

All Truss Reactions are Less than 3,000 lbs. Unless Noted Otherwise. -- Denotes Reaction Greater than 3,000 lbs. Reaction / # of Studs

> All Walls Shown Are Considered Load Bearing

Roof Area	= 1340.89 sq.ft.
Ridge Line	= 35.46 ft.
Hip Line	= 36.2 ft.
Horiz. OH	= 117.47 ft.
Raked OH	= 98.72 ft.
Decking	= 46 sheets

Dimension Notes

 Dimension Notes

 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise

 2. All interior wall dimensions are to face of stud unless noted otherwise

 3. All exterior wall to truss dimensions are to face of stud unless noted otherwise

Hatch Legend
Second Floor Walls
Tray Ceiling
Box Storage
Flush Beam
Drop Beam

_		Truss Placement Plan
	\bigcup	Scale: 1/4"=1'

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

Ó

All Walls Shown Are Considered Load Bearing

Roof Area	= 1340.89 sq.ft.
Ridge Line	= 35.46 ft.
Hip Line	= 36.2 ft.
Horiz. OH	= 117.47 ft.
Raked OH	= 98.72 ft.
Decking	= 46 sheets

Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of stud unless noted otherwise 3. All exterior wall to truss dimensions are to face of stud unless noted otherwise

Hatch Legend
Second Floor Walls
Tray Ceiling
Box Storage
Flush Beam
Drop Beam

- (1)	Truss Placement Plan
	Scale: 1/4"=1'

THIS IS These to compose design See ind identifie designe for the support and col designe consult truss d	BUILDER	Weaver Homes	CITY / CO .	Lillington / Lee	LOA NULLYY 34 (01 dr) 1700 3400 5100 6800 8500 10200 11900 13600 15300	reaction Signatu	Bearing deemed requiren attached requiren size and reaction 15000#. retained reaction Tables. retained	TI R	
A TRUSS irrusses an nents to b at the sp lividual d ad on the er is resp nent braci overall st t structur lumns is t SCI-B1 elivery pa	JOB NAME	Lot 3 Maple Hill	ADDRESS	4198 Darroch Road	AD CH/ (BASEL NBER OF J/A NBCR	s that exc re J	reactions to compl nents. The Tables (nents) to number s greater A registe to design that exce A register to design	RO RUS Fayet Phon Fax	co
S PLACEN re designorphice incorphice ification esign she placeme placeme onsible for ng of the ructure. The includir the responeral guid and BCS ickage or	PLAN	Magnolia "B" / GRF, CP, Tudor Hip	MODEL	Roof	ART FC O ON TABLE ICK STUDS HEADER 2550 5100 7650 10200 12750	ieed 1500 nath ionat	e less that y with the e contract derived f determin of wood s than 3000 red desig h the sup red sthos red desig n the sup	OF & SES load Ir teville e: (910)	m
MENT DIA ed as ind orated int n of the L ets for ea nt drawin or tempor roof and The design gheader nsibility of dance reg il-B3 provo online @	SEAL DATE	N/A	DATE REV.	12/06/24	DR JA(ES R502.5(REQUIREL /6IRDER 0 4 30493H 1 2 0 3 0 4 0 5 0 6	ian han L	n or equa e prescrip tor shall i rom the j e the mir studs req 0# but no n profess port syste n profess port syste	& FL & B ndustr , N.C. 0) 864 864-4	те
GRAM ON ividual built outhe built outhe built outher truss g. The built ary and floor syst n of the t s, beams of the built parding br vided with s sbcindus	QUOTE #		DRAWN BY	Jonathan Landry	CK STU 1) & (b)) 0) © EA END 20 340 680 1020 1366 1700	Land .andr	It to 3000# otive Code refer to the prescriptive himum fou uired to s t greater sional sha em for an ional sha en for all	OOF EAN ial Par 28309 -8787 1444	ct
ILY. iilding ding esigner. design ilding tem and russ , walls, ding acing, the stry.com	JOB #	J1224-6498	SALES REP.	Lenny Norris	ADS 0 OF 800 squus (0) 00 1 00 2 00 3 00 4 00 5 00 00 5	dry Y	t are e we Code indation upport than II be y attached II be	λ λ κ	

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J1224-6498 Lot 3 Maple Hill

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I70035970 thru I70035978

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

December 6,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

-0-11-0			32-4-0					40-0-0
<u>0-11-0</u>			31-5-0					<u> </u>
Plate Offsets (X,Y)	[29:0-2-8,0-2-0]							
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.04 BC 0.01	DEFL. ir Vert(LL) 0.00 Vert(CT) 0.00) (loc)) 20) 20	l/defl n/r n/r	L/d 120 120	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.06 Matrix-S	Horz(CT) 0.00	20	n/a	n/a	Weight: 234 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP	' No.1 ' No.1		BRACING- TOP CHORD	Structu 2-0-0 o	ral wood s	heathing di 6-0-0 max.)	irectly applied or 6-0-0): 8-14.	oc purlins, except

BOT CHORD

22.4.0

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 31-5-0.

0.11.0

(lb) - Max Horz 2=-150(LC 13)

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 2, 30, 31, 32, 33, 28, 27, 26, 20 except 34=-117(LC 12),

35=-108(LC 12), 36=-109(LC 12), 37=-122(LC 12), 25=-119(LC 13), 24=-108(LC 13), 23=-109(LC 13), 22=-116(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 30, 31, 32, 33, 34, 35, 36, 37, 28, 27, 26, 25, 24, 23, 22, 20

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

OTHERS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 30, 31, 32, 33, 28, 27, 26, 20 except (jt=lb) 34=117, 35=108, 36=109, 37=122, 25=119, 24=108, 23=109, 22=116.

