
5' 0"

38' 0" 49' 0"

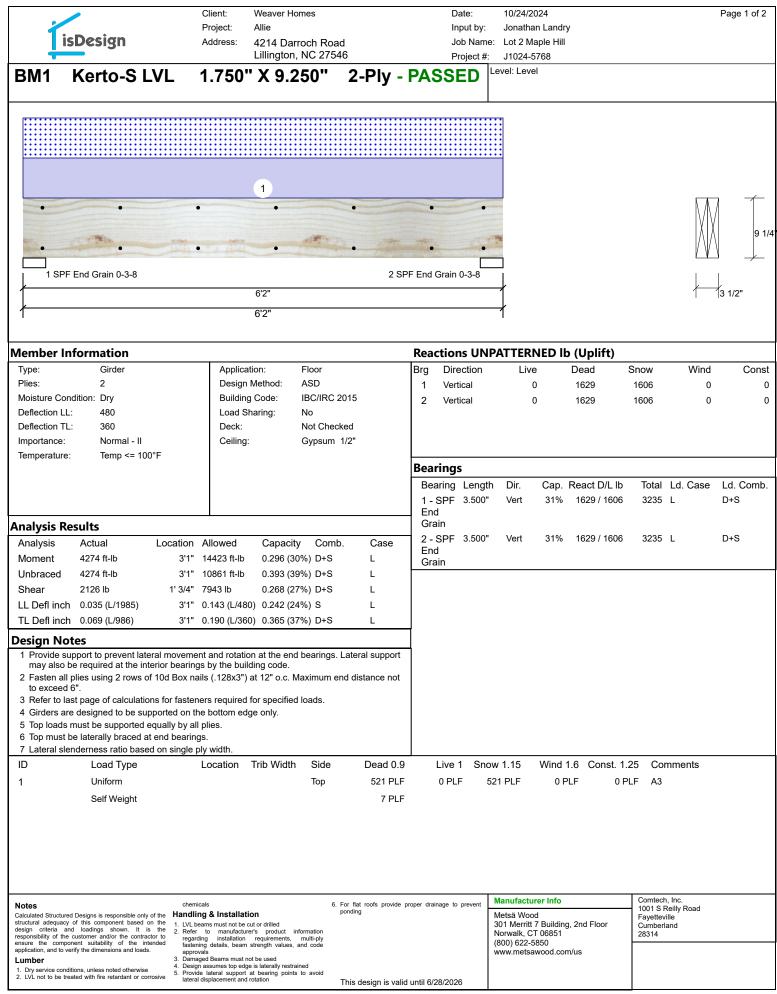
2. 0.

4. 0"

All Headers Are Considered 2X10 Beams Unless Otherwise Noted All Walls Shown Are Considered Load Bearing	Bearing deemed requirer size and requirer size and requirer size and requirer size and requirer size and requirer size and requirer size and requirer size and requirer size and reaction reaction reaction rables. retainec reaction rables. Signatu	RUS Reilly F Fayet Phon Fax reactions to comp ments. The A register to design stat excr A register to design that excr J MBER OF J (BASEI WBER OF J) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	OF & SES Road In teville e: (910) : (9	k FL k FL k B dustr , N.C.) 864 864-4 b or equa persoription shall r or shall r or shall r or equa persoription shall r or or equa b port syste b or no r e specific syste of syste b or no r e specific syste of syste com the prosection b but no n profess port syste of REQUIRE of REQUIRE of ST Syste 1 2 3 0 4 5 5	OOF EAN ial Par 28309 -8787 444 I to 3000 tive Code effect of the rescription imum focular tive Code effect of the rescription imum focular in the a conal shale m for an d in the a ional shale m for an onal shale m for an to an d in the a ional shale m for an to an onal shale m for an to an onal shale m for an to an onal shale m for an to a to a to a to a to a to a to a to a	A AS AS AS AS AS AS AS AS AS AS AS AS AS
Ridge Line = 33.04 ft. Hip Line = 1.4 ft. Horiz. OH = 77.5 ft. Raked OH = 127.47 ft. Decking = 56 sheets 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of stud unless noted otherwise 3. All exterior wall to truss dimensions are to face of stud unless noted otherwise 3. All exterior wall to truss dimensions are to face of stud unless noted otherwise Diffect of stud unless noted otherwise	TY / CO. Lillington / Harnett	ADDRESS 4214 Darroch Road	MODEL Roof	DATE REV. 10/24/24	DRAWN BY Jonathan Landry	SALES REP. Lenny Norris
Products PlotID Length Product Plies Net Qty BM1 7'0" 1-3/4"x 9-1/4" LVL Kerto-S 2 2 Truss Placement Plan Scale: 1/4"=1'	BUILDER Weaver Homes CITY	NAME Lot 2 Maple Hill	Allie	DATE N/A	QUOTE # DR/	# J1024-5768
▲= Denotes Left End of Truss (Reference Engineered Truss Drawing)	THIS IS These compo design See ind identifi design perman for the suppor and co design consul	S A TRUS trusses an inents to 1 at the sp dividual d ed on the er is resp nent braci overall s tr structur blumns is er. For ge t BCSI-B1 delivery pa	re design be incorp ecification esign she placeme onsible for ing of the tructure. e includir the responeral gui and BCS	ed as ind prated int n of the b ets for ea nt drawin or tempor roof and The desig og header nsibility of dance reg il-B3 prov	GRAM ON ividual bu o the buil uidding de ach truss g. The bu ary and floor sys n of the tu s, beams of the buil arding br ided with	ALY. ilding ding esigner. design ilding tem and russ , walls, ding acing, the

