

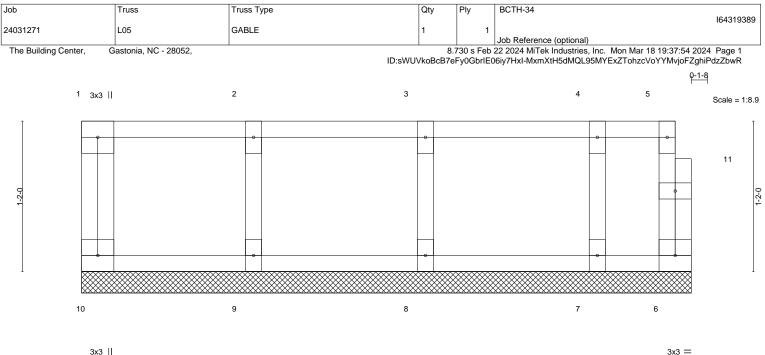
Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24031271 BCTH-34

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by The Building Center.

Pages or sheets covered by this seal: I64319389 thru I64319403

My license renewal date for the state of North Carolina is December 31, 2024.


North Carolina COA: C-0844

March 20,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

3x3 ||

	<u>1-4-0</u> 1-4-0	2-8-0 1-4-0	<u>4-0-0</u> <u>1-4-0</u>	4-8-12 0-8-12
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. DEFL. TC 0.08 Vert(LL) BC 0.02 Vert(CT) WB 0.03 Horz(CT)	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999 0.00 6 n/a n/a	PLATES GRIP MT20 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-R	0.00 6 n/a n/a	Weight: 23 lb FT = 20%F, 11%E

TOP CHORD 2x4 SP No.2(flat) 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.3(flat) WFBS OTHERS 2x4 SP No.3(flat)

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-8-12 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 4-8-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 10, 6, 9, 8, 7

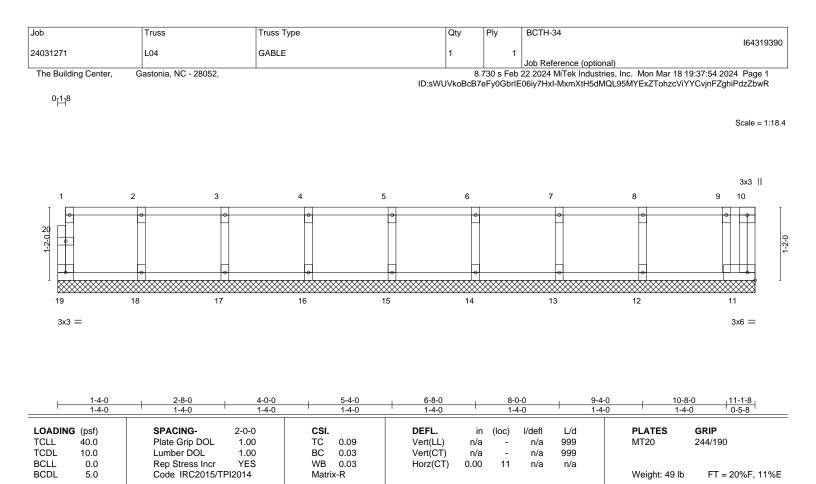
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


4) Gable studs spaced at 1-4-0 oc.

- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

BRACING-

TOP CHORD

BOT CHORD

OTHERS	2x4 SP No.3(flat)

REACTIONS. All bearings 11-1-8.

2x4 SP No.2(flat)

2x4 SP No.2(flat)

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 19, 11, 18, 17, 16, 15, 14, 13, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

LUMBER-

WEBS

TOP CHORD

BOT CHORD

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

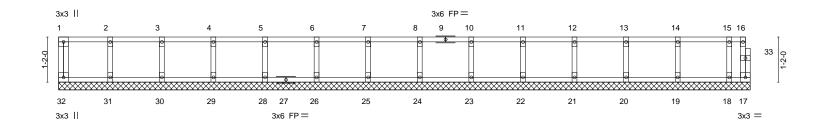
4) Gable studs spaced at 1-4-0 oc.

- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.


except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	BCTH-34
					164319391
24031271	L03	GABLE	1	1	
					Job Reference (optional)
The Building Center, G	astonia, NC - 28052,		8.	730 s Feb	22 2024 MiTek Industries, Inc. Mon Mar 18 19:37:53 2024 Page 1
-		ID:sW	UVkoBcB7	eFy0GbrlE	06iy7HxI-ulD8gx4?b6DJUCz1OsyZ8l3K39C6AGY5K0y8sBzZbwS
					04.0
					0- <mark>1</mark> -8

Scale = 1:29.8

H	1-4-0	<u>2-8-0</u> 1-4-0	+ 4-0-0 + 1-4-0	5-4-0 1-4-0	<u>6-8-0</u> 1-4-0	<u>8-0-0</u> 1-4-0	+ 9-4-0 + 1-4-0	10-8-0		<u>12-0-0</u> 1-4-0	13-		<u>14-8-0</u> 1-4-0	+ <u>16-0-0</u> 1-4-0	<u>17-4-0 17-10-8</u> 1-4-0 0-6-8
LOADIN TCLL TCDL BCLL BCDL	IG (psf) 40.0 10.0 0.0 5.0	PI Lu Re	PACING- ate Grip DOL imber DOL ep Stress Incr ode IRC2015/	2-0-0 1.00 1.00 YES TPI2014	B W			EFL. ert(LL) ert(CT) orz(CT)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a		PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBE TOP CH BOT CH	R- IORD 2x4	SP No.2(flat SP No.2(flat	t)					RACING- DP CHORE			ral wood end verti		ing directly	y applied or 6-0-0	

BOT CHORD	2x4 SP No.2(flat)		except end verticals.
WEBS	2x4 SP No.3(flat)	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3(flat)		

REACTIONS. All bearings 17-10-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 26, 25, 24, 23, 22, 21, 20, 19, 18

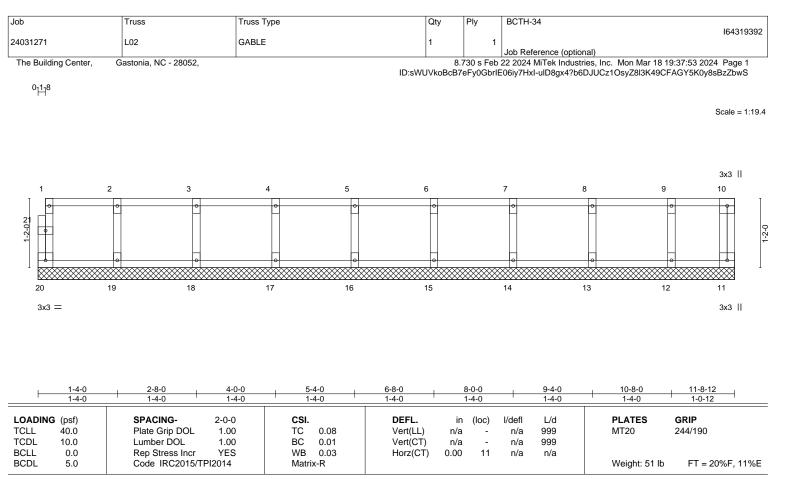
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


4) Gable studs spaced at 1-4-0 oc.

- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

LUMBER-

 TOP CHORD
 2x4 SP No.2(flat)

 BOT CHORD
 2x4 SP No.2(flat)

 WEBS
 2x4 SP No.3(flat)

 OTHERS
 2x4 SP No.3(flat)