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

22.2.0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Aff 818 Soundside Road

Edenton, NC 27932

⊢	10-8-8		20-8-8				31-5-0	
		0 4 01 17:0 4 4 0 0 71	10-0-0				10-8-8	
Plate Offsets (X,Y)-	[2:0-1-4,0-0-7], [4:0-3-0,0-4-0], [5:0-3-0,	0-4-0], [7:0-1-4,0-0-7]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.36 BC 0.51 WB 0.24 Matrix-S	DEFL. in Vert(LL) -0.22 Vert(CT) -0.28 Horz(CT) 0.05 Wind(LL) 0.11	(loc) 9-11 9-11 7 2-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 193 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 BOT CHORD 2x6 WEBS 2x4 REACTIONS. (Ma Ma Ma	SP No.1 SP No.1 SP No.2 size) 7=0-3-8, 2=0-3-8 < Horz 2=-119(LC 10) < Uplift 7=-225(LC 13), 2=-225(LC 12) < Grav 7=1297(LC 1), 2=1297(LC 1)		BRACING- TOP CHORD BOT CHORD	Structur except 2-0-0 or Rigid ce	ral wood c purlins eiling dire	sheathing dire (6-0-0 max.): actly applied o	ectly applied or 4-9-14 4-5. r 9-3-2 oc bracing.	oc purlins,
FORCES.(lb) - MTOP CHORD2-BOT CHORD2-WEBS3-	ax. Comp./Max. Ten All forces 250 (lb) or 3=-2204/926, 3-4=-2018/965, 5-6=-2018/96 11=-700/1867, 9-11=-422/1505, 7-9=-687/1 11=-452/442, 4-11=-278/761, 5-9=-278/761	less except when shown. 5, 6-7=-2204/926, 4-5=-156 867 , 6-9=-452/442	05/807					
NOTES- 1) Unbalanced roof 2) Wind: ASCE 7-11 and C-C Exterior for members and 3) Provide adequate	live loads have been considered for this de b; Vult=150mph Vasd=119mph; TCDL=6.0p (2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 13-0 forces & MWFRS for reactions shown; Lun e drainage to prevent water ponding.	sign. sf; BCDL=6.0psf; h=15ft; C)-8, Exterior(2) 13-0-8 to 24 nber DOL=1.60 plate grip D	Cat. II; Exp C; Enclosed; -7-3, Interior(1) 24-7-3 POL=1.60	; MWFR: to 32-1-1	S (envelo 10 zone;(ope) C-C		

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=225, 2=225.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

		10-8-8 10-8-8		20-8-8				31-5-0	
Plate Offsets	s (X,Y)	[2:0-1-0,0-0-7], [7:0-3-0,Edge], [12:0-1-0),0-0-7], [14:0-1-12,0-1-8],	[16:0-1-12,0-1-8]				10-0-0	
LOADING (TCLL 2 TCDL 1 BCLL BCDL 1	(psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.60 BC 0.54 WB 0.40 Matrix-S	DEFL. Vert(LL) -0.2 Vert(CT) -0.3 Horz(CT) 0.0 Wind(LL) 0.1	in (loc) 24 12-14 35 12-14 06 12 18 2-16	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 223 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORI BOT CHORI WEBS	D 2x6 SP D 2x6 SP 2x4 SP	No.1 No.1 No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structu Rigid o 1 Row	ural wood ceiling dire at midpt	sheathing dir ctly applied o 6	rectly applied or 4-6-8 c or 9-10-6 oc bracing. i-8	oc purlins.
REACTION	S. (size Max H Max U Max G	e) 2=0-3-8, 12=0-3-8 orz 2=-142(LC 10) plift 2=-243(LC 12), 12=-243(LC 13) rav 2=1364(LC 2), 12=1364(LC 2)							
FORCES. TOP CHORI BOT CHORI WEBS	(lb) - Max. D 2-3=- 9-11= D 2-16= 3-16=	Comp./Max. Ten All forces 250 (lb) or 2405/866, 3-5=2109/763, 5-6=-1688/7 2109/763, 11-12=-2406/866 624/2126, 14-16=-380/1759, 12-14=-6 532/324, 5-16=-97/742, 9-14=-97/742,	less except when shown. 32, 6-7=0/269, 7-8=0/269, 17/2079 11-14=-532/324, 6-8=-20	8-9=-1688/732, 12/704					
NOTES- 1) Unbalanc 2) Wind: AS and C-C I	ed roof live CE 7-10; V	e loads have been considered for this de (ult=150mph Vasd=119mph; TCDL=6.0; -0-8-10 to 3-8-3. Interior(1) 3-8-3 to 15-	sign. sf; BCDL=6.0psf; h=15ft; / -8. Exterior(2) 15-8-8 to 2	Cat. II; Exp C; Enclose	ed; MWFF	RS (envelo	pe)		

for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 4x6 MT20 unless otherwise indicated.4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=243, 12=243.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advancement of the property of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-8-8, Exterior(2) 15-8-8 to 20-1-5, Interior(1) 20-1-5 to 32-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=243, 8=243.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

	8-0-0	10-8-8	18-7-0 2	20-8-8	22-8-8		<u>31-5-0</u> 8-8-8	
Plate Offsets (X,Y)	[2:0-4-0,0-2-14], [4:0-3-0,0-4-0],	[5:0-3-0,0-4-0], [7:0-4-0,0-2-1	14], [10:0-8-0,0-2-0], [11:0-3	3-12,0-0)-4], [13:0-4	4-4,0-0-4]	0-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.11 Lumber DOL 1.11 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.27 BC 0.69 WB 0.22 Matrix-S	DEFL. Vert(LL) -0.2 Vert(CT) -0.3 Horz(CT) 0.0 Wind(LL) 0.1	in (loc 0 10-12 1 10-12 18 2 2-12) l/defl 2 >999 2 >999 7 n/a 2 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 235 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x10 9-14: WEBS 2x4 S	P No.1 SP No.1 *Except* 2x6 SP No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Struc exce 2-0-0 Rigid	ctural wood pt) oc purlins I ceiling dir	I sheathing direc (5-11-3 max.): 4 ectly applied or 8	ttly applied or 4-9-10 4-5. 8-5-11 oc bracing.	oc purlins,

REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=-119(LC 10) Max Uplift 2=-225(LC 12), 7=-225(LC 13) Max Grav 2=1297(LC 1), 7=1297(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-2499/1048, 3-4=-2293/1048, 5-6=-2257/999, 6-7=-2455/982, 4-5=-1680/860
- BOT CHORD 2-12=-795/2132, 10-12=-469/1680, 7-10=-731/2091
- WEBS 3-12=-419/425, 4-12=-319/870, 5-10=-242/824, 6-10=-396/407

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 13-0-8, Exterior(2) 13-0-8 to 24-7-3, Interior(1) 24-7-3 to 32-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=225, 7=225.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=131, 2=131.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

munn

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=160, 4=160.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

<u> </u>					10-10-0 9-11-0					<u> </u>	9-0 1-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPl2	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matrix	0.04 0.02 0.04 <-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 6 6	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%	
LUMBER-		ł			BRACING-					· ·		

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 OTHERS

2x4 SP No.2

REACTIONS. All bearings 9-11-0.

(lb) -Max Horz 2=-76(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-166(LC 12), 8=-163(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=166.8=163

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

All Truss Reactions are Less than 3,000 lbs. Unless Noted Otherwise.