	COMTECH ROOF & FLOOR TRUSSES & BEAM Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444							
	deemed requirem attached requirem size and reaction feaction Tables. retained	reactions to compl nents. Th d Tables (nents) to d number is greater A registe to design that exco A registe to design that exco A registe to design that exco	s less that by with the e contract derived f determin of wood s than 3000 red desig n the sup red desig n the sup ceed 1500	n or equa e prescrip tor shall r irom the p tor shall r studs req 0# but no n profess port syste oprt syste 0#.	I to 3000Å tive Code efer to th orescriptiv imum focuired to s t greater t ional sha em for all tonal sha em for all Land Land	e ve Code indation upport than II be y attached II be		
Are Beams Noted Are Bearing	NUM NOLLOVER NA NA NA NA NA NA NA NA NA NA NA NA NA	(BASEI MBER OF J/ W34 SQD15 0, D34 1 2 3 4 5 6 7 8	D ON TABL	ES R502.5() REQUIRED /GIRDER NO1 SQ015 Q, 03 0 1 0 2 0 3 0 4 0 5	0 @ EA END VOLLOVG 340 680 1020 1360	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
4 sq.ft. t. ft. ets s nsions are to otherwise ire to face of ensions are to wise	Lillington / Harnett	4214 Darroch Road	Roof	10/24/24	Jonathan Landry	Lenny Norris		
eam Plies Net Qty	CITY / CO.	ADDRESS	WODEL	DATE REV.	DRAWN BY	SALES REP.		
Plan	Weaver Homes	Lot 2 Maple Hill	Allie	N/A		J1024-5768		
	These	trusses a	re design	ed as ind	# JLONO GRAM ON ividual bu	iilding		
▲= Denotes Left End of Truss Reference Engineered Truss Drawing)	compo design See inc identifie design permar for the suppor and co design consult	nents to I at the sp dividual d ed on the er is resp nent braci overall si t structur lumns is er. For ge t BCSI-B1	be incorp ecification esign sha placeme onsible for ing of the tructure. e includir the respondent eneral guid and BCS	orated int n of the b ets for ea nt drawin or tempor roof and The desig ng header nsibility of dance reg BI-B3 prov	o the buil ouilding de ach truss g. The bu	ding esigner. design ilding tem and russ , walls, ding acing, the		

All Walls Shown Are Considered Load Bearing Roof Area = 1626.94 sq.ft. Ridge Line = 33.04 ft. Hip Line = 1.4 ft. Horiz. OH = 77.5 ft. Raked OH = 127.47 ft. Decking = 56 sheets


All Headers Are Considered 2X10 Beams Unless Otherwise Noted

Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of All interior wall dimensions are to face of stud unless noted otherwise
 All exterior wall to truss dimensions are to face of stud unless noted otherwise

> Hatch Legend Box Storage Drop Beam

		Products		
PlotID	Length	Product	Plies	Net Qty
BM1	7' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	2

Truss Placement Plan \leq Scale: 1/4"=1'

	Client: Weaver Homes Project: Allie	Date: Input by:	10/24/2024 Jonathan Landry	Page 2 of 2
isDesign	Address: 4214 Darroch R Lillington, NC 2	oad Job Nam	ne: Lot 2 Maple Hill	
BM1 Kerto-S LVL		· · · · · · · · · · · · · · · · · · ·	Level: Level	
		-		
• •	• •	• • •	1/2"	
				9 1/
1 SPF End Grain 0-3-8	• •	2 SPF End Grain 0-3-8		
	6'2"			3 1/2"
 	6'2"		\rightarrow	
Multi-Ply Analysis				
Fasten all plies using 2 rows of 1		o.c Maximum end distance n	ot to exceed 6".	
Capacity 0.0 % Load 0.0 F	PLF			
Yield Limit per Foot163.7Yield Limit per Fastener81.9	7 PLF lb.			
Cm 1 Yield Mode IV				
Edge Distance 1 1/2	,"			
Min. End Distance 3" Load Combination				
Duration Factor 1.00				
Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc.
structural adequacy of this component based on the 1	andling & Installation . LVL beams must not be cut or drilled	ponding	Metsä Wood 301 Merritt 7 Building, 2nd Floor	 1001 S Reilly Road Fayetteville Cumberland
design criteria and loadings shown. It is the 2, responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads.	 Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals 		Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	28314
Lumber 3. 1. Dry service conditions, unless noted otherwise 5.	Damaged Beams must not be used Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid		*****.mct8a#000.00m/05	
2. LVL not to be treated with fire retardant or corrosive	lateral displacement and rotation	This design is valid until 6/28/2026		

RE: J1024-5768 Lot 2 Maple Hill Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: Weaver HomeProject Name:Lot/Block: 2Model:Address: 4214 Darroch RoadSubdivision:City: LillingtonState:NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 150 mph Floor Load: N/A psf

This package includes 14 individual, dated Truss Design Drawings and 0 Additional Drawings.