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-8-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 20, 11, 19, 18, 17, 16, 15, 14, 13, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-				16431939
he Building Center, Gastonia, NC - 28052, 8.730 s Feb 22 2024 MTek Industries, Inc. Mon Mar 18 19:37:53 2024 Page 1 ID:sWUVkoBcB7ery0GbriE06iy7Hul-uID8gx47b6DJUC21Osy28I3K59CEAGY5K0y8sBz2bwS 0-118 2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 4 1 4 1 4 1 4 1 1 12 13 4 1 4 1 1 1 12 13 1 12 13 4 1 4 1 1 1 12 13 1 12 13 14	31271	L01	GABLE	1	1			10431938
$0 \frac{1}{13}$ $Scale = 12$ $33 \frac{1}{27}$ $26 \frac{25}{26} \frac{24}{23} \frac{24}{23} \frac{22}{23} \frac{21}{24} \frac{20}{19} \frac{19}{18} \frac{1}{17} \frac{1}{16} \frac{1}{140} 1$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e Building Center,	Bastonia, NC - 28052,						
Scale = 1.2 3.3 I $d = \frac{1}{49}$ $d = \frac{1}{140}$ $d = \frac{1}$				ID:sWUVkoBc	37eFy0GbrIE	E06iy7HxI-ulD8gx4?b6DJU	JCz1OsyZ8I3K59CI	EAGY5K0y8sBzZbwS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0- <mark>1-</mark> 8							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								Scale – 1:2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								00010 - 1.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								3x3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2	3 4	5 6 7	8	9	10	11 1	2 13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	<u>e</u>	• •	•	0	•	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					· · · · · · · · · · · · · · · · · · ·		****	
3x3 = 3x6 FP = 3x1 1 - 4-0 - 2-8-0 + 4-0.0 - 5-4-0 - 6-8-0 + 8-0.0 + 9-4-0 - 10-8-0 + 12-0.0 + 13-4-0 + 14-8-0 + 16-1-8 1 - 4-0 - 1.4-0 - 1.4-0 - 1.4-0 + 1.							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1-4-0 2-8-0 4-0-0 5-4-0 6-8-0 8-0-0 9-4-0 10-8-0 12-0-0 13-4-0 14-8-0 16-1-8 1-4-0		25 24) 19	18	17	16 1	
ADING (psf) SPACING- Ll 2-0-0 1.00 CSI. TC DEFL. Vert(LL) in (loc) l/defl L/d PLATES GRIP LL 40.0 Plate Grip DOL 1.00 TC 0.08 Vert(LL) n/a - n/a 999 MT20 244/190 LL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 14 n/a n/a	3x3 =		3x6 FP =					3x3
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. Vert(LL) in (loc) l/defl L/d PLATES GRIP DDL 10.0 TC 0.08 Vert(LL) n/a - n/a 999 MT20 244/190 CLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 14 n/a n/a								
Image: Note of the system SPACING- 1-4-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
ADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP LL 40.0 Plate Grip DOL 1.00 TC 0.08 Vert(LL) n/a - n/a 999 MT20 244/190 LL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 14 n/a n/a								
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. Vert(LL) in (loc) l/defl L/d PLATES GRIP DDL 10.0 TC 0.08 Vert(LL) n/a - n/a 999 MT20 244/190 CLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 14 n/a n/a								
Image: Note of the system SPACING- 1-4-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
DADING (psf) SPACING- Plate Grip DOL 2-0-0 1.00 CSI. TC DEFL. Vert(LL) in (loc) l/defl L/d PLATES GRIP DL 40.0 Plate Grip DOL 1.00 TC 0.08 Vert(LL) n/a - n/a 999 MT20 244/190 DL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 14 n/a n/a								
CLL 40.0 Plate Grip DOL 1.00 TC 0.08 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 10.0 Lumber DOL 1.00 BC 0.01 Vert(CT) n/a - n/a 999 MT20 244/190 CDL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 14 n/a n/a								
AU Plate Grip DOL 1.00 TC 0.08 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 10.0 Lumber DOL 1.00 BC 0.01 Vert(CT) n/a - n/a 999 MT20 244/190 CLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 14 n/a n/a								
XDL 10.0 Lumber DOL 1.00 BC 0.01 Vert(CT) n/a - n/a 999 CLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 14 n/a n/a								
CLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 14 n/a n/a							IVI I 20	244/190
	DL 5.0	Code IRC2015/TPI2014	Matrix-R				Weight: 68 lb	FT = 20%F, 11%

TOP CHORD

2x4 SP No.2(flat) 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.3(flat) WFBS OTHERS 2x4 SP No.3(flat)

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 16-1-8.

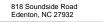
(lb) - Max Grav All reactions 250 lb or less at joint(s) 27, 14, 26, 25, 24, 23, 21, 20, 19, 18, 17, 16, 15

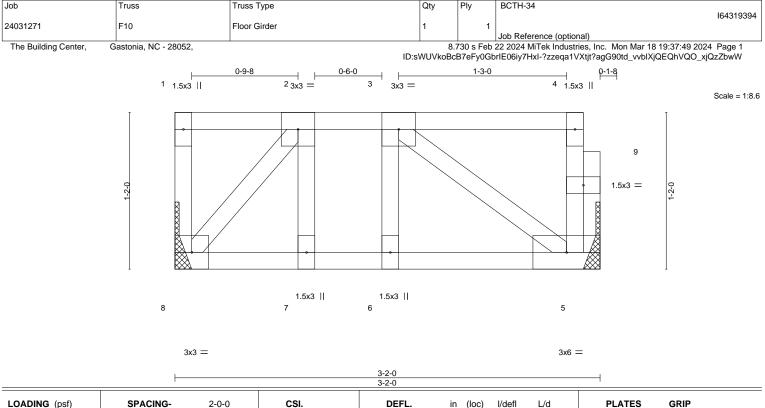
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.


