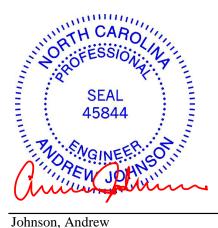
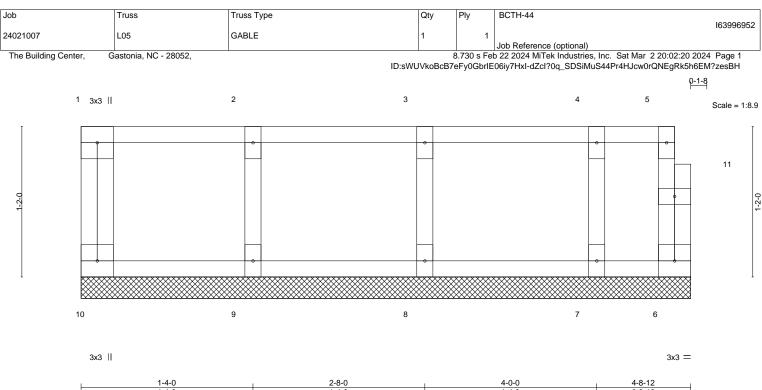


Trenco 818 Soundside Rd Edenton, NC 27932


Re: 24021007 BCTH-44

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by The Building Center.

Pages or sheets covered by this seal: I63996952 thru I63996966


My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844



March 4,2024

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



|                                                                                                          | <u>1-4-0</u><br>  <u>1-4-0</u>                                                  | <u>2-8-0</u><br>1-4-0                                                                                                                               | 4-0-0<br>1-4-0                                                          | <u>4-8-12</u><br>0-8-12                            |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.00<br>Lumber DOL 1.00<br>Rep Stress Incr YES | CSI.         DEFL.           TC         0.08         Vert(LL)           BC         0.02         Vert(CT)           WB         0.03         Horz(CT) | in (loc) l/defl L/d<br>n/a - n/a 999<br>n/a - n/a 999<br>0.00 6 n/a n/a | PLATES         GRIP           MT20         244/190 |
| BCDL 5.0                                                                                                 | Code IRC2015/TPI2014                                                            | Matrix-R                                                                                                                                            |                                                                         | Weight: 23 lb FT = 20%F, 11%E                      |

# LUMBER-

| TOP CHORD | 2x4 SP No.2(flat) |
|-----------|-------------------|
| BOT CHORD | 2x4 SP No.2(flat) |
| WEBS      | 2x4 SP No.3(flat) |
| OTHERS    | 2x4 SP No.3(flat) |

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-8-12 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 4-8-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 10, 6, 9, 8, 7

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

# NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



| Job                      | Truss                      | Truss T       | Гуре                                   |                                         | C                 | Qty       | Ply       | BCTH-         | 14         |                    |            |             |      |
|--------------------------|----------------------------|---------------|----------------------------------------|-----------------------------------------|-------------------|-----------|-----------|---------------|------------|--------------------|------------|-------------|------|
| 24021007                 | L04                        | GABLE         | -                                      |                                         | 1                 |           | 1         |               |            |                    |            | 163996      | 5953 |
| 4021007                  | 204                        | GADEL         | -                                      |                                         |                   |           |           | Job Ref       | erence (op | tional)            |            |             |      |
| The Building Center,     | Gastonia, NC - 28052       |               |                                        |                                         |                   |           |           |               |            | dustries, Inc. Sat |            |             |      |
|                          |                            |               |                                        |                                         | ID:sWUV           | koBcB7e   | eFy0GbrIE | E06iy7Hxl     | -dZcl?0q_8 | SDSiMuS44Pr4HJ     | cwwrQDEgQk | 5h6EM?zesBH | ļ    |
| 0 <sub>1</sub> 18        |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            | Scale = 1   | 1.40 |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            | Scale = 1   | :18. |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            | 3x3         |      |
| 1                        | 2 3                        |               | 4                                      | 5                                       | 5                 | 6         |           | 7             |            | 8                  |            | 9 10        |      |
| l 👴                      | 0                          | •             | •                                      |                                         | •                 | •         |           |               | •          | •                  |            |             |      |
| 20                       | H                          | H             |                                        |                                         | H                 | H         |           |               | H          |                    |            |             |      |
| 20                       |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
| ÷                        |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
|                          |                            | •             |                                        |                                         |                   | -         |           |               | •          | •                  |            |             |      |
|                          |                            |               |                                        | ******                                  |                   |           | *****     | *****         |            |                    | ******     |             |      |
| 19                       | 18 1                       | 7             | ************************************** | *************************************** | 5                 | 14        | *****     | 1 1           | 3          | 12                 |            | 11          |      |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
| 3x3 =                    |                            |               |                                        |                                         |                   |           |           |               |            |                    |            | 3x6 =       |      |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
|                          |                            |               |                                        |                                         |                   |           |           |               |            |                    |            |             |      |
| 1-4-0                    | 2-8-0                      | 4-0-0         |                                        | 5-4-0                                   | 6-8-0             |           | 8-0       |               | c          | 9-4-0              | 10-8-0     | 11_1_9      |      |
| 1-4-0                    | 1-4-0                      | 1-4-0         |                                        | 1-4-0                                   | 1-4-0             |           | 1-4       |               | 1          | 1-4-0              | 1-4-0      | 0-5-8       |      |
|                          | 0040000                    |               | 001                                    |                                         | DEEL              |           | (1)       | 1/-1-41       | 1. (-1     | DI 475             |            |             |      |
| OADING (psf)<br>CLL 40.0 | SPACING-<br>Plate Grip DOL | 2-0-0<br>1.00 | CSI.<br>TC                             | 0.09                                    | DEFL.<br>Vert(LL) | in<br>n/a |           | l/defl<br>n/a | L/d<br>999 | PLATE<br>MT20      | S GRI 244/ |             |      |
| OLL 40.0                 |                            | 1.00          | 10                                     | 0.00                                    |                   | 11/a      | _         | 11/a          | 000        | 101120             | 244/       | 100         |      |

