Engineering, LLC and Evolution Drafting LLC.

Copyright © 2025 Vector Structural Engineering, LLC These calculations contain proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

Design Criteria:

General:

Code: Structural design is based upon the North Carolina Building Code, 2018 Edition (2015 IBC) Risk Category: II

 $S_1 = 0.066$

 $S_{D1} = 0.106$

Wind Criteria: ASCE7-10

Analysis Procedure: ASCE 7-10, Chapter 27 - Directional Procedure Basic Wind Speed - Ultimate (mph): 120 (3-sec gust) Wind Exposure: B

Seismic Criteria:

Analysis Procedure: ASCE 7-10, Equivalent Lateral Force Procedure Site Class: D(efault)

Seismic Importance Factor, I_E: 1.0

Mapped Spectral Response Accelerations:

 $S_{\rm S} = 0.136$ $S_{\rm DS} = 0.145$ Seismic Design Category: B Seismic Force Resisting System: Wood Shearwalls Seismic Response Coefficient, C_{\rm s}: 0.022

Seismic Base Shear, V (k): 0.2

Snow Load:

Ground Snow Load, p_g (psf): 15 Snow Importance Factor, I_S: 1 Flat Roof Snow Load, p_f (psf): 11 Sloped Roof Snow Load, p_s (psf): 11

Live Loads:

Roof Live Load (psf): 20 Floor Live Load (psf): 40

General Notes:

- The contractor shall verify dimensions, conditions and elevations before starting work. The engineer shall be notified immediately if any discrepancies are found.
- The typical notes and details shall apply in all cases unless specifically detailed elsewhere. Where no detail is shown, the construction shall be as shown for other similar work and as required by the building code.
- These calculations are limited to the structural members shown in these calculations only. The connection of the members shown in these calculations to any existing structure shall be by others.
- The contractor shall be responsible for compliance with local construction safety orders. Approval of shop drawings by the architect or structural engineer shall not be construed as accepting this responsibility.
- All structural framing members shall be adequately shored and braced during erection and until full lateral and vertical support is provided by adjoining members.

Wood Construction:

- All dimensional lumber shall be Southern Yellow Pine #2 or equal
- All wood timbers shall be Southern Yellow Pine #1 5X And Larger Or Equal
- Wood construction code checks are per the National Design Specification for Wood Construction (NDS) and Standard for Design of Timber Frame Structures (TFEC 1)

Foundation / Concrete:

- All concrete mixing, placement, forming, and reinforcing installation shall be performed in accordance with the requirements of "Building Code Requirements for Reinforced Concrete", ACI 318, latest applicable edition.
- Foundation concrete shall have a minimum compressive strength of 4000 psi at 28 days.
- Cement for all concrete shall be Type II with a minimum of 6% entrained air. Maximum aggregate size shall be 3/4".
- Reinforcing steel shall be per ASTM A615 Gr. 60, U.N.O.
- Foundation design is based upon presumptive soil capacities. Vector Structural Engineering, LLC strongly recommends independent soils testing be performed by a licensed geotechnical engineer to verify soil capacites, slope stability, and any other related soil parameters.

Copyright © 2025 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: Anna Roberts

JOB NO.: U6489.0090.251 SUBJECT: GRAVITY LOADS

			Increase		
			due to	Original	
ROOF			pitch	loading	
ROOF PITCH/12		4			
ASPHALT SHINGLES		4.22	1.05	4.00	
1/2" PLYWOOD		1.58	1.05	1.50	
FRAMING		3.00			
INSULATION		2.00			
1/2" GYPSUM CLG.		2.20			
M, E & MISC		2.30			
FUTURE SOLAR		3.00			
	DL	18.30			
	LL	20.00			
	SNOW	11.00			
SNOW INCLUDED IN	LATERAL	0.0			
2ND FLOOR (WHERE OCCURS)					
		1 00			
		2 30			
MEG TRUSSES / FRAMING		2.00			
INSULATION		1.00			
1/2" GYPSUM CEILING		2 20			
PARTITION		2.20			
M F & MISC		1.50			
OTHER		0.00			
····	DL	12.00			
	LL	40.00			
EXTERIOR WALLS					
STUCCO/SIDING		3.50			
2x6 FRAMING W/3 PLATES		1.30			
INSULATION		1.00			
1/2" GYPSUM		2.20			
1/2" PLYWOOD		1.50			
OTHER		0.50			
	DL	10.00			
OVERFILL					
ASPHALT SHINGLES		4 00			
		1.50			
RAFTERS & MISC		3.50			
OTHER		0.00			
	DI	9.00			
	LL	20.00			
		20.00			