- Denotes Reaction Greater than 3,000 lbs. Reaction / # of Studs

All Walls Shown Are Considered Load Bearing

Plumbing Drop Notes

1 Plumbing drop locations shown are NOT exact
2 Contractor to verify ALL plumbing drop
Locations prior to setting Elect Trusses
Adjust angeing as used ad not to succeed 04
3. Adjust spacing as needed not to exceed 24"oc.
3. Aujust spacing as needed not to exceed 24

Dimension Notes

1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of stud unless noted otherwise 3. All exterior wall to truss dimensions are to face of stud unless noted otherwise

	Conne	Nail Info	ormation					
Sym	Product	Manuf	Qty	Supported Member	Header Truss			
\bigcirc	HUS410	USP	17	NA	16d/3-1/2"	16d/3-1/2"		
\bigcirc	MSH422	SH422 USP		Varies	10d/3"	10d/3"		

		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	3	3	FF
BM2	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
GDH	12' 0"	2x12 SPF No.1	2	2	FF

1) Truss Placement Plan Scale: 1/4"=1'

THIS IS These to compo design See ind identifit design for the suppor and co design consult truss d	BUILDER	Weaver Homes	CITY / CO .	Lillington / Harnett	LO/ NUM R C (D 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Bearing deemed requiren size and reaction Tables. retained reaction Signatu	ľ
A TRUS: trusses an nents to b at the sp lividual d ed on the er is resp nent braci overall si t structur t structur er. For ge t BCSI-B1 elivery pa	JOB NAME	Lot 3 Maple Hill	ADDRESS	4198 Darroch Road	AD CHA (BASEL NABER OF JA NOJ SQNLS (JOBA) 1 2 3 4 5 6 7 8 9	Reilly R Fayet Phon Fax reactions to compl nemts. Thus a to design that exce A register to design that exce A register to design s that exce a compl nemts. Thus a compl to design that exce a compl to design that exce a compl to design that exce a compl to design to	ROG
s PLACEN re designs be incorp ecification esign she placeme onsible for ng of the tructure. e includin the responeral gui and BCS ackage or	PLAN	Magnolia "B" / GRF, CP, Tudor Hip	MODEL	Floor	ART FC O ON TABLL O ON TABLL CCK STUDS HEADER 2550 5100 7650 10200 12750	load Ir teville (910) (9	OF 8 SES
VIENT DIA ed as ind orated int n of the b tets for ea nt drawin or tempor roof and The desig ng header nsibility dance reg bl-B3 prov online @	SEAL DATE	N/A	DATE REV.	12/06/24	han L DR JAC ES R502.5(REQUIRE VOIRDER VOIRDE	ndustri c, N.C. 0) 864 864-4 nor equa e prescrip tor shall from the pi e the miri- studs req 0# but nor n profess port system 0#. MMM	Te & FL & B
GRAM OF ividual bui to the building d ach truss g. The bui ary and floor sys in of the t floor sys of the building br vided with sbcindus	QUOTE #		DRAWN BY	Jonathan Landry	CK STU (K STU (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	rial Pai 28309 -8787 1444 Il to 3000 trive Code refer to th orescripti imure to the greater isonal sha em for all Lama	
NLY. ilding lding lding ilding tem and russ , walls, lding acing, the stry.com	JOB #	J1224-6499	SALES REP.	Lenny Norris	JDS 00F 8004 SQLLS 000F 8004 SQLLS 0000 1 0000 2 0000 3 0000 5	t are be we Code andation upport than II be y attached II be	I R AS

▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)

All Truss Reactions are Less than 3,000 lbs. Unless Noted Otherwise.

- Denotes Reaction Greater than 3,000 lbs. Reaction / # of Studs

All Walls Shown Are Considered Load Bearing

	Plumbing Drop Notes
1	Plumbing drop locations shown are NOT ex

- Plumbing drop locations shown are NOT exact.
 Contractor to verify ALL plumbing drop
- locations prior to setting Floor Trusses. 3. Adjust spacing as needed not to exceed 24"oc.

Dimension Notes All exterior wall to wall dimensions are to face of sheathing unless noted otherwise
 All interior wall dimensions are to face of stud unless noted otherwise 3. All exterior wall to truss dimensions are to face of stud unless noted otherwise

Hatch Legend
Second Floor Walls
Tray Ceiling
Box Storage
Flush Beam
Drop Beam

	Conne	Nail Info	ormation			
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
\bigcirc	HUS410	USP	17	NA	16d/3-1/2"	16d/3-1/2"
\bigcirc	MSH422	USP	3 Varies		10d/3"	10d/3"

		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	3	3	FF
BM2	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
GDH	12' 0"	2x12 SPF No.1	2	2	FF

▲= Denotes Left End of Truss

(Reference Engineered Truss Drawing)

1 Truss Placement Plan Scale: 1/4"=1'

These comp desig See i ident desig perm for th s upp and o desig cons truss		Weaver Homes	CITY / CO .	Lillington / Harnett	Bear in deeme requir attach requir size a reaction retainment reaction retainment reaction signal s	
e truss ponent: ndividu ified o gner is anent ort stru- column gner. Fi ult BC delive	L C C H IS A T				DAD () 0 1 0 2 0 3 0 5 0 6 0 7 0 8 0 9	R R Fail Fa Pr F
ses ar s to b ne spe ual de n the respo bracin all str ucture s is t or gen SI-B1 ery pa		Lot 3 Maple Hill	AUUKESS	4196 Darroch Koad	ttions comply s. The bles (s) to gister design t excee gister design t excee Jon J Baseb CCH/ Baseb	O JS ly R yeth non Fax:
e design e incorp ecification esign she placeme posible for ng of the ructure. 1 e includir he responeral guid and BCS ckage or	PLAN	Magnolia "B" / GRF, CP, Tudor Hip	MODEL	Floor	less that y with the contract derived f determin of wood s than 3000 red design of the sup edd design of the s	OF & SES oad Ir teville e: (910)
ed as ind orated int n of the k ets for ea nt drawin r tempor roof and The desig ng header nsibility dance reg i-B3 prov online @	SEAL DATE	N/A	DATE REV.	12/06/24	h or equa e prescriptor shall be tor shall be built not shall be the mini- studs req by but not n profess port syste off.	Te & FL & B dustr , N.C. 0) 864 864-4
ividual but to the bui building d ach truss ug. The but ary and floor sys in of the to rs, beams of the bui garding but vided with social	# JLONO		DRAWN BY	Jonathan Landry	It to 3000 trive Code refer to the prescription imum for uirred to set to greater sional sha erm for all Landr Landr CK STU 1) & (b) 0 © EA END CK STU 1) & (b) 0 © EA END CK STU 1) & (b) 1) & (b)	CH OOF EAN 28309 -8787 1444
ilding lding esigner. design ilding tem and russ , walls, lding acing, the stry.com	JOB #	J1224-6499	SALES REP.	Lenny Norris	t are e e ve Code mdation upport than II be dury than II be dury than II be dury than than II be dury than than II be dury than than II be dury than II be dury than	₹ AS