3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


4) Gable studs spaced at 1-4-0 oc.

- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

			3-2-0						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.36 BC 0.45 WB 0.15 Matrix-S	Vert(CT) -	in -0.01 -0.02 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2	x4 SP No.2(flat) x4 SP No.2(flat) x4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD		except	end vert	icals.	rectly applied or 3-2-0 or 10-0-0 oc bracing.) oc purlins,
REACTIONS.	(size) 5=Mechanical, 8=Mechanical lax Grav 5=437(LC 1), 8=425(LC 1)								
FORCES. (lb) - TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forces 250 (lb) o 2-3=-431/0 7-8=0/431, 6-7=0/431, 5-6=0/431 3-5=-526/0, 2-8=-653/0	r less except when shown.							

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

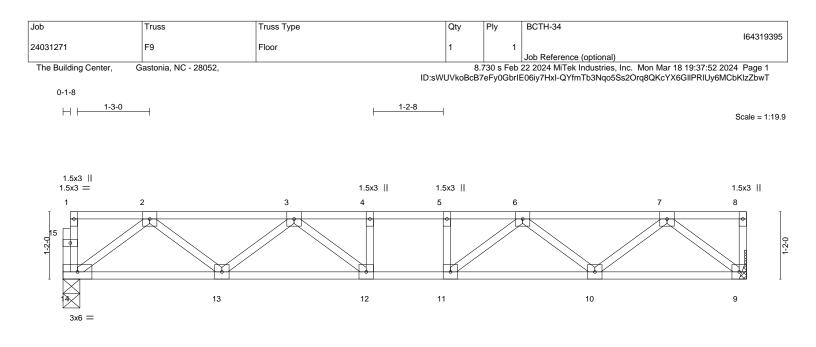
4) CAUTION, Do not erect truss backwards.

5) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 591 lb down at 1-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00


Uniform Loads (plf) Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb) Vert: 3=-541(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

			11-10-0 11-10-0			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.28 BC 0.50 WB 0.28 Matrix-S	DEFL. in Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.02	9 12 >999 240	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.2(flat) P No.2(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o) oc purlins,	

REACTIONS. (size) 14=0-3-8, 9=Mechanical

Max Grav 14=634(LC 1), 9=641(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1217/0, 3-4=-1769/0, 4-5=-1769/0, 5-6=-1769/0, 6-7=-1195/0

BOT CHORD 13-14=0/779, 12-13=0/1619, 11-12=0/1769, 10-11=0/1606, 9-10=0/750

WEBS 2-14=-975/0, 2-13=0/570, 3-13=-523/0, 3-12=-24/370, 7-9=-958/0, 7-10=0/580, 6-10=-535/0, 6-11=-13/381

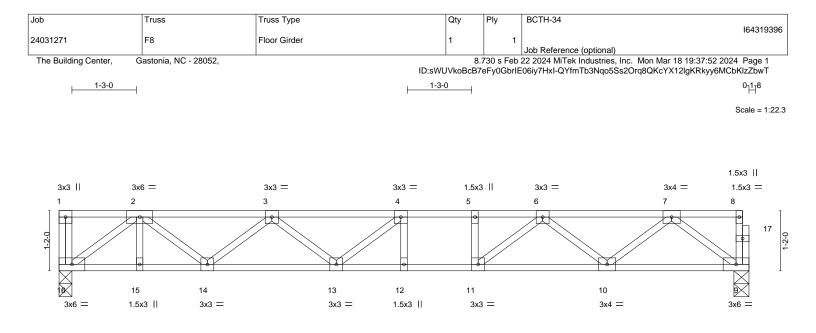
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x3 MT20 unless otherwise indicated.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			13-4-8			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.61 BC 0.83 WB 0.37	Vert(LL) -0.1	in (loc) l/defl L/d 3 12-13 >999 360 8 12-13 >864 240 3 9 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 70 lb	FT = 20%F, 11%E
BOT CHORD 2x4 S	┘ ⊃ No.2(flat) ⊃ No.1(flat) ⊃ No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	, ,,,) oc purlins,	

13-4-8

WFBS 2x4 SP No.3(flat)

REACTIONS. (size) 16=0-3-0, 9=0-3-8

Max Grav 16=989(LC 1), 9=749(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1799/0, 3-4=-2391/0, 4-5=-2418/0, 5-6=-2418/0, 6-7=-1491/0