TYPICAL ROOF OVERBUILD MAX SPAN TABLE

Grade	Size	Spacing (ft)	L _{max} (ft)	C _r	C _D	C _{F,V}	M _{allow} (ft-lb)	V _{allow} (Ib)	Ctrl'g factor
DFL#2	2X4	2	6.20	1.15	1.25	1.50	482	382	TL def
DFL#2	2X6	2	9.80	1.15	1.25	1.30	1030	601	TL def
DFL#2	2X8	2	13.00	1.15	1.25	1.20	1653	792	TL def
DFL#2	2X10	2	16.00	1.15	1.25	1.10	2466	1011	Moment

Beam and header lengths shown on this keyplan are for design purposes only and do not represent actual beam or header lengths nor rough opening sizes. For project dimensions refer to the architectural drawings.

Copyright © 2025 Vector Structural Engineering, LLC This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

																												246-64	Giue Lan	inated fin	IDel 24F-	2,400	205	10000	000	39.9
P	ROJE	CT: Ar	nna F	Roberts	S				JOB	NO.:	U648	9.0090.	251				SUBJE	ECT: B	EAMS	5								24F-V8	Glue Lan	ninated Tin	nber 24F-	2,400	265	18000	000	39.9
																												LVL (2.0)	MICROL	LAM LVL (2.0E)	2,600	285	20000	000	41.8
									_																			LVL (2.1)	MICROL	LAM LVL (2.1E)	2,600	285	21000	000	41.8
DESI	GN LO	DADS:		Load 7	Types:	Snow*I _S	Live	Dead				Load C	Combina	tions:														LSL	TIMBER	STRAND L	.SL (1.3E)	1,700	400	13000	000	41.8
					Roof	11	20	18				LC 2:	D+L					С	RITER	IA (L/)	D _{TL}	D _{LL}	D _{DL}	D _{Lr/S}				PSL	PARALL	AM PSL (2	2.0E)	2,900	290	20000	000	41.8
					Floor		40	12				LC 3:	D+(Lr c	or S)					A	(BLANK)	240	360		240				STL36	GRADE	36 STEEL		21,600	14,400	29,000	,000,	490
					Wall			10				LC 4:	D+.75L	+.75(Lr	or S))				В	240	480		240				STL46	GRADE 4	46 STEEL		27,700	16,500	29,000	,000,	490
			Add	.2*S _{DS}	to dea	d load?	No	0	=.2*S _{DS}											С	600		800	240				STL50	GRADE	50 STEEL		30,000	12,934	29,000	,000,	490
Labe	Lei el 'L'	Rangth T (ft) (oof rib ft)	Floor Trib (ft)	Wall Trib (ft)	Add'l Live Load (plf)	Add'l Lr/S Load (plf)	Add'l Dead Load (plf)	Point Load From	React (A,B)	Dist 'a' (ft)	Point Live Load 'P _{LL} ' (lb)	Point Roof Load 'P _{Lr/S} ' (Ib)	Point Dead Load 'P _{DL} ' (lb)	# PLIES	Grade	Size		D CRITERIA	C _r	C _D	C _{F,V,} C _L	R _a (lb)	R _b (lb)	M _{max} (ft-lb)	M _{allow} (ft-lb)	V _{max} (Ib)	V _{allow} (Ib)	D _{TL} (in)	D _{TLallow} (in)	D _{LL} (in)	D _{LLallow} (in)	D _{Lr/S} (in)	D _{Lr/Sallow} (in)	GLB Camb	Check
RB1		2.5 1	1.1												(2)	SYP#2	2X6	Н		1.00	1.25	1.28	530	530	331	1510	336	2406	0.006	0.125		0.083	0.003	0.125		0.22 M
RB2		5.5	1.5												(2)	SYP#2	2X6	Η		1.00	1.25	1.28	168	168	230	1510	140	2406	0.022	0.275		0.183	0.011	0.275		0.15 M
RB3		4.5 1	1.1		-										(2)	SYP#2	2X6	Н		1.00	1.25	1.28	958	958	1078	1510	763	2406	0.067	0.225		0.150	0.035	0.225		0.71 M
RB4		32	2												(2)	SYP#2	2X6	н		1 00	1 25	1 28	128	128	102	1510	91	2406	0.003	0 160		0 107	0.002	0 160		0 07 M