6 lio

10

	Client.	Weaver Homes	Date: 12/6/2024	Page 2 of 6
	Project:	Magnolia	Input by: Jonathan Landry	
isDesign	Address:	4198 Darroch Road	Job Name: Lot 3 Maple Hill	
· · · ·		Lillington, NC 27546	Project #: J1224-6499	
BM1 Kerto-S	LVL 1.750"	X 16.000" 3-Ply -	PASSED Level: Level	
1 SPF 0-3-8		· · · · · · · · · · · · · · · · · · ·	2 SPF 0-3-8	1'4" 1'4"
		11 11	I	
Multi-Ply Analysis				
I Multi-Ply Analysis Fasten all plies using 4 r 6"	ows of 10d Box nails	(.128x3") at 12" o.c Nail from	n both sides. Maximum end distance	not to exceed
I Multi-Ply Analysis Fasten all plies using 4 r 6". Capacity	ows of 10d Box nails	(.128x3") at 12" o.c Nail from	n both sides. Maximum end distance	not to exceed
I Multi-Ply Analysis Fasten all plies using 4 r 6". Capacity Load	ows of 10d Box nails 86.3 % 282.7 PLF	(.128x3") at 12" o.c Nail from	ı both sides. Maximum end distance	not to exceed
I Multi-Ply Analysis Fasten all plies using 4 r 6". Capacity Load Yield Limit per Foot	ows of 10d Box nails 86.3 % 282.7 PLF 327.4 PLF	(.128x3") at 12" o.c Nail from	n both sides. Maximum end distance	not to exceed
I Multi-Ply Analysis Fasten all plies using 4 r 6". Capacity Load Yield Limit per Foot Yield Limit per Fastener	ows of 10d Box nails 86.3 % 282.7 PLF 327.4 PLF 81.9 lb.	(.128x3") at 12" o.c Nail from	ı both sides. Maximum end distance	not to exceed
I Multi-Ply Analysis Fasten all plies using 4 r 6". Capacity Load Yield Limit per Foot Yield Limit per Fastener CM	ows of 10d Box nails 86.3 % 282.7 PLF 327.4 PLF 81.9 lb. 1	(.128x3") at 12" o.c Nail from	n both sides. Maximum end distance	not to exceed
I Multi-Ply Analysis Fasten all plies using 4 r 6". Capacity Load Yield Limit per Foot Yield Limit per Fastener CM Yield Mode	ows of 10d Box nails 86.3 % 282.7 PLF 327.4 PLF 81.9 lb. 1 IV	(.128x3") at 12" o.c Nail from	n both sides. Maximum end distance	not to exceed
I Multi-Ply Analysis Fasten all plies using 4 r 6". Capacity Load Yield Limit per Foot Yield Limit per Fastener CM Yield Mode Edge Distance	ows of 10d Box nails 86.3 % 282.7 PLF 327.4 PLF 81.9 lb. 1 IV 1 1/2"	(.128x3") at 12" o.c Nail from	n both sides. Maximum end distance	not to exceed
I Multi-Ply Analysis Fasten all plies using 4 r 6". Capacity Load Yield Limit per Foot Yield Limit per Fastener CM Yield Mode Edge Distance Min. End Distance	ows of 10d Box nails 86.3 % 282.7 PLF 327.4 PLF 81.9 lb. 1 IV 1 1/2" 3"	(.128x3") at 12" o.c Nail from	n both sides. Maximum end distance	not to exceed
I Multi-Ply Analysis Fasten all plies using 4 r 6". Capacity Load Yield Limit per Foot Yield Limit per Fastener CM Yield Limit per Fastener CM Yield Mode Edge Distance Min. End Distance Load Combination	ows of 10d Box nails 86.3 % 282.7 PLF 327.4 PLF 81.9 lb. 1 IV 1 1/2" 3" D+L 52	(.128x3") at 12" o.c Nail from	n both sides. Maximum end distance	not to exceed

Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc.
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	Handling & Installation 1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation	ponding This design is valid until 6/28/2026	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Tuot S Kelliy Koad Fayetteville Cumberland 28314