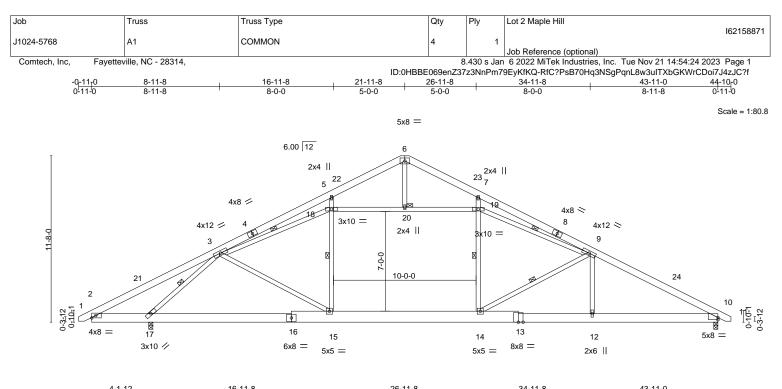
No.	Seal#	Truss Name	Date
1	162158871	A1	11/22/2023
2	162158872	A1GE	11/22/2023
3	162158873	A2	11/22/2023
4	162158874	A3	11/22/2023
5	162158875	B1	11/22/2023
6	162158876	M1GE	11/22/2023
7	162158877	V1GE	11/22/2023
8	162158878	V2	11/22/2023
9	162158879	V3	11/22/2023
10	162158880	V4	11/22/2023
11	162158881	V5	11/22/2023
12	162158882	V6	11/22/2023
13	162158883	V7	11/22/2023
14	162158884	V8	11/22/2023

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric


My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

	1	4-1-12	10-11-0		20-11-0	1	34-1	1-0	43-11-0	1
		4-1-12	12-9-12		10-0-0	1	8-0	-0	8-11-8	1
Plate Offs	sets (X,Y)	[10:0-0-0,0-1-13]								
LOADING	G (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.3	4 Vert(Ll	.) -0.29 12-14	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.6	2 Vert(C	T) -0.45 12-14	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB 1.0	0 Horz(C	Ú) 0.05 10	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix-S	Wind(L	L) 0.27 12-14	>999	240	Weight: 378 lb	FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheathing di	rectly applied or 4-4-9 oc purlins.
BOT CHORD	2x8 SP No.1 *Except*	BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing, Except:
	13-16: 2x10 SP No.1		6-0-0 oc bracing: 2-17.	
WEBS	2x4 SP No.2	WEBS	1 Row at midpt	3-17, 5-15, 7-14, 9-14, 3-18, 9-19
		JOINTS	1 Brace at Jt(s): 20	

REACTIONS. (size) 10=0-3-8, 17=0-3-8 Max Horz 17=197(LC 11) Max Uplift 10=-314(LC 13), 17=-363(LC 12) Max Grav 10=1630(LC 2), 17=1976(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-697/566, 3-5=-516/130, 5-6=-452/296, 6-7=-407/280, 7-9=-534/147,

9-10=-2912/996

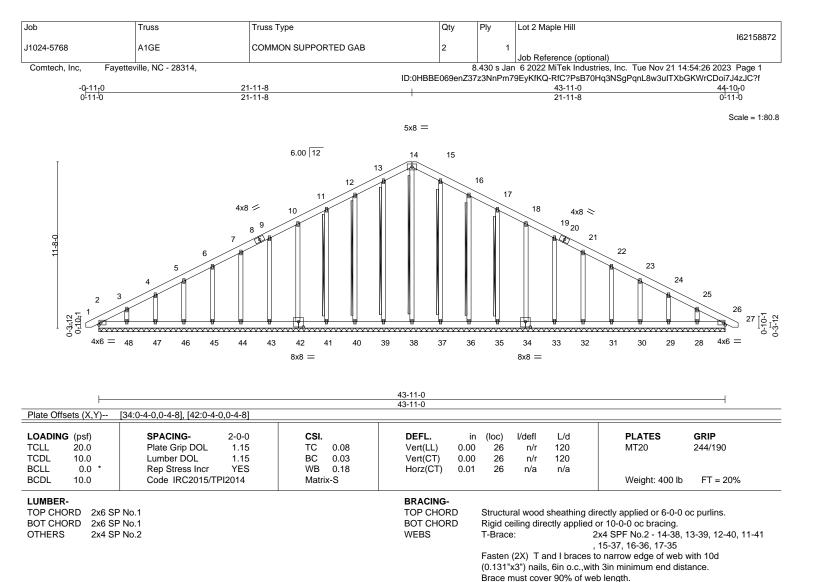
 BOT CHORD
 2-17=-391/749, 15-17=-360/1612, 14-15=-408/2107, 12-14=-705/2476, 10-12=-704/2481

 WEBS
 3-17=-2560/1419, 3-15=-105/771, 15-18=0/409, 5-18=-403/380, 14-19=0/479, 7-19=-277/308, 9-14=-793/375, 9-12=-9/415, 18-20=-1784/700, 19-20=-1784/700, 3-18=-1853/725, 9-19=-1858/728

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 21-11-8, Exterior(2) 21-11-8 to 26-4-5, Interior(1) 26-4-5 to 44-7-10 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 314 lb uplift at joint 10 and 363 lb uplift at joint 17.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

REACTIONS. All bearings 43-11-0.

- (lb) Max Horz 2=305(LC 16)
 - Max Uplift All uplift 100 lb or less at joint(s) 2, 39, 37 except 40=-122(LC 12), 41=-109(LC 12), 42=-107(LC 12), 43=-107(LC 12), 44=-108(LC 12), 45=-108(LC 12), 46=-108(LC 12), 47=-108(LC 12), 48=-182(LC 12), 36=-126(LC 13), 35=-110(LC 13), 34=-107(LC 13), 33=-107(LC 13), 32=-108(LC 13), 31=-108(LC