F_{bxx} F_{vxx} (psi) (psi)

175

160

175

750

1,350

1,000

E_{xx} (psi)

1400000

1500000

1600000

Abbrev GRADES

Southern Yellow Pine #2

Southern Yellow Pine #1

SYP#1 5 Southern Yellow Pine #1 5x

SYP#2

SYP#1

g (lb/ft3)

34.3

34.3

34.3

Copyright © 2025 Vector Structural Engineering, LLC This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: Anna Roberts	JOB NO.:	U6489.0090.2	51	SUBJECT: STUDS & OTHER MEMBERS
DESIGN LOADS (psf)	Dead	Live	Snow*ls	
Roof	18	20	11	Design Wind Speed 120
Floor	12	40]	Wind Exposure B
Exterior Wall	10			
	0	l		
LOADING PARAMETERS	l: Typical Ext.	1 KS - 5'	2 KS - 14'	
Wind/Wall Tributary (ft)	1.33	3.17	7.67	
Bending Axis	Strong	Strong	Strong	
Roof Tributary (ft)	11.1	11.1	11.1	
Floor Tributary (ft)				
Additional Dead Load (Ibs)				
Additional Roof Live Load (lbs)				
Additional Snow Load (lbs)				
Location for Wind Loading	C&C Zone 5	C&C Zone 5	C&C Zone 5	
Mean Roof Height (ft)	15	15	15	
Axial Loads (lbs):	040	750	4000	
Dead Eloor Live	319	759	1838	
Roof Live	295	703	1702	
Snow	162	386	936	
Bending Load (plf):				
	43.1	102.5	224.6	
<u>MEMBER PROPERTIES</u>	0	0	0	
Strong-Axis Unbraced Length, I_1 (It)	0	0	0	
	1	1	1	
Compression Edge Unbraced Length, I_u (ft)				
Grade	STPSTUD	STPSTUD	STPSTUD	
Quantity of Members	2x0	2.00	20	
SPECIAL CONDITIONS		•	-	
Moisture Category	Normal	Normal	Normal	
Temperature Category	≤100°	≤100°	≤100°	
Incising? Repetitive Member Category	NO Rop (Special)	NO Ron (Special)	NO Ron (Special)	
Finish Type	Rep. (Special)	Rrittle	Rrittle	
SECTION PROPERTIES	Billao	Billio	Britalo	
Width, b (in)	1.5	1.5	1.5	
Depth, d (in)	5.5	5.5	5.5	
Moment of Inertia, I (in⁴)	20.796875	20.796875	20.796875	
Section Modulus, S (in [°])	7.5625	7.5625	7.5625	
<u>DESIGN VALUES</u> E. (nsi)	450	450	450	
$F_{\rm bx}$ (psi)	450	450	450	
$F_{by}(psi)$	725	725	430	
F_{c} (psi)	1300000	1300000	1300000	
	1300000	1300000	1300000	
E_{yy} (psi)	470000	470000	470000	
	470000	470000	470000	
	470000	470000	470000	
RESULIS	60/	150/	100/	
	10%	25%	30%	
D+S	9%	20%	30 % 25%	
D+0 75l +0 75l r	0%	20%	26%	
D+0.751 +0.75S	8%	10%	2070	
D+0.6W	35%	88%	99%	
D+0 751 +0 42W+0 751 r	26%	68%	78%	
D+0 75I +0 42W+0 75S	25%	65%	74%	
Deflection imit (I /)	240	240	240	
Deflection (L/)	2101	883	806	
Column Slenderness. I _^ /d	17.5	17.5	17 5	
Beam Slenderness, R _p	7.8	7.8	7.8	
Unity Check	35%	88%	99%	Page 6 of 13

Copyright © 2025 Vector Structural Engineering, LLC This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: Anna Roberts

JOB NO.: U6489.0090.251

SUBJECT: FOOTINGS AND FOUNDATIONS

FOOTINGS

Assumed Soil Bearing Pressure	q=	1500	psf
Footing Embedment/Frost Depth	d_f=	12	in
Soil Weight	W_s=	110	pcf
Wall Width	wwall=	3.5	in
Col Width	wcol=	5.5	in
Slab Thickness	t_s=	4	in

Continuous Footings:

Title	Width (in)	Depth (in)	Loads (plf)	#4 Bars Lengthwise	Alt Bar Size	# of Bars Lengthwise	Ext Uplift Weight (plf)	Int Uplift Weight (plf)
CF1.00	12	10	1,500	2			139	169
CF1.33	16	10	2,000	2			186	226
CF1.50	18	10	2,250	2			209	254

Spread Footings:

Title	Width (in)	Length (in)	Depth (in)	Loads (kip)	#4 Bars Lengthwise	Alt Bar Size	# of Bars Lengthwise	Ext Uplift Weight (lbs)	Int Uplift Weight (lbs)
F2.00	24	24	10	6.00	3			557	677
F2.50	30	30	10	9.38	3			870	1057
F3.00	36	36	12	13.50	4			1305	1740
F3.50	42	42	12	18.38	5			1776	2368
F4.00	48	48	12	24.00	6			2320	3093
F4.50	54	54	14	30.38	7			3426	4404
F5.00	60	60	14	37.50	8			4229	5438
F5.50	66	66	16	45.38	10			5848	7310

SHEAR WALL KEYPLAN

Copyright © 2025 Vector Structural Engineering, LLC This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

JOB NO.: U6489.0090.251

SUBJECT: LATERAL LOADS

Seismic Parameters (ASCE 7-10 Chapters 11, 12, & 22)

Site Class:	D	S. 11.4.2	N =	1	S. 12.8.2.1	Determination of S	SDC:	
R =	6.5	T. 12.2-1	C _t =	0.02	T. 12.8-2	Per Table 11.6-1:	А	
S _s =	0.136	F. 22-1	h_n (ft) =	10	S. 12.8.2.1	Per Table 11.6-2:	В	
S ₁ =	0.066	F. 22-2	x =	0.75	T. 12.8-2	SDC:	В	S. 11.6
F _a =	1.6	T. 11.4-1	Т =		Calculated	I _E =	1.00	T. 1.5-2
F _v =	2.4	T. 11.4-2	T _a =	0.112	E. 12.8-7	C _{SMAX} =	0.144	E. 12.8-4,5
S _{MS} =	0.22	E. 11.4-1	T ₀ =	0.15	S. 11.4.5	C _S =	0.022	E. 12.8-2
SM1 =	0.16	E. 11.4-2	Ts=	0.728	S. 11.4.5	C _{SMIN} =	0.010	E. 12.8-6,7
S _{DS} =	0.145	E. 11.4-3	C _U =	1.69	T. 12.8-1	C _{SCONTROL} =	0.022	S. 12.8.1.1
S _{DI} =	0.106	E. 11.4-4	T _L =	8	F. 22-12	C _{SCONTROL} *.7=	0.016	S. 2.4.1
Risk Category:	П		S _a =	0.125	S. 11.4.5	Seismic Analysis Req'd?	No	IBC 1613.1
						Perform Seismic Analysis?	No	

Copyright © 2025 Vector Structural Engineering, LLC This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

JOB NO.: U6489.0090.251

SUBJECT: LATERAL LOADS

Wind Parameters (ASCE 7-10 Chapter 26)

Copyright © 2025 Vector Structural Engineering, LLC This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: Anna Roberts

JOB NO.: U6489.0090.251

SUBJECT: LINE LOADS

Roof DL

Seismic

Floor DL

Wall DL

Period, T

Snow

18

0

12

10

0.11

psf

psf

psf

psf

sec

Level Descript	ions				
Label	Height (ft)	W _{control} (Ib)	V _{norm} (lb)	V _{redist} (Ib)	Redist Fact
Roof	10	10400	232	232	1.00
		0	0	0	1.00
		0	0	0	1.00
		0	0	0	1.00
		0	0	0	1.00
Total	Neight (lb)	10400		Es	stimated Tota
Total Base	Shear (lb)	232		E	stimated Tota
					_

1.00 1.00 ated Total Weight in Longitudinal Direction 10400 ated Total Weight in Transverse Direction 10400

Percent difference in estimated weights 0.0%

ASCE7 12.8.3

k= 1

Σw_i**h**_i^k= 104000

Seismic Line Loads

				Number of				Ext Wall	Other	Total		Cvx -	Revised	Force
				times to	Roof Trib	Floor Trib	Wall Trib	Length	Weight	Weight	Total Force	Redist	Force	Redist to
Label	Width	Level	Direction	include	(ft)	(ft)	Height (ft)	(ft)	(lb/ft)	(lb/ft)	(lb/ft)	Factor	(lb/ft)	1
ω1	20	Roof	TRANS	1	20		4	80		520	12	1.00	12	NO
ω2	20	Roof	LONG	1	20		4	80		520	12	1.00	12	NO