		Clien	nt: Weave	Homes		Date	e:	12/6/2024					Page 3 of 6
	-	Proje	ect: Magnol	ia		Inpu	ıt by:	Jonathan	Landry				
is	Design	Addr	ess: 4198 [Darroch Road		Job	Name:	Lot 3 Map	le Hill				
			Lillingt	on, NC 27546		Proj	ect #:	J1224-649	99				
BM2	Kerto-S LVL	1.75	50" X 16.	000" 2	-Ply - F	PASSED	Le	vel: Level					
					,								
	2							<u> </u>					
			1										
•		• •	•	•	•								
												MM	
•	and the second se	•		all the second	•	•		E.				ΙλΙλ	1'4"
-		and the second	- P			•						/ / / /	,
1 SPF 0-	4-0					2	2 SPF 0-	-4-0					
	-						-						
1			11'3					1				1 13	1/2"
1			11'3					{					
	(Desetions		TTON					
wember in	formation		A 11 11			Reactions	UNPA						
Type:	Girder		Application:	Floor		Brg Direct	tion	Live	Dead	5	snow	Wind	Const
Moisture Con	z dition: Drv		Building Code:	IBC/IRC 201	5		ai - 1	3555	1257		0	0	0
Deflection LL:	480		Load Sharing:	No	0	2 vertica	ai	4305	1507		0	0	0
Deflection TL:	360		Deck:	Not Checked	ł								
Importance:	Normal - II	(Ceiling:	Gypsum 1/2	2"								
Temperature:	Temp <= 100°F												
						Bearings							
						Bearing L	.ength	Dir.	Cap. React	D/L lb	Total L	_d. Case	Ld. Comb.
						1 - SPF 4	.000"	Vert	81% 1257	/ 3555	4812 L	-	D+L
Analysis Ro	culte					2-SPF 4	.000"	Vert	98% 1507	/ 4305	5812 L		D+L
Analysis		cation Allow	wed Cana	city Comb	Case	7							
Moment	12309 ft-lb	5'7 1/2" 3456	Sft_lb 0.356		l								
Unbraced	12309 ft-lb	57 1/2 1231	0.000	D+I	1								
onbraced	12000 11.15		(100%	6)	-								
Shear	4527 lb	1'8" 1194	7 lb 0.379	(38%) D+L	L								
LL Defl inch	0.098 (L/1320) 5	5'7 1/2" 0.268	8 (L/480) 0.364	(36%) L	L								
TL Defl inch	0.132 (L/975) 5	5'7 1/2" 0.358	8 (L/360) 0.369	(37%) D+L	L								
Design Not	es												
1 Provide su	port to prevent lateral r	novement and	d rotation at the	end bearings. La	teral support								
2 Fasten all r	e required at the interior	r bearings by t d Box nails (1	the building cod 28x3") at 12" o	e. Aavimum end	distance not								
to exceed 6)".	Dox ridiis (. i	2010 / 01 12 0.										
3 Refer to las	t page of calculations for	or fasteners re	equired for speci	fied loads.									
4 Concentrat present.	ed load fastener specific	cation is in ad	dition to hanger	fasteners if a nar	nger is								
5 Girders are	designed to be support	ted on the bot	tom edge only.										
6 Top must b	e laterally braced at a m	naximum of 9'	9 3/16" o.c.										
			un. Trib Mi	dth Sido	Dood 0.0		Spow	1 1 5 \	Nind 1.6 C	opet 1.2	05 Com	monto	
	Luaiform	LUCA					SHOW					ments	
	Uniform				90 PLF		(·		
2	Uniform			Near Face	e 121 PLF	- 363 PLF	(PLF	0 PLF	0 PL	_F F4		
3	Point	11	1-0-0	Near Face	e 250 lb	o 750 lb		0 lb	0 lb	0	lb F4A		
	Self Weight				12 PLF	-							
Notes		chemicals		6. For	flat roofs provide	proper drainage to pre	event	lanufacture	r Info		Comtech, I 1001 S Rei	nc. illv Road	
Calculated Structured structural adequacy	Designs is responsible only of the of this component based on the	Handling & Ir 1. LVL beams mu	nstallation ust not be cut or drilled	pone	aing		M 30	letsä Wood 01 Merritt 7 I	Buildina. 2nd Fl	oor	Fayetteville		
design criteria and responsibility of the	I loadings shown. It is the customer and/or the contractor to	2. Refer to m regarding in	nanufacturer's produc Istallation requirement	t information nts, multi-ply			N	orwalk, CT ()6851		28314	-	
application, and to ver	ify the dimensions and loads.	fastening deta approvals	ails, beam strength val	ues, and code			(8 W	ww.metsawo	od.com/us				
1. Dry service condit	ions, unless noted otherwise	 Damaged Bear Design assume Provide latera 	es top edge is laterally i al support at bearing r	estrained									
2. LVL not to be treat	ted with fire retardant or corrosive	lateral displace	ement and rotation	Thi	is design is vali	id until 6/28/2026							

Version 23.40.705 Powered by iStruct[™] Dataset: 24070801.3993

Multi-Ply Analysis

Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c.. except for regions covered by concentrated load fastening. Maximum end distance not to exceed 6".

Capacity	98.6 %
Load	242.0 PLF
Yield Limit per Foot	245.6 PLF
Yield Limit per Fastener	81.9 lb.
См	1
Yield Mode	IV
Edge Distance	1 1/2"
Min. End Distance	3"
Load Combination	D+L
Duration Factor	1.00

Concentrated Load

Fasten at concentrated side load at 11-0-0 with a minimum of (9) – 10d Box nails (.128x3") in the

pattern shown.

Capacity	67.9 %	
Load	500.0lb.	
Total Yield Limit	736.5 lb.	
Cg	0.9998	
См	1	
Yield Limit per Fastener	81.9 lb.	
Yield Mode	IV	
Load Combination	D+L	
Duration Factor	1.00	

Min/Max fastener distances for Concentrated Side Loads

Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc.
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	Handling & Installation 1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation requirements, multi-pily fastening details, beam strength values, and code approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation	ponding This design is valid until 6/28/2026	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Fayetteville Cumberland 28314

		Client:	Weaver Homes		Date:	12/6/2024	Page 6 of 6
1	Design	Project:			Input by:	Jonathan Landry	
		Address.	Lillington NC 2754	3	Drojoct #:		
	0 0 5 #4					1 evel: evel	
GDH	S-P-F #1	2.000" X	12.000 2	-Ply - PASSI	=D		
							$\neg \rightarrow$
•	•	• •	•	• •	•	••	N M /
						1 1	
						\overline{v}	
	•	• •	•	• •	•	••+++	
1 SPF	End Grain 0-3-8				2 S	SPF End Grain 0-3-8	
/			8'10 "			/	2"
			010				5
1			8'10"			1	
Multi-Plv A	Analysis						
		(10 - L D	100 000 - 100	Martin and di			
Fasten all p	lies using 2 row	s of IUd Box halls (.128x3°) at 12° 0.c	Maximum end dis	stance no	of to exceed 6".	
Capacity		0.0 % 0.0 PLF					
Yield Limit per l	Foot	157.4 PLF					
Yield Limit per I	Fastener	78.7 lb.					
См		1					
Yield Mode		IV					
Edge Distance		1 1/2" 3"					
Load Combinat	tion	0					
Duration Factor	r	1.00					
					Г	Manufacturer Info	Comtech, Inc.
					-		1001 S Reilly Road Fayetteville
							Cumberland
1							20017

RE: J1224-6499 Lot 3 Maple Hill Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Weaver Homes Project Name: J1224-6499 Lot/Block: 3 Model: Mage Model: Magnolia Address: 4198 Darroch Road City: Lillington State: NC