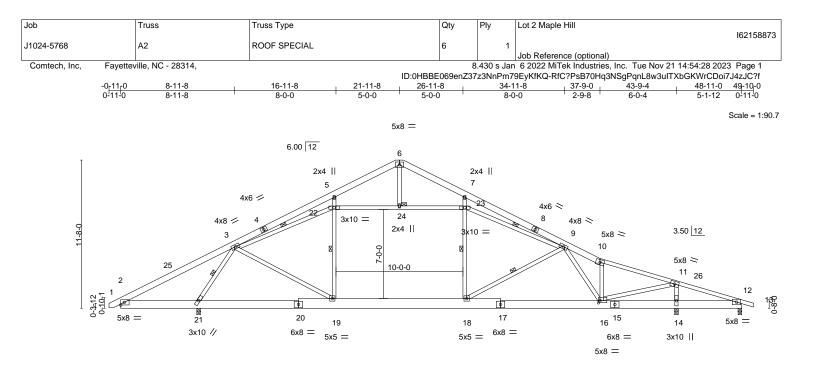
 - 47, 48, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 26 except 38=256(LC 13)
- FORCES.
 (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-446/137, 3-4=-332/131, 4-5=-261/151, 9-10=-93/285, 10-11=-119/324, 11-12=-146/374, 12-13=-176/459, 13-14=-190/506, 14-15=-190/506, 15-16=-176/459,
- 16-17=-146/374, 17-18=-119/296, 25-26=-314/102 BOT CHORD 2-48=-89/297, 47-48=-89/297, 46-47=-89/297, 45-46=-89/297, 44-45=-89/297, 43-44=-89/297, 42-43=-89/297, 41-42=-89/297, 40-41=-89/297, 39-40=-89/297, 38-39=-89/297, 37-38=-89/297, 36-37=-89/297, 35-36=-89/297, 34-35=-89/297,
- 33-34=-89/297, 32-33=-89/297, 31-32=-89/297, 30-31=-89/297, 29-30=-89/297, 28-29=-89/297, 26-28=-89/297 WEBS 14-38=-258/51

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide Conviluted between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 2 Maple Hill
					162158872
J1024-5768	A1GE	COMMON SUPPORTED GAB	2	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	rille, NC - 28314,		8	.430 s Jan	6 2022 MiTek Industries, Inc. Tue Nov 21 14:54:27 2023 Page 2
		ID:0HBBE	069enZ37	z3NnPm7	9EyKfKQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

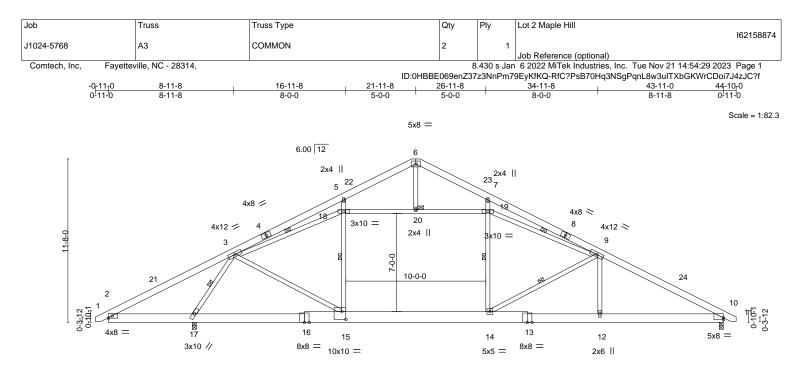
NOTES-

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 39, 37 except (jt=lb) 40=122, 41=109, 42=107, 43=107, 44=108, 45=108, 45=108, 47=108, 48=182, 36=126, 35=110, 34=107, 33=107, 32=108, 31=108, 30=108, 29=107, 28=164.
10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Review Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	6-1-12 16-11- 6-1-12 10-9-1		26-11-8 10-0-0	37-9-0	<u>43-9-4</u> <u>48-11-0</u> <u>6-0-4</u> <u>5-1-12</u>
Plate Offsets (X,Y)	[16:0-1-8,0-2-0]	<u>L</u>	1000	1000	004 0112
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.65 BC 0.56 WB 0.75 Matrix-S	Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.27 16-18 >999 360 -0.50 16-18 >903 240 0.02 14 n/a n/a 0.28 16-18 >999 240	PLATES GRIP MT20 244/190 Weight: 408 lb FT = 20%
10-13: BOT CHORD 2x8 SF	P No.1 *Except* 2x4 SP No.1 P No.1 *Except* 2x10 SP No.1		BRACING- TOP CHORE BOT CHORE WEBS JOINTS	 Structural wood sheathing d Rigid ceiling directly applied 	irectly applied or 4-9-2 oc purlins.
Max H Max U	e) 21=0-3-8, 12=0-3-8, 14=0-3-8 lorz 21=-197(LC 10) Jplift 21=-385(LC 12), 12=-540(LC 20), 1 Grav 21=1995(LC 2), 12=167(LC 13), 14	(/			
TOP CHORD 2-3= 9-10 BOT CHORD 2-21	Comp./Max. Ten All forces 250 (lb) o -505/776, 3-5=-471/118, 5-6=-430/283, =-1570/642, 10-11=-1523/553, 11-12=-7 =-570/581, 19-21=-200/791, 18-19=-315 4=-1713/780	6-7=-379/273, 7-9=-490/1 '93/1870	121,		
WEBS 3-21 7-23	=-2235/1089, 3-19=-253/1123, 19-22=-§ =-296/357, 22-24=-1343/604, 23-24=-13 =-515/234, 3-22=-1392/625, 9-23=-1397	43/604, 10-16=-402/212,	,		
/	e loads have been considered for this de	0	· Cat II: Eva C: Eaa	lesad: MWERS (anyolona)	

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 4-2-2, Interior(1) 4-2-2 to 21-11-8, Exterior(2) 21-11-8 to 27-1-4, Interior(1) 27-1-4 to 49-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 21=385, 12=540, 14=603.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