Wind Line Loads

			Total												
			Exposed	'z' Average	Total	'z' Top of	Total	Wind							
		'h' Mean	Roof	Wall	Exposed	Parapet	Exposed	Direction							
	Roof	Roof Height	Area	Elevation	Wall Area	Elevation	Parapet	to Main	Windward		Parapet	Roof Force	Wall	Parapet	Total
Label	Pitch /12	at level (ft)	(sqft)	(ft)	(sqft)	(ft)	Area (sqft)	Ridge	only?	Roof Type	Condition	(plf)	Force (plf)	Force (plf)	Force (plf)
ω1	4	10.0	82.0	4.0	80.0			Normal	N	Gable/Hip		32.8	79.6		112.4
ω2	0	10.0	0.0	4.0	80.0			Parallel	Y	Gable/Hip			64.0		64.0

						al p value	Copy This Excel work Structural Engin reproduced with Engineering, LL	right © 2025 \ book contains p heering, LLC, an hout the prior wi C. Calcula	Vector Structur roprietary inform d may be neithe itten permission ated p value	al Engineering, nation belonging er wholly nor part of Vector Structu es and	, LLC to Vector ially copied or ural									
F	PROJECT:	PROJECT	NAME		appi	ied	JOB NO.:	¥64	ing locatio		SUBJECT:	SHEAR W	ALL SHEE	EXPLANA	TION					
			$\rho_{Applied} =$	1	Asno	ct ratio	Pi 🖌	Loc						Roof D)L (psf) =	44	(includes s	eismic snov	/ where occu	urs)
	Min	Diaphragm	Width (ft) =	20	limit		1.00	A-1ST			ſ	Loads appl	ied along	Floor D)L (psf) =	12		_		
	Allowable S	Seismic Asp	ect Ratio =	3.5			1.00	A-2ND		a coloulo	tod in cord	line, as cald	ulated	0 40				PE	<pre> <f ftao="" pre="" w<=""></f></pre>	all calcs
Comb C	Allowabl	e vvind Asp	$P_{0} = \frac{1}{2} = \frac{1}{2$	3.5						p calcula	ited in acco	previously		Section 12.	.3.4.1	Dia	phragm she	ear wh	ere applica	ble
LINE	A Norstrongt	197	STORY	2.00	D-6 5		Timbor Fr	amod She	arwall Ca	louistione						/ calc	ulations	\vdash		
LINE.	LineLo	ade (olf)	310111		K=0.5	ode from ab		ameu one	Applied I	oods (nlf)	¥	Dianhra	m Shoor P	-6 5 (plf)		ı / 느	Dorf/ETA(⊃ Wall Info		
L	Lond	aus (pii) Trib w (ft)	Span (ft)	Lino	0/LU2	Location	0 7E (lbc)	0.6W/(lbc)	o*Seis	Wind	Drag (ft)	Sois (may	un onear, r	-0.5 (pii) Wind (may	vve allow)	/	(Not Applic	J Wall IIIO		
	ml	33.5	67	LINE	1.00	Offset	0.7 E (103)	0.000 (ibs)	0.0	68.1	Biag (II)	0	(vs. allow)	285	(vs. allow)	4	(NOL Applic	abie)		
	0,1	0	0.		1.00	Offset	0	Ő	0.0	0.0	8	0	166	0	232					
					1.00	Above	0	0												
	F	Plate h (ft)=	8			Total	0	2280	1	nclude Ω for	r irregularitie	es (above)?	No							
M	lax opening	height (ft)=	8																Amplified s	seismic
Apply	aspect ratio	reduction?	Yes	100%	Perfo	rated SW?	No	Shear I	_ength (ft)=	8	Ste	ory V (lbs)=	0	Tot	al seismic s	hear applie	ed at		deflection	of wall
	Openir	g elevation		Force	Transfer @	Openings?	No	Wa	II DL (psf)=	10	Max allo	ow. drift (in)	1.92	leve	el, for calcu	lating p				
				1	Selection of	of wall type	. 'No' for			-		1	r –		1	1				
					both mean	is a segmen	ted wall	HD	ОТМ	(0.6-										Max
Shear-				Tension				Capacity	(wind,	.2SDs)		Aspect								Shear-