BOT CHORD 15-16=0/1284, 14-15=0/1284, 13-14=0/2273, 12-13=0/2418, 11-12=0/2418, 10-11=0/2050, 9-10=0/926

WEBS 2-16=-1586/0, 2-14=0/658, 3-14=-616/0, 7-9=-1159/0, 7-10=0/735, 6-10=-728/0, 6-11=0/623

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

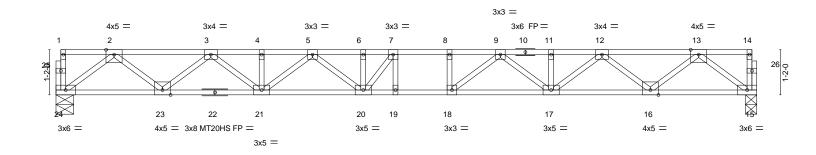
4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 381 lb down at 1-4-12 on top

chord. The design/selection of such connection device(s) is the responsibility of others.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00


Uniform Loads (plf) Vert: 9-16=-10, 1-8=-100 Concentrated Loads (lb) Vert: 2=-301(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

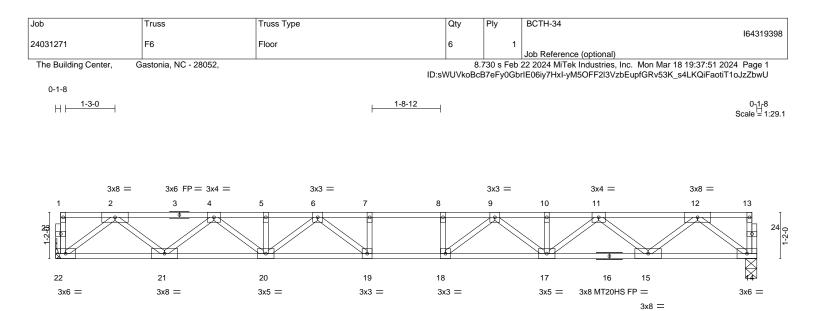
818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	BCTH-34				
24031271	F7	Floor	2	1	l64319397				
					Job Reference (optional)				
The Building Center,	The Building Center, Gastonia, NC - 28052, 8.730 s Feb 22 2024 MiTek Industries, Inc. Mon Mar 18 19:37:51 2024 Page 1								
		ID:sWUVkoBcB7eFy0GbrlE06iy7HxI-yM5OFF2l3VzbEupfGRv53K_t2LJLiELotiT1oJzZbwU							

	8-0-0 8-0-0	8-8-8 9 0-8-8			<u>18-1-4</u> 9-0-10		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.56 BC 0.87 WB 0.52 Matrix-S	DEFL. in Vert(LL) -0.32 Vert(CT) -0.45 Horz(CT) 0.07	(loc) 19 19 15	l/defl L/d >659 360 >480 240 n/a n/a	PLATES MT20 MT20HS Weight: 95 lb	GRIP 244/190 187/143 FT = 20%F, 11%E
BOT CHORD WEBS REACTIONS.	2x4 SP No.2(flat) 2x4 SP No.2(flat) *Except* 15-22: 2x4 SP No.1(flat) 2x4 SP No.3(flat) (size) 24=0-5-8, 15=0-3-8 Max Grav 24=976(LC 1), 15=976(LC 1)		BRACING- TOP CHORD BOT CHORD	except e	end verticals.	directly applied or 5-8-1 d or 10-0-0 oc bracing.	oc purlins,
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. Comp./Max. Ten All forces 250 (lb) o 2-3=-2073/0, 3-4=-3461/0, 4-5=-3461/0, 5-6= 8-9=-4164/0, 9-11=-3460/0, 11-12=-3460/0, 23-24=0/1227, 21-23=0/2885, 20-21=0/3892 16-17=0/2884, 15-16=0/1227 2-24=-1536/0, 2-23=0/1102, 3-23=-1057/0, 3 13-15=-1537/0, 13-16=0/1102, 12-16=-1055 7-20=-458/324	4136/0, 6-7=-4136/0, 7-8= 12-13=-2073/0 , 19-20=0/4164, 18-19=0/41 -21=0/735, 5-21=-551/0, 5-2	164, 17-18=0/3891, 20=0/372,				

NOTES-

1) Unbalanced floor live loads have been considered for this design.