F	<u>6-1-12</u> 16-11 6-1-12 10-9-		<u>26-11-8</u> 10-0-0	<u>34-11-8</u> 8-0-0	43-11-0
Plate Offsets (X,Y)	[10:0-0-0,0-1-9], [15:0-3-8,0-6-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.36 BC 0.71 WB 0.72 Matrix-S	Vert(LL) -0.29 Vert(CT) -0.52 Horz(CT) 0.04	(loc) l/defl L/d 12-14 >999 360 12-14 >879 240 10 n/a n/a 12-14 >999 240	PLATES GRIP MT20 244/190 Weight: 376 lb FT = 20%
	P No.1 *Except* 2x10 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceiling directly applied6-0-0 oc bracing: 2-17.1 Row at midpt	rectly applied or 4-6-11 oc purlins. or 10-0-0 oc bracing, Except: 3-17, 5-15, 7-14, 9-14, 3-18, 9-19
Max U	e) 17=0-3-8, 10=0-3-8 lorz 17=197(LC 11) lplift 17=-383(LC 12), 10=-303(LC 13) grav 17=2083(LC 2), 10=1524(LC 2)		JOINTS	1 Brace at Jt(s): 20	
()	Comp./Max. Ten All forces 250 (lb) o				

 TOP CHORD
 2-3=-834/801, 3-5=-489/121, 5-6=-448/294, 6-7=-387/272, 7-9=-517/136, 9-10=-2715/901

 BOT CHORD
 2-17=-593/866, 15-17=-197/906, 14-15=-263/1823, 12-14=-620/2301, 10-12=-621/2309

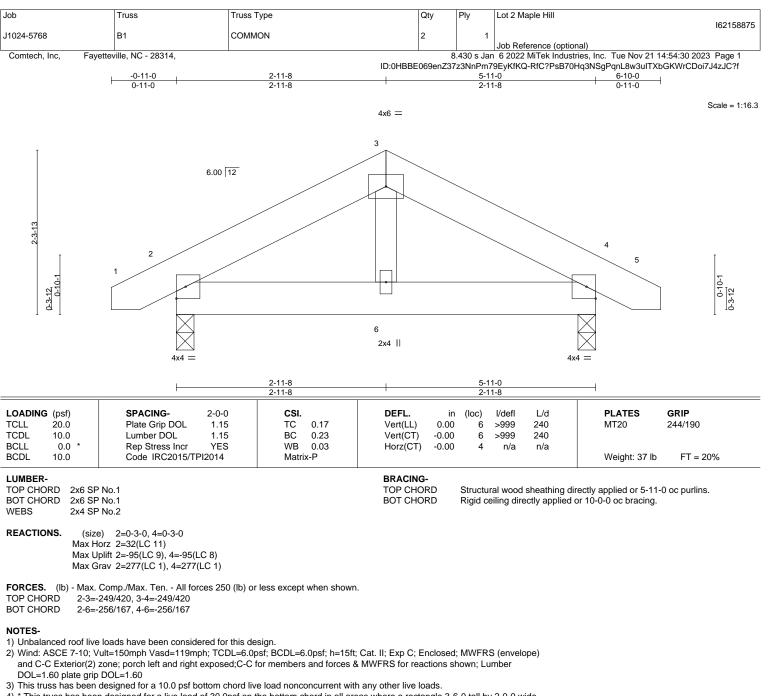
 WEBS
 3-17=-2389/1351, 3-15=-412/1275, 15-18=-74/308, 5-18=-437/390, 14-19=0/422, 7-19=-254/298, 9-14=-883/454, 9-12=-47/483, 18-20=-1493/560, 19-20=-1493/560,

NOTES-

1) Unbalanced roof live loads have been considered for this design.

3-18=-1548/579, 9-19=-1556/583

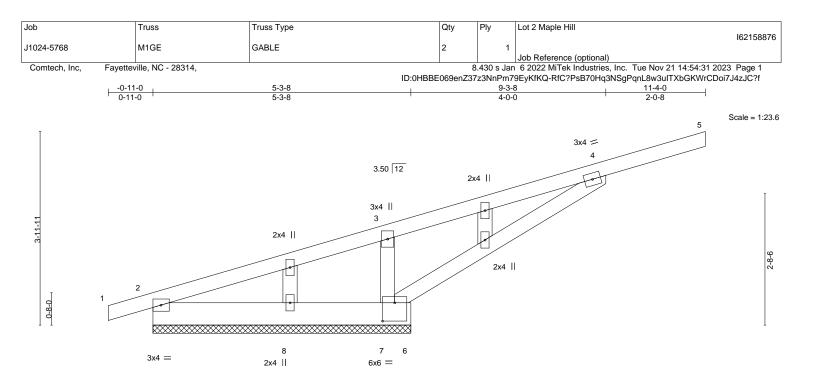
Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 21-11-8, Exterior(2) 21-11-8 to 26-4-5, Interior(1) 26-4-5 to 44-7-10 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 17=383, 10=303.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A Millek / 818 Soundside Road Edenton, NC 27932



4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Plate Offsets (X,Y)-- [2:0-0-1,0-0-0], [7:0-3-0,0-4-8]

ł

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.33 BC 0.09 WB 0.41 Matrix-P	DEFL. i Vert(LL) -0.03 Vert(CT) -0.03 Horz(CT) 0.00	3 4-5 n/r	L/d 120 120 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x4 SF OTHERS 2x4 SF	9 No.1 9 No.2		BRACING- TOP CHORD BOT CHORD	except end ver	ticals.	rectly applied or 4-11- or 6-0-0 oc bracing.	7 oc purlins,