Wall	Roof _{DL} 'w'	Floor _{DL} 'w'	Other _{DL}	From			Holdown	(Stem/floo	seismic)	*RM (ft-	Aspect	Ratio	Seis.	Seis. Wall	Wind	Wind Wall	Sill Plate	Tension	HD	Wall ∆
Length (ft)	(ft)	(ft)	'w' (plf)	Above (lb)	Wall Type	Sill Type	Strap	r config)	(ft-lb)	lb)	Ratio	Reduc.	Shear (plf)	Cap. (plf)	Shear (plf)	Cap. (plf)	Cap. (plf)	(lb)	Capacity	1.0E (in)
5	2				P1	S1	STHD10	8"-Midwall	11402	870	1.60	1.00	0	260	285	365	388	2106	4195	0.47
3	2				P1	\$1	HDU2	-	6841	313	2.67	0.75	0	195	285	274	388	2176	3075	0.66
	/													/						
	/	Infor	mation on i	in dividual										/		lad	an an an al su	. 14. als a su a s		
			nation on i	Individual											App	lied unit sn	ears and ur	nit snear ca	Jacities	
		waii													(reu	uceu when		ite)		
Add'l (Comments:																		Max:	0.66
LINE:	A	1ST	STORY	1	R=6.5		Timber Fi	amed She	earwall Ca	lculations			Perforated o	r FTAO			r			
	Line Lo	ads (plf)	-		Loa	ads from ab	ove	-	Applied L	oads (plf)		Diaphra	alculations			•	Perf/FTA0	O Wall Info	Rdl (ft)	2
	Load	Trib w (ft)	Span (ft)	Line	%	Location	0.7E (lbs)	0.6W (lbs)	ρ*Seis	Wind	Drag (ft)	Seis (ma		1.5	allow)		Ltotal (ft)	20	Fdl (ft)	
	ωl	15	30		1.00	Offset	0	0	57.9	59.4	20	0	166	o factor w	hen		Mall Arms	- D4	DL (plf)	168
		U			1.00	Above	0	0	0.0	0.0	20	U		pplicable	F		waii type	PT STUD10	Opening (ft)	12
	ŗ	Plate h (ft)=	8		1.00	Total	868	891		nclude O for	r irregularitie	es (above)?	No				-7716)	-649	HD can	2940
М	lax opening	height (ft)=	3			rotar	000				mogalaria	50 (aboro).	Hele	daum infa	rmation for	. /	Seis (plf)	109	Cap (plf)	260
Apply	aspect ratio	reduction?	Yes	50%	Perfo	rated SW?	No	Shear I	Length (ft)=	8	Ste	ory V (lbs)=	173 alah	down into	rmation to		Wind (plf)	111	Cap (plf)	365
,	Openir	g elevation	2	Force	Transfer @	Openings?	Yes	Wa	II DL (psf)=	10	Max allo	ow. drift (in)	1.9	ai wali ove	turning		Strap (lb)	428	∆(in)	N/A
																	Strap Type	CS16	1705	
					Reg	uired only f	or FTAO		0.714	(0.0							/			
Choor				Topoion	met	hod		HD	(wind	(U.D- 26Da)		Annost							1	Shoor
Mall	Roof., 'w'	Floor, 'w'	Other	Erom			Holdown	(Stom/floo	(wind,	.23DS) *DM (ft	Acnoct	Patio	Soic	Soic Wall	Wind	Wind Max	imum unit	shear and	ЧD	Woll A
Length (ft)	(ft)	(ft)	'w' (nlf)	Above (lb)	Wall Type	Sill Type	Stran	r config)	(ft-lb)	lb)	Ratio	Reduc	Shear (nlf)	Can (nlf)	Shear (plf)	Can stra	p forces cal	culated by	Canacity	10E (in)
	()	0505	··· (P··)		0.01.01.0.1			DOV/F	(11.10)	,	4.00	4.00	ou (pii)	- up. (pii)	2.10cl (pil)	Diek	mann meth	hod for	Labaony	
3		PERF	/FTAU SHE	AK-WALL	CALCULA	IONS APP	LT - SEE A	BOVE			1.00	1.00	ļ			FTA	D walls		J	
5		_			<u> </u>						0.60	1.00						<u> </u>		
			ength of fu	ll-height					-		-				-	-			<u> </u>	
		s	egements i	n PERF/FTA	10															
Add'l (ommonte:											•						•	Max	