2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 1.5x3 MT20 unless otherwise indicated.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

			17-8-12			
LOADING (psf) TCLL 40.0	SPACING- 2-0-0 Plate Grip DOL 1.00	CSI. TC 0.62	Vert(LL) -0.29	n (loc) l/defl L/d 9 18-19 >713 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 BCDL 5.0	Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.80 WB 0.51 Matrix-S	Vert(CT) -0.40 Horz(CT) 0.01	0 18-19 >519 240 7 14 n/a n/a	MT20HS Weight: 90 lb	187/143 FT = 20%F, 11%E
	P No.2(flat) P No.1(flat) *Except*	· · · ·	BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	ectly applied or 5-8-1	4 oc purlins,
14-16	2x4 SP No.2(flat) P No.3(flat)		BOT CHORD	Rigid ceiling directly applied c	r 10-0-0 oc bracing.	
REACTIONS. (siz	ze) 22=Mechanical, 14=0-3-8 Grav 22=955(LC 1), 14=955(LC 1)					

17-8-12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-4=-2021/0, 4-5=-3360/0, 5-6=-3360/0, 6-7=-3993/0, 7-8=-3993/0, 8-9=-3993/0, 9-10=-3360/0, 10-11=-3360/0, 11-12=-2021/0

 BOT CHORD
 21-22=0/1200, 20-21=0/2809, 19-20=0/3760, 18-19=0/3993, 17-18=0/3760, 15-17=0/2809, 14-15=0/1200

 WEBS
 2-22=-1502/0, 2-21=0/1069, 4-21=-1025/0, 4-20=0/704, 12-14=-1502/0, 12-15=0/1070, 11-15=-1025/0, 11-17=0/704, 9-17=-511/0, 9-18=-83/610, 6-20=-511/0, 6-19=-83/610,

NOTES-

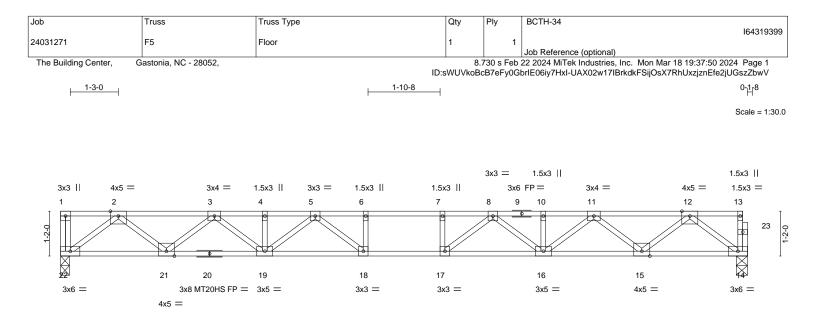
1) Unbalanced floor live loads have been considered for this design.

7-19=-270/0, 8-18=-270/0

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 1.5x3 MT20 unless otherwise indicated.

4) Refer to girder(s) for truss to truss connections.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			17-10-8 17-10-8					
LOADING (psf) TCLL 40.0	SPACING- 2-0-0 Plate Grip DOL 1.00	CSI. TC 0.68	DEFL. Vert(LL)	in (loc) -0.30 17-18	l/defl >696	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 BCDL 5.0	Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.83 WB 0.52 Matrix-S	Vert(CT) Horz(CT)	-0.42 17-18 0.07 14	>506 n/a	240 n/a	MT20HS Weight: 91 lb	187/143 FT = 20%F, 11%E
BOT CHORD 2x4 14-2	SP No.2(flat) SP No.2(flat) *Except* :0: 2x4 SP No.1(flat) SP No.3(flat)		BRACING- TOP CHOR BOT CHOR	except	end vert	icals.	rectly applied or 5-6-6 or 10-0-0 oc bracing.	oc purlins,
REACTIONS. (size) 22=0-2-12, 14=0-3-8 (Grav 22=969(LC 1), 14=963(LC 1)							
TOP CHORD 2- 8- BOT CHORD 21	ax. Comp./Max. Ten All forces 250 (ib) o 3=-2042/0, 3-4=-3400/0, 4-5=-3400/0, 5-6= 10=-3400/0, 10-11=-3400/0, 11-12=-2041/ -22=0/1211, 19-21=0/2838, 18-19=0/3809 4-15=0/1210	=-4057/0, 6-7=-4057/0, 7-8 0	8=-4057/0,	88,				