Subdivision: Maple Hill

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.6 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 11 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	170033970	ET1	12/6/2024
2	170033971	ET2	12/6/2024
3	170033972	ET3	12/6/2024
4	170033973	ET4	12/6/2024
5	170033974	F1	12/6/2024
6	170033975	F2	12/6/2024
7	170033976	F3	12/6/2024
8	170033977	F4	12/6/2024
9	170033978	F4A	12/6/2024
10	170033979	F5	12/6/2024
11	170033980	F6	12/6/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type		Qty	Ply	Lot 3 Maple H	ill		1700007/	\Box
.11224-6499	FT1	GABLE		1	1				170033970	וי
01224 0400		O, BEE		1.		Job Reference	e (optional)			
Comtech, Inc, Fa	ayetteville, NC - 28314,				8.630 s S	ep 26 2024 MiT	ek Industries, Inc. F	ri Dec 6 08:33:25	5 2024 Page 1	
			ID:IwF	OH6hK8Je	ptt6SXqQ0	DJcyzm6C-RfC	PsB70Hq3NSgPqnl	_8w3uITXbGKWr	CDoi7J4zJC?f	
									0 ¹¹ 8	
									Scale = 1:22	.0
3x4										
1	2 3	4 5 ³³	κ4 ≕ 6	7		8	9	10	11	
[[•]	•	•	•		ə	•	0	•		I
	H H			ľ	-		H	H	23	
9										4-0
÷										÷
					_					
										l
22	21 20	19 18	17	16	; ;	15	14	13	12	
3x4			3x4 =						3x4 =	
1-4-0	2-8-0	4-0-0 5-4-0	6-8-0 , 8	-0-0	9-4-	0 , 1	0-8-0 12	-0-0 , 1	3-3-8	
1-4-0	1-4-0	1-4-0 1-4-0	1-4-0	-4-0	1-4-	0	1-4-0 1-	4-0	1-3-8	

Plate Offsets	(X,Y)	[1:Edge,0-1-8], [5:0-1-8,Ed	dge], [17:0-1-	-8,Edge], [22:E	dge,0-1-8]	1						
LOADING (p TCLL 4(TCDL 1(BCLL (BCDL 5)	osf) 0.0 0.0 0.0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.00 1.00 YES I2014	CSI. TC BC WB Matrix	0.06 0.01 0.03 -S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD BOT CHORD) 2x4 SF) 2x4 SF	P No.1(flat) P No.1(flat)				BRACING- TOP CHOR	D	Structu	ral wood end verti	sheathing dir	ectly applied or 6-0-0	oc purlins,

TOP CHORD	2x4 SP No.1(flat)	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.1(flat)		except end verticals.
WEBS	2x4 SP No.3(flat)	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3(flat)		

REACTIONS. All bearings 13-3-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advancement of the property of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 3 Maple Hill			
			-					170033971
J1224-6499	ET2	GABLE	1	1				
					Job Reference (optiona	I)		
Comtech, Inc, Fayet	teville, NC - 28314,		3	3.630 s Se	p 26 2024 MiTek Industr	ries, Inc. Fri Dec	6 08:33:26 202	24 Page 1
			ID:IwPOH6hK8Jept	tt6SXqQO	, Jcyzm6C-RfC?PsB70Ho	3NSaPanL8w3ul	TXbGKWrCDo	i7J4zJC?f
						1 - 5 1		
								0-1-8
								Scale = 1:51.8
2×4	2×4 —		2×6 ED -			2×4 -		
384 []	384 —		3X0 FF —			384 —		
1 2 3	4 5 6 7	8 9 10 11	12 13 14 15 16	17	18 19 20	21 22	23 24	25
1 9 8 8				8	8 8	Left I	<u> </u>	
4 II								· 51 우
								Щ (-
	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×××× *** ××××**×××*********************	XXXXXXXXX			*********	
50 49 48	47 46 45 44	43 42 41 40	39 3837 36 35	34	33 32 31	30 29	28 27	26
3x4	3x4 =		3x6 FP =		3x4 =	=		3x4 =

 1-4-0
 2-8-0
 4-0-0
 5-4-0
 6-8-0
 9-4-0
 12-0-0
 13-4-0
 14-8-0
 16-0-0
 17-4-0
 18-8-0
 20-0-0
 21-4-0
 22-8-0
 24-0-0
 25-4-0
 26-8-0
 28-0-0
 29-4-0
 30-11-12

 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0
 1-4-0

	[=-:],[<u>gel, [=</u>	- <u>3-1, [</u>	9-,				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI2	2-0-0 CSI. 1.00 TC 0.08 1.00 BC 0.01 YES WB 0.04 2014 Matrix-S	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) -0.0	n (loc) a - a -) 31	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 138 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x	4 SP No.1(flat) 4 SP No.1(flat) 4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structo except Rigid o	ural wood s t end vertic ceiling direc	sheathing dir als. ctly applied o	ectly applied or 6-0-0 c or 6-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 30-11-12.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 50, 26, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

OTHERS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advancement of the property of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