Copyrtight © 2025 Vector Structural Engineering, LLC This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

					_															
	PROJECT:	Anna Robe	erts				JOB NO .:	U6489.009	0.251		SUBJECT:	SHEAR W	ALLS							
Danward =				1		0. Loc		En/Ex	Т				Roof DL (psf) = 18			(includes seismic snow where occurs)				
Min Diaphragm Width (ft) =				20			1.00	1-1ST	1 30					Floor) (nef) =	12	(are)
Allowable Seismic Aspect Ratio = 3.5							1.00	. 101	1.00	1				11001	- (P31) -	14	L			
	Allowable	le Wind Asr	ect Ratio =	3.5						o calci	ilated in acc	ordance wi	th ASCE7.	10 Section	12341					
Comb.	Overstrengt	h Factors: (0-0.5)/1.2=	2.08						No	Exception	in ASCE 7 1	12.3.4.2b n	net?						
	5	```	/																	
LINE:	1	1ST	STORY		R=6.5		Timber Fr	amed Shea	arwall Cal	culation	s									
	LineLe	ada (plf)				oode from	abovo		Applied L	oode (plf)	-	Diaphrog	m Shoor E	2-6 5 (plf)		1	Dorf/ETA		1	
Load Trib w (ft) Spar			Span (ft)	Lino	0/	Location		0.6W/(lba)	Applieu L	Wind	Diaphragin Drag (ft) Saia (may u		in Snear, r	Vind (ma		-	(Net Applicable)			
	Luau	10 (11)	30 Span (II)	LINE	70	Offect	0.7E (IDS)	0.600 (ibs)	p Seis	67.4	10.42	Sels (IIIax	. vs. aliow)	Wind (ma	x vs. allow)	-	(NOL Appli	cable)		
	01	10	20		1.00	Offset				07.4	10.42		166	05	232					
					1.00	Ahove					10.42					1				
	1	Plate h (ft)=	8			Total		674	Inc	lude Ω for	irregularitie	es (above)?	No	1						
Max opening height (ft)			8									- ().		-						
Apply aspect ratio reduction? Yes			Yes	100% Perforated SW?			No	No Shear Length (ft)=			10.42 Story V (lbs)=			1						
Opening elevation			Force Transfer @ Openings?			No	No Wall DL (psf)=			10 Max allow. drift (in) 1.9										
		-			-			-						-						
Shear-				Tension				HD	OTM	(0.6-										Max
Wall			0.11	From				Capacity	(wind,	.2SDs)		Aspect	Seis.	Seis.						Shear-
Length	Root _{DL} W	Floor _{DL} W	Other _{DL}	Above	Wall		Holdown	(Stem/floor	seismic)	*RM	Aspect	Ratio	Shear	Wall Cap.	Wind	Wind Wall	Sill Plate	Tension	HD	Wall ∆
(ft)	(ft)	(ft)	'w' (plf)	(lb)	l ype	Sill Type	Strap	config)	(ft-lb)	(ft-lb)	Ratio	Reduc.	(plf)	(plf)	Shear (plf)	Cap. (plf)	Cap. (plf)	(lb)	Capacity	1.0E (in)
10.42	1.5				P1		NO HD	8"-Corner	5395	3485	0.77	1.00		260	65	365		183	200	
Add'l Cor	nments:																		Max:	
LINE:	В	1ST	STORY		R=6.5		Timber Fr	amed Shea	arwall Cal	lculation	s					_				
	Line Lo	oads (plf)			Ŀ	oads from a	above		Applied L	oads (plf)		Diaphrag	m Shear, F	R=6.5 (plf)			Perf/FTA	O Wall Info		
	Load	Trib w (ft)	Span (ft)	Line	%	Location	0.7E (lbs)	0.6W (lbs)	ρ*Seis	Wind	Drag (ft)	Seis (max	vs. allow)	Wind (ma	x vs. allow)	1	(Not Appli	cable)		
	ω2	10	20		1.00	Offset				38.4	10		166	38	222	1				
					1.00	Offset					10		100		232					
					1.00	Above								-		-				
	I	Plate h (ft)= 8		Total			384		Include Ω for irregularities (abov		es (above)?)? No								