REACTIONS. (size) 7=5-3-8, 2=5-3-8, 8=5-3-8 Max Horz 2=217(LC 12) Max Uplift 7=-694(LC 12), 2=-38(LC 1) Max Grav 7=819(LC 1), 2=165(LC 9), 8=120(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1486/767, 3-4=-1304/735, 3-7=-352/538

BOT CHORD 2-8=-671/1116, 7-8=-671/1116

WEBS 4-7=-808/1345

NOTES-

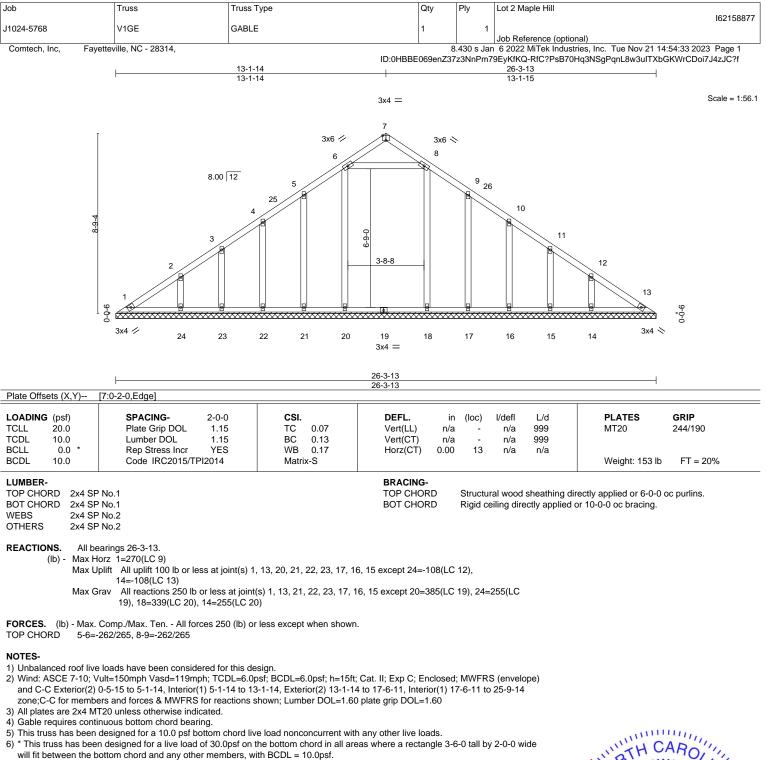
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

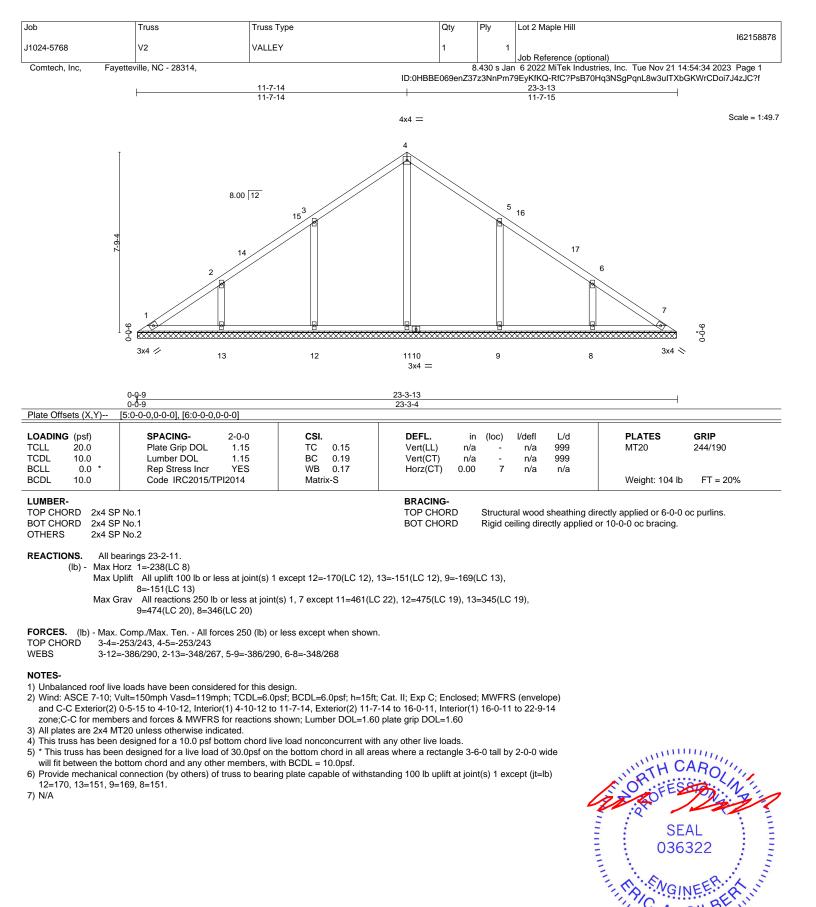
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=694.