NOTES-

WFBS

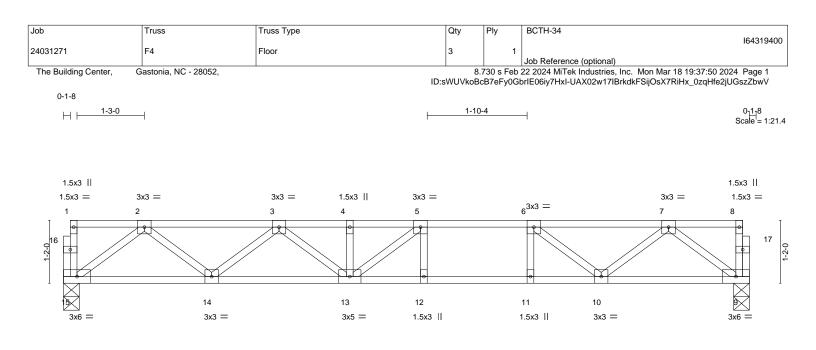
1) Unbalanced floor live loads have been considered for this design.

7-17=-285/0, 6-18=-285/0

2) All plates are MT20 plates unless otherwise indicated.

Provide mechanical connection (by others) of truss to bearing plate at joint(s) 22.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


2-22=-1519/0, 2-21=0/1081, 3-21=-1037/0, 3-19=0/717, 5-19=-522/0, 5-18=-73/638, 12-14=-1516/0, 12-15=0/1082, 11-15=-1038/0, 11-16=0/717, 8-16=-522/0, 8-17=-73/638,

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			12-8-12			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.63 BC 0.82 WB 0.32 Matrix-S	Vert(LL) -0.1	in (loc) I/defl L/d 5 12-13 >999 360 0 12-13 >764 240 3 9 n/a n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	, ,,,	oc purlins,

12-8-12

REACTIONS. (size) 15=0-3-8, 9=0-3-8

Max Grav 15=680(LC 1), 9=680(LC 1)

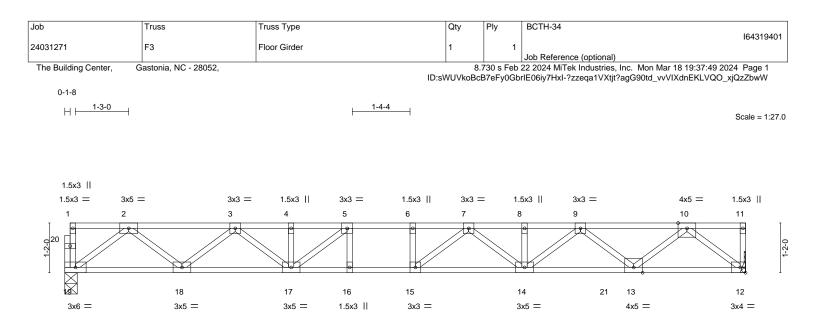
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1328/0, 3-4=-2022/0, 4-5=-2022/0, 5-6=-1935/0, 6-7=-1334/0

BOT CHORD

2-15-10/338, 13-14=0/1791, 12-13=0/1935, 11-12=0/1935, 10-11=0/1935, 9-10=0/817 2-15=-1049/0, 2-14=0/638, 3-14=-603/0, 3-13=0/294, 5-13=-239/280, 7-9=-1022/0, 7-10=0/673, 6-10=-766/0 WEBS

NOTES-


1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

			15-11-12 15-11-12			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.71 BC 0.88 WB 0.56 Matrix-S	Vert(LL) -0.2	in (loc) l/defl L/d 3 14-15 >818 360 2 14-15 >591 240 6 12 n/a n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	, ,,,) oc purlins,

REACTIONS. (size) 19=0-3-8, 12=Mechanical

Max Grav 19=890(LC 1), 12=1112(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1859/0, 3-4=-3019/0, 4-5=-3019/0, 5-6=-3442/0, 6-7=-3442/0, 7-8=-3159/0, 8-9=-3159/0, 9-10=-2122/0 TOP CHORD

BOT CHORD WEBS

18-19=0/1114, 17-18=0/2565, 16-17=0/3442, 15-16=0/3442, 14-15=0/3418, 13-14=0/2763, 12-13=0/1224 2-19=-1395/0, 2-18=0/970, 3-18=-919/0, 3-17=0/579, 5-17=-749/0, 10-12=-1562/0, 10-13=0/1169, 9-13=-835/0, 9-14=0/505, 7-14=-331/0, 7-15=-237/334