lah	Truco	Truce Type	Ohi	Div	Lat 2 Maple Hill		
JOD	TTUSS	Tuss Type	QIY	Ріу	Lot 3 Maple Hill		170033972
J1224-6499	ET3	GABLE	1	1			
<u> </u>					Job Reference (optional)		
Comtech, Inc, Fayette	/ille, NC - 28314,		3 Achl/9 lont	3.630 s Se	ep 26 2024 Millek Industries,	Inc. Fri Dec 6 08:33:26 2	024 Page 1
		ID.IWP OF	топкозері	.037490	JUJUJUUU-KIU ! FSD70HQ3N0	SUPPLIES SUITADURATEL	01734230 ?1
0-11-8							0- <u>1</u> -8
							Scale = 1:29.6
		3x4 = 3x	6 FP =				
1 2	3 4	5 6 7 8	9 10		11 12 1	3 14	15 16
<u> </u>	0		<u> </u>		0 0	0 0	
							■ ³⁴ ዓ
<u>+</u>							
			•		• •	• •	
			~~~~~	******			*****
32 31	30 29	28 27 26 25 24	23		22 21 2	.0 19	18 17
3x4 =		3x6 FP = 3x4 =					3x4 =
	0 4-0-0 5-4-0	6-8-0 8-0-0 9-4-0 10-	8-0	12-0-0	13-4-0 14-8-0	16-0-0 17-4-0	<u>17-10-</u> 0
Plate Offsets (X,Y) [7:0	-1-8.Edge]. [24:0-1-8.Edge]	1-4-0 1-4-0 1-4-0 1-4	+-0	1-4-0	1-4-0 1-4-0	1-4-0 1-4-0	0-0-0

	[					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Pen Stress Incr. YES	CSI. TC 0.06 BC 0.01 WB 0.03	DEFL. in Vert(LL) n/a Vert(CT) n/a	n (loc) l/defl L/d a - n/a 999 a - n/a 999 b 24 p/a p/a	PLATES MT20	<b>GRIP</b> 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S		, 24 II/a II/a	Weight: 82 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	² No.1(flat) ² No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing c	lirectly applied or 6-0-0	oc purlins,

2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 2x4 SP No.3(flat)

REACTIONS.

All bearings 17-10-0.
 (lb) - Max Uplift All uplift 100 lb or less at joint(s) 17 Max Grav All reactions 250 lb or less at joint(s) 32, 31, 30, 29, 28, 26, 25, 24, 23, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

WEBS

OTHERS

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 1-4-0 oc.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advancement of the property of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



¹⁾ All plates are 1.5x3 MT20 unless otherwise indicated.



TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

TOP CHORD Structural wood sheathing directly applied or 3-2-8 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 3-2-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

## LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 5-8=-10. 1-4=-100

Concentrated Loads (lb) Vert: 4=-79 2=-72



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is the permanent bracing of trusses and truss systems are additional temporary and permanent bracing temporary and permanent bracing of trusses are addited at the permanent bracing temporary and p and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



			13-3-8						
	13-3-8								
Plate Offsets (X,Y) [1:Edge,0-1-8], [5:0-1-8,Edge], [13:0-1-8,Edge]									
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	<b>CSI.</b> TC 0.34 BC 0.60 WB 0.31 Matrix-S	DEFL. ir Vert(LL) -0.09 Vert(CT) -0.12 Horz(CT) 0.03	n (loc) I/defl L/d 11-12 >999 480 2 11-12 >999 360 3 9 n/a n/a	<b>PLATES</b> MT20 Weight: 71 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E			
LUMBER-         TOP CHORD       2x4 SP No.1(flat)         BOT CHORD       2x4 SP No.1(flat)         WEBS       2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ctly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,			

REACTIONS. (size) 15=Mechanical, 9=0-3-8 Max Grav 15=717(LC 1), 9=711(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1210/0, 3-4=-1904/0, 4-5=-1904/0, 5-6=-1819/0, 6-7=-1220/0

BOT CHORD 14-15=0/759, 13-14=0/1646, 12-13=0/1904, 11-12=0/1904, 10-11=0/1659, 9-10=0/754

WEBS 2-15=-1010/0, 2-14=0/628, 3-14=-606/0, 3-13=0/505, 7-9=-1001/0, 7-10=0/648,

6-10=-611/0, 6-11=0/305, 5-11=-304/60

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affil 818 Soundside Road Edenton, NC 27932



<u> </u>							
Plate Offsets (X,Y) [5:0-1-8,Edge], [13:0-1-8,Edge]							
LOADING (psf)         SPACING-         2-0-0           TCLL         40.0         Plate Grip DOL         1.00           TCDL         10.0         Lumber DOL         1.00           BCLL         0.0         Rep Stress Incr         YES           BCDL         5.0         Code IRC2015/TPI2014	CSI. TC 0.39 BC 0.65 WB 0.32 Matrix-S	DEFL.         in           Vert(LL)         -0.10         1'           Vert(CT)         -0.14         1'           Horz(CT)         0.03         1'	(loc) l/defl L/d 1-12 >999 480 1-12 >999 360 9 n/a n/a	<b>PLATES</b> MT20 Weight: 71 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E		
LUMBER-         TOP CHORD       2x4 SP No.1(flat)         BOT CHORD       2x4 SP No.1(flat)         WEBS       2x4 SP No.3(flat)	BRACING- TOP CHORD S e BOT CHORD R	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.					

Max Grav 15=727(LC 1), 9=727(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1242/0, 3-4=-1987/0, 4-5=-1987/0, 5-6=-1882/0, 6-7=-1257/0

BOT CHORD 14-15=0/776, 13-14=0/1698, 12-13=0/1987, 11-12=0/1987, 10-11=0/1718, 9-10=0/770

WEBS 2-15=-1031/0, 2-14=0/649, 3-14=-634/0, 3-13=0/547, 7-9=-1022/0, 7-10=0/677,

6-10=-642/0, 6-11=0/302, 5-11=-320/48

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

	Job	Truss	Truss Type	Qty	Ply	Lot 3 Maple Hill	
				-	-		170033976
	J1224-6499	F3	Floor	6	1		
						Job Reference (optional)	
	Comtech, Inc, Fayettev	/ille, NC - 28314,			8.630 s Se	p 26 2024 MiTek Industries, Inc. Fri Dec 6 08:33:28 202	24 Page 1
				H6hK8Jep	tt6SXqQO	Jcyzm6C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDo	i7J4zJC?f
	1-3-0	1-8	3-0			1-6-12	0-1-8
							H
							Scale - 1.52 1



L	17-6-8			30-11-12					
		17-6-8					13-5-4	1	1
Plate Offs	sets (X,Y)	[1:Edge,0-1-8], [17:0-1-8,Edge], [25:0-1	-8,Edge], [31:0-1-8,Edge]	, [32:0-1-8,Edge]					
LOADING TCLL TCDL BCLL BCDL	G (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	<b>CSI.</b> TC 0.70 BC 0.81 WB 0.56 Matrix-S	DEFL. Vert(LL) -( Vert(CT) -( Horz(CT) (	in (loc) 0.18 32-33 0.25 32-33 0.04 21	l/defl >999 >824 n/a	L/d 480 360 n/a	<b>PLATES</b> MT20 Weight: 163 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD     2x4 SP No.1(flat)     BRACING- TOP CHORD       BOT CHORD     2x4 SP No.1(flat)     TOP CHORD       BOT CHORD     2x4 SP No.1(flat)     Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.       WEBS     2x4 SP No.3(flat)     BOT CHORD     Rigid ceiling directly applied or 6-0-0 oc bracing.						oc purlins,			
REACTIONS.         (size)         35=Mechanical, 27=0-3-8, 21=0-3-8           Max Grav         35=847(LC 3), 27=2005(LC 1), 21=643(LC 4)									