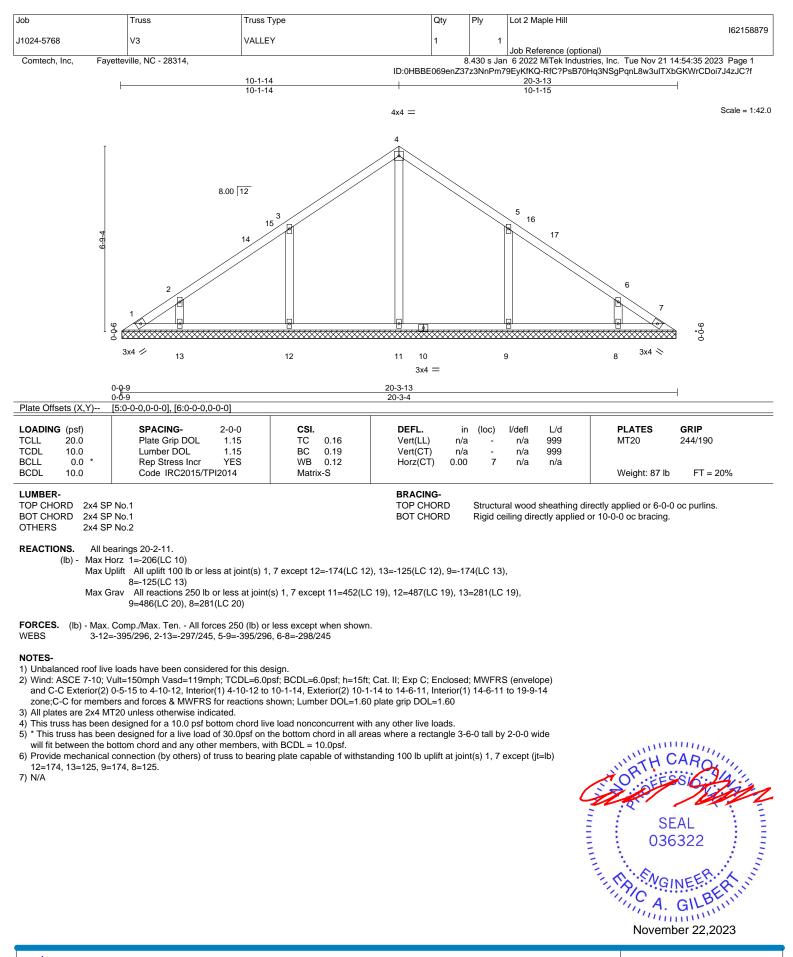
9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

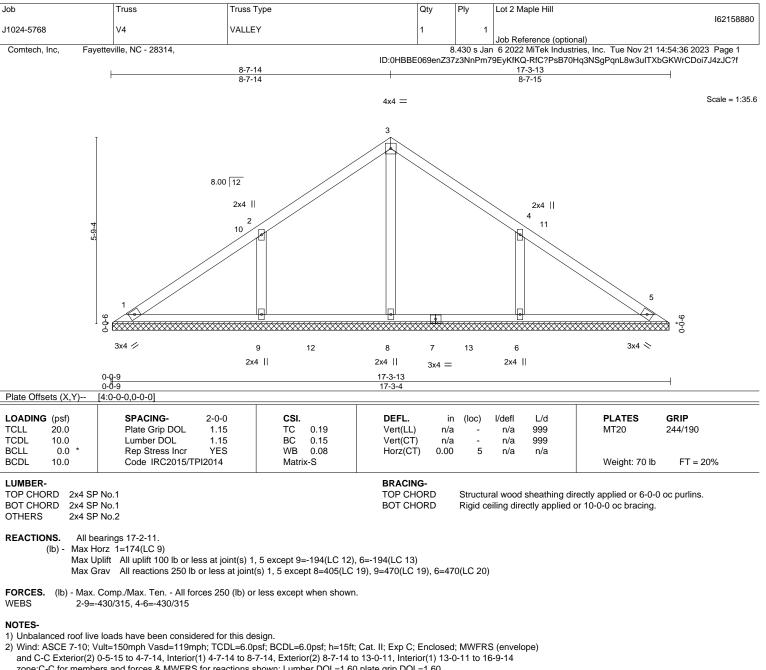
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 20, 21, 22, 23, 17, 16, 15 except (jt=lb) 24=108, 14=108.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

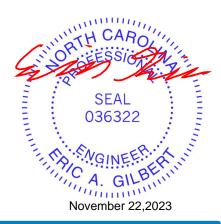

A MiTek Affi 818 Soundside Road



November 22,2023

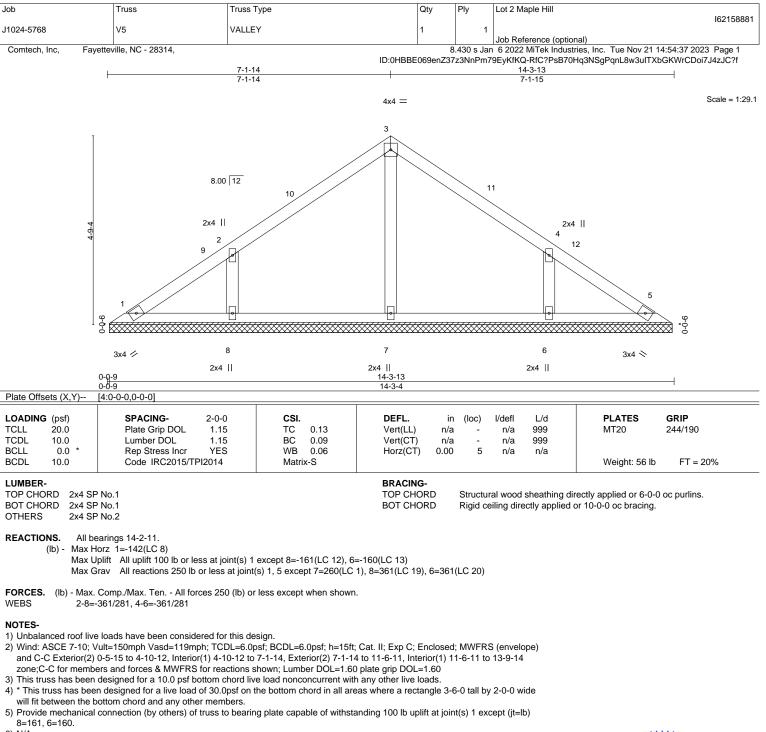
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affil


zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

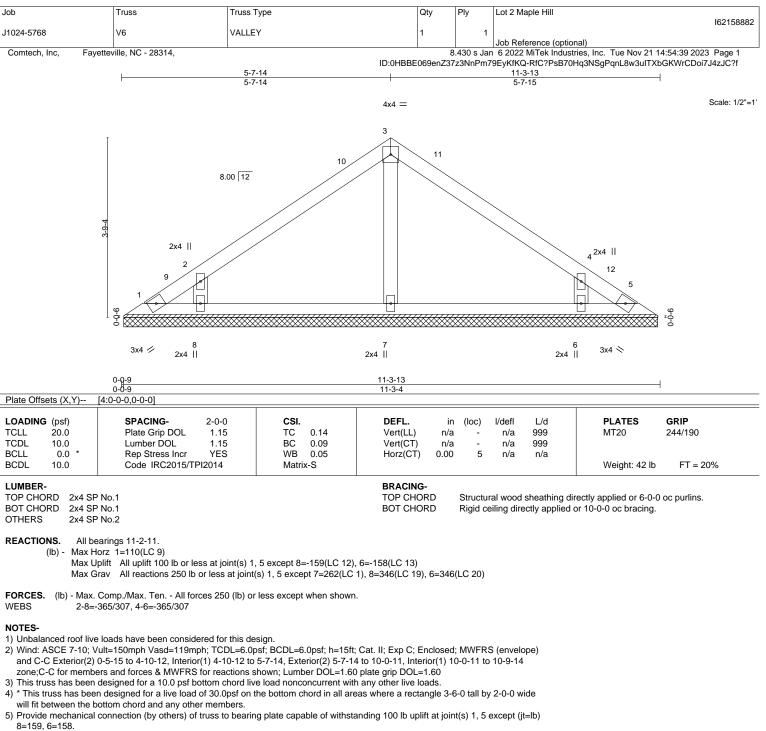
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=194, 6=194.

6) N/A

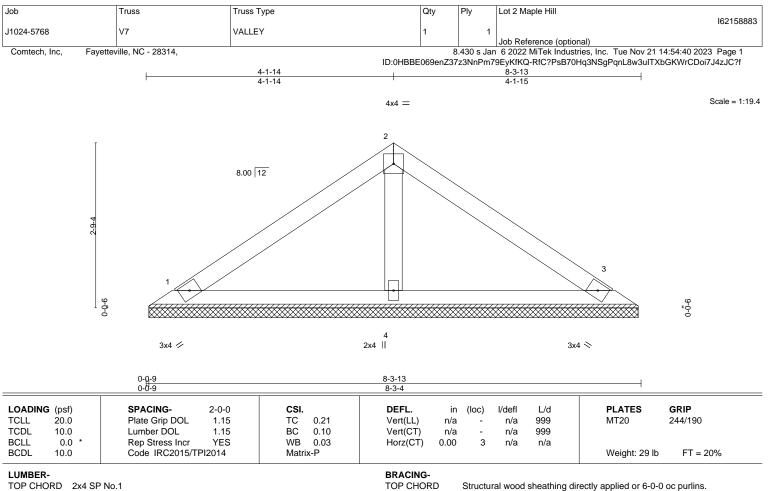
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


6) N/A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff

⁸¹⁸ Soundside Road Edenton, NC 27932



6) N/A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Af 818 Soundside Road

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS. 1=8-2-11, 3=8-2-11, 4=8-2-11 (size) Max Horz 1=-78(LC 8) Max Uplift 1=-48(LC 12), 3=-55(LC 13), 4=-4(LC 12) Max Grav 1=159(LC 1), 3=162(LC 20), 4=268(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

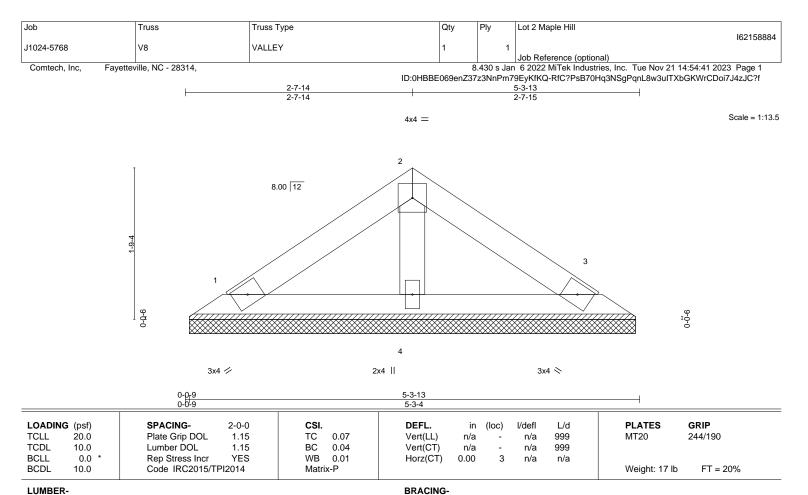
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) N/A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD

2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. 1=5-2-11, 3=5-2-11, 4=5-2-11 (size) Max Horz 1=-46(LC 8) Max Uplift 1=-28(LC 12), 3=-33(LC 13), 4=-3(LC 12) Max Grav 1=94(LC 1), 3=96(LC 20), 4=158(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) N/A

Structural wood sheathing directly applied or 5-3-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