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

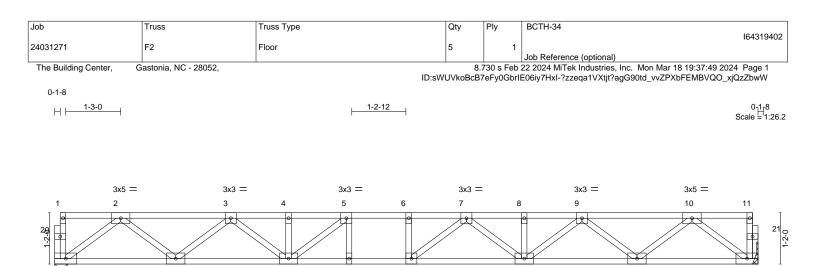
3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 19-21=-10, 12-21=-95(B=-85), 1-11=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

15

3x3 =

14

3x5 =

13

3x5 =

12

3x6 =

			15-11-12			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.51	Vert(LL) -0.2	2 14-15 >862 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.98	Vert(CT) -0.3	0 14-15 >623 240		
BCLL 0.0	Rep Stress Incr YES	WB 0.44	Horz(CT) 0.0	6 12 n/a n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 83 lb	FT = 20%F, 11%E
LUMBER-			BRACING-			
TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat)		TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.			
WEBS 2x4 SP No.3(flat)			BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc bracing.		

15-11-12

2x4 SP No.3(flat)

REACTIONS. (size) 19=0-3-8, 12=Mechanical

Max Grav 19=859(LC 1), 12=859(LC 1)

18

3x5 =

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1781/0, 3-4=-2873/0, 4-5=-2873/0, 5-6=-3224/0, 6-7=-3224/0, 7-8=-2886/0, 8-9=-2886/0, 9-10=-1779/0

17

3x5 =

16

BOT CHORD

18-19=0/1074, 17-18=0/2451, 16-17=0/3224, 15-16=0/3224, 14-15=0/3164, 13-14=0/2454, 12-13=0/1073 2-19=-1344/0, 2-18=0/921, 3-18=-872/0, 3-17=0/538, 5-17=-650/0, 10-12=-1343/0, 10-13=0/919, 9-13=-879/0, 9-14=0/552, 7-14=-355/0, 7-15=-188/378

NOTES-

WEBS

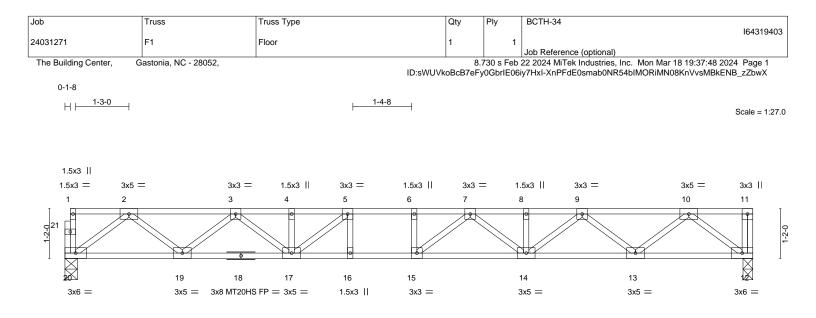
1×

3x6 =

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Refer to girder(s) for truss to truss connections.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

5-4-8		1	16-1-8 10-9-0					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.55 BC 0.74 WB 0.44 Matrix-S	Vert(LL) -0.22	n (loc) l/defl 2 14-15 >880 0 14-15 >636 5 12 n/a	L/d 360 240 n/a	PLATES MT20 MT20HS Weight: 84 lb	GRIP 244/190 187/143 FT = 20%F, 11%E	
BOT CHORD 2x4 SP 12-18: WEBS 2x4 SP REACTIONS. (size	No.2(flat) No.2(flat) *Except* 2x4 SP No.1(flat) No.3(flat) 2) 20=0-3-8, 12=0-2-12 rav 20=867(LC 1), 12=873(LC 1)		BRACING- TOP CHORD BOT CHORD	except end vert	icals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,	
TOP CHORD 2-3=- 8-9=- BOT CHORD 19-20 12-13 2-20=	Comp./Max. Ten All forces 250 1802/0, 3-4=-2910/0, 4-5=-2910/0 2926/0, 9-10=-1799/0)=0/1084, 17-19=0/2481, 16-17=0/ 3=0/1084 1358/0, 2-19=0/934, 3-19=-884/0 892/0, 9-14=0/564, 7-14=-367/0,	5-6=-3282/0, 6-7=-3282/0, 7-8 282, 15-16=0/3282, 14-15=0/3 3-17=0/548, 10-12=-1360/0, 1	a=-2926/0, 3214, 13-14=0/2484,					

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