FORCES TOP CHO	. (lb) - Max. DRD 2-3=- 8-9=- 14-15	Comp./Max. Ten All forces 250 (lb) or 1496/0, 3-4=-2418/0, 4-5=-2418/0, 5-6= 1766/0, 9-10=-1766/0, 10-12=-385/291, 5=-502/949, 15-16=-1487/329, 16-17=-1	less except when shown -2629/0, 6-7=-2629/0, 7-8 12-13=0/1961, 13-14=0/ 487/329, 17-18=-1525/10	3=-2629/0, 1961, 12, 18-19=-1076/0					

- BOT CHORD 34-35=0/906, 33-34=0/2063, 32-33=0/2634, 31-32=0/2629, 30-31=0/2229, 29-30=-53/1172, 27-29=-790/0, 26-27=-1220/0, 25-26=-664/1055, 24-25=-329/1487, 23-24=-329/1487, 22-23=0/1460, 21-22=0/672 WEBS 2-35=-1206/0, 2-34=0/821, 3-34=-789/0, 3-33=0/483, 5-33=-293/0, 5-32=-299/249,
  - 12-27=-1559/0, 12-29=0/1172, 10-29=-1132/0, 10-30=0/846, 8-30=-672/0, 8-31=0/772, 7-31=-372/0, 14-27=-1269/0, 14-26=0/871, 15-26=-926/0, 15-25=0/901, 16-25=-369/0, 19-21=-892/0, 19-22=0/562, 18-22=-533/29, 17-23=0/404, 17-24=-284/0

### NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advancement of the property of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932



			17-10-0					
Plate Offsets (X,Y)	- [17:0-1-8,Edge], [18:0-1-8,Edge]		11-10-0					
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.49 BC 0.72 WB 0.47 Matrix-S	DEFL. ir Vert(LL) -0.21 Vert(CT) -0.29 Horz(CT) 0.06	n (loc) l/defl 17-18 >996 17-18 >725 14 n/a	L/d 480 360 n/a	<b>PLATES</b> MT20 Weight: 95 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4	BRACING- TOP CHORD BOT CHORD	BRACING-         TOP CHORD       Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.         BOT CHORD       Rigid ceiling directly applied or 10-0-0 oc bracing.						
REACTIONS. (size) 22=0-3-8, 14=Mechanical Max Grav 22=961(LC 1), 14=967(LC 1)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       2-3=-1757/0, 3-4=-2926/0, 4-5=-2926/0, 5-6=-3487/0, 6-7=-3487/0, 7-8=-3487/0, 8-10=-2926/0, 10-11=-2926/0, 11-12=-1757/0         BOT CHORD       21-22=0/1042, 19-21=0/2442, 18-19=0/3275, 17-18=0/3487, 16-17=0/3275, 15-16=0/2442, 14-15=0/1043								

NOTES-

WEBS

1) Unbalanced floor live loads have been considered for this design.

6-18=-290/0, 7-17=-290/0

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

2-22=-1385/0, 2-21=0/994, 3-21=-953/0, 3-19=0/657, 12-14=-1388/0, 12-15=0/994,

11-15=-953/0, 11-16=0/658, 8-16=-474/0, 8-17=-71/583, 5-19=-474/0, 5-18=-71/583,

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)





<b> </b>			17-10-0						
Plate Offsets (X,Y)	[1:Edge,0-1-8], [18:0-1-8,Edge], [19:0-1	-8,Edge]	17-10-0						
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.83 BC 0.95 WB 0.54 Matrix-S	DEFL. ir Vert(LL) -0.22 Vert(CT) -0.31 Horz(CT) 0.07	i (loc) l/defl 19 >947 19 >677 15 n/a	L/d 480 360 n/a	<b>PLATES</b> MT20 M18AHS Weight: 104 lb	<b>GRIP</b> 244/190 186/179 FT = 20%F, 11%E		
LUMBER-TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sh except end vertica Rigid ceiling direct	neathing dire Ils. Ily applied o	eathing directly applied or 6-0-0 oc purlins, s. / applied or 10-0-0 oc bracing.			
REACTIONS. (size Max G	e) 23=0-3-8, 15=Mechanical rav 23=1158(LC 1), 15=1008(LC 1)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       2-3=-2158/0, 3-4=-3538/0, 4-5=-3538/0, 5-7=-3783/0, 7-8=-3783/0, 8-9=-3783/0, 9-11=-3102/0, 11-12=-3102/0, 12-13=-1847/0         BOT CHORD       22-23=0/1315, 20-22=0/2972, 19-20=0/3746, 18-19=0/3783, 17-18=0/3496, 16-17=0/2573, 15-16=0/1090         WEBS       2-23=-1708/0, 2-22=0/1143, 3-22=-1104/0, 3-20=0/752, 4-20=-279/0, 13-15=-1451/0, 13-16=0/1053, 12-16=-1010/0, 12-17=0/718, 9-17=-535/0, 9-18=0/685, 5-20=-277/0, 5-19=-320/291, 8-18=-341/0									
<ul> <li>NOTES-</li> <li>1) Unbalanced floor live loads have been considered for this design.</li> <li>2) All plates are MT20 plates unless otherwise indicated.</li> <li>3) Plates checked for a plus or minus 1 degree rotation about its center.</li> <li>4) Refer to girder(s) for truss to truss connections.</li> <li>5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.</li> <li>6) CAUTION, Do not erect truss backwards.</li> <li>7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 159 lb down at 1-1-12, and 159 lb down at 3-1-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.</li> <li>8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).</li> </ul>									
LOAD CASE(S) Stand 1) Dead + Floor Live (b Uniform Loads (plf) Vert: 15-23= Concentrated Loads Vert: 4=-79(	dard alanced): Lumber Increase=1.00, Plate =-10, 1-14=-100 (lb) F) 25=-81(F) 26=-79(F)	Increase=1.00				SE/ 0363	AL 322		



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



	9-4-8					12-10-0	
I	9-4-8 0 ¹ 1-8						I
Plate Offsets (X,Y) [1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8,Edge], [9:0-1-8,Edge], [10:0-1-8,Edge]							
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	<b>CSI.</b> TC 0.08 BC 0.05 WB 0.04 Matrix-S	DEFL.         ir           Vert(LL)         -0.00           Vert(CT)         -0.00           Horz(CT)         0.00	l (loc) l/defl 13 >999 13 >999 12 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 80 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER-         TOP CHORD       2x4 SP No.1(flat)         BOT CHORD       2x4 SP No.1(flat)         WEBS       2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural woo except end ver Rigid ceiling di 6-0-0 oc bracir	d sheathing dir rticals. rectly applied o ng: 16-17,15-16	ectly applied or 6-0-0 or 10-0-0 oc bracing, 5.	oc purlins, Except:

**REACTIONS.** All bearings 9-6-0 except (jt=length) 12=0-3-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 16, 17, 18, 21, 20, 19 except 15=301(LC 9), 15=290(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932



			3-6-0			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,	Edge], [9:0-1-8,0-1-8]				
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.05 WB 0.04 Matrix-S	<b>DEFL.</b> in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) I/defl L/d 7 >999 480 7 >999 360 5 n/a n/a	<b>PLATES</b> MT20 Weight: 24 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER-TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct except end verticals. Rigid ceiling directly applied or 1	ly applied or 3-6-0 0-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 8=Mechanical, 5=0-3-8 Max Grav 8=179(LC 1), 5=173(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MITek Aff 818 Soundside Road Edenton, NC 27932