N	lax opening	ning height (ft)= 8						-			_			-						
Apply aspect ratio reduction? Yes			Yes	100% Perforated SW?			? No Shear Length (f			= 10 Story V (lbs)=										
	Openir	ig elevation		Force Tr	ansfer @	Openings?	No	Wal	ll DL (psf)=	10	Max allo	ow. drift (in)	1.92							
Choor	1			Tanaian	1				ОТМ	(0.6			1	1		r				Мах
Wall				From				Capacity	(wind	(0.0- 2SDe)		Aspect	Soie	Soie						Shear-
Length	Roof- 'w'	Floor, 'w'	Other	Above	Wall		Holdown	(Stem/floor	(wind,	.2003) *RM	Aspect	Ratio	Shear	Wall Can	Wind	Wind Wall	Sill Plate	Tension	нр	
(ff)	(ft)	(ft)	'w' (nlf)	(lb)	Type	Sill Type	Stran	config)	(ft_lb)	(ft_lb)	Ratio	Reduc	(nlf)	(nlf)	Shear (nlf)	Can (nlf)	Can (nlf)	(lb)	Canacity	1 0E (in)
(14)	(11)	(11)	II (p.i.)	(15)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	em i jpe	NOUD	comg)	(10.15)	(10.12)	0.00	1.00	(p)	(p)	0110ai (pii)	oup: (pii)	oup: (pii)	(.2)	oupdoity	
10	11.1				PI		NO HD		3072	8394	0.80	1.00		260	38	305		-532	200	
										<u> </u>							 		┝─────	
Add'l Con	nments								1	1	1	1	1	1	1	1	1	1	Max	
I INE:	Δ	1ST	STORY		P-6 5		Timber Fr	amed Shor	arwall Cal	culation	s								WIGA.	L
	A	131	JIOKI		r<=0.5			anieu 31188			3	Diaul	Oh			1	Destrert	0.14/-*** /		
L	Line Lo	ads (plf)	0		L	oads from a	above	0.0141 (11.	Applied L	oads (plf)	D (11)	Diaphragi	m Shear, F	<=6.5 (plf)		4	Pert/FTA	U Wall Info	<u> </u>	
	Load	I rib w (ft)	Span (ft)	Line	%	Location	0.7E (lbs)	0.6W (lbs)	p ⁻ Seis	Wind	Drag (ft)	Seis (max	vs. allow)	Wind (ma	x vs. allow)	1	(Not Appli	cable)	└───	
	ω2	10	20		1.00	Offset		ł		38.4	7.75		166	50	232		┝───			L
					1.00	Offset		ł		1	1.15	I	1	1	1	J	┝───			L
		Diata h (ft)-	9		1.00	ADOVE		304	Inc	lude O for	irregulariti	e (abovo)o	No	1						
	l Aav oponing	height (ft)= 8				rotal	I	304	Inc	inge 75 10	megularitle	is (anove)?	INU	J			<u> </u>		┝─────	
Annly	aspect ratio	reduction?	0 Vec	100% Perforated SM/2			No	Shear I	enath (ft)-	7 75	Story V (lhe)=			1			<u> </u>		┝─────	
Apply	Onenir	a elevation	105	Force Tr	ansfer @	Oneninge?	No	Wal		10	May all	ow drift (in)	1 92	1					<u>├</u> ───	
	Oberill	-9 010 VAUUII		1 0100 11		o por ingo (140	1 vva	DE (Pai)-	10			1.02	L					<u> </u>	
Shear-	1			Tension				HD	OTM	(0.6-							1			Max
Wall	1	1	1	From	1		1	Capacity	(wind,	.2SDs)	1	Aspect	Seis.	Seis.					1	Shear-
Length	Roof _{DL} 'w'	Floor _{DL} 'w'	Other _{DL}	Above	Wall		Holdown	(Stem/floor	seismic)	*RM ́	Aspect	Ratio	Shear	Wall Cap.	Wind	Wind Wall	Sill Plate	Tension	HD	Wall ∆
(ft)	(ft)	(ft)	'w' (plf)	(lb)	Туре	Sill Type	Strap	config)	(ft-lb)	(ft-lb)	Ratio	Reduc.	(plf)	(plf)	Shear (plf)	Cap. (plf)	Cap. (plf)	(lb)	Capacity	1.0E (in)
7.75	11.1				P1		NO HD		3072	5042	1.03	1.00		260	50	365	1	-254	200	
	1																t			-
										1				1					<u> </u>	
														1						
														1			1			
									1					1						
Add'l Con	nments:																		Max.	