| LUIVIBER- |  |
|-----------|--|

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) WEBS 2x4 SP No.2(flat) OTHERS 2x4 SP No.3(flat)

10.0

0.0

5.0

BRACING-TOP CHORD BOT CHORD

Vert(CT)

Horz(CT)

n/a

11

0.00

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 49 lb

FT = 20%F, 11%E

999

n/a

n/a

n/a

**REACTIONS.** All bearings 11-1-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 19, 11, 18, 17, 16, 15, 14, 13, 12

1.00

YES

BC

WB

Matrix-R

0.03

0.03

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Lumber DOL

Rep Stress Incr

Code IRC2015/TPI2014

# NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

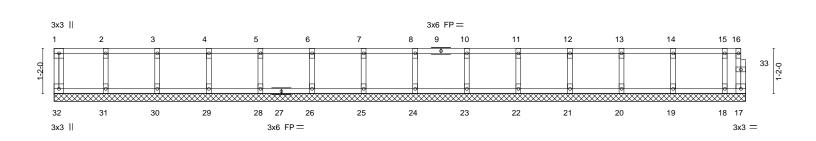
4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



| Job                  | Truss                 | Truss Type | Qtv       | Plv         | BCTH-44                                                         |
|----------------------|-----------------------|------------|-----------|-------------|-----------------------------------------------------------------|
|                      |                       |            | ,         | ,           | 163996954                                                       |
| 24021007             | L03                   | GABLE      | 1         | 1           |                                                                 |
|                      |                       |            |           |             | Job Reference (optional)                                        |
| The Building Center, | Gastonia, NC - 28052, |            |           | 8.730 s Fel | b 22 2024 MiTek Industries, Inc. Sat Mar 2 20:02:19 2024 Page 1 |
|                      |                       | IC         | ):sWUVkoE | BcB7eFy0G   | BbrlE06iy7HxI-9M3vogpMhvKrkkttWiKrl63IHS47VDBat1NgqZzesBI       |

0-<u>1-</u>8

Scale = 1:29.8



| H                              | 1-4-0                                 | <u>2-8-0</u><br>1-4-0 | 4-0-0                                                   | 5-4-0<br>1-4-0               | <u>6-8-0</u><br>1-4-0 | -      | 3-0-0<br>1-4-0       |  | 9-4-0<br>1-4-0 |                                                   | 0-8-0<br>1-4-0 |                          | <u>12-0-0</u><br>1-4-0 | -                           | 4-0<br>1-0               | <u>14-8-0</u><br>1-4-0 | 16-0-0             | <u>17-4-0 17-10-8</u><br>1-4-0 0-6-8 |
|--------------------------------|---------------------------------------|-----------------------|---------------------------------------------------------|------------------------------|-----------------------|--------|----------------------|--|----------------|---------------------------------------------------|----------------|--------------------------|------------------------|-----------------------------|--------------------------|------------------------|--------------------|--------------------------------------|
| LOADIN<br>TCLL<br>TCDL<br>BCLL | <b>G</b> (psf)<br>40.0<br>10.0<br>0.0 | PI                    | PACING-<br>late Grip DOL<br>umber DOL<br>ep Stress Incr | 2-0-0<br>1.00<br>1.00<br>YES | -                     | BC     | 0.08<br>0.02<br>0.03 |  |                | DEFL.<br>/ert(LL<br>/ert(C <sup>-</sup><br>Horz(C | ŕ)             | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>17  | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a |                        | PLATES<br>MT20     | <b>GRIP</b><br>244/190               |
| BCDL                           | 5.0                                   | C                     | ode IRC2015/                                            | TPI2014                      |                       | Matrix | -R                   |  |                | - (-                                              | ,              |                          |                        |                             |                          |                        | Weight: 76 lb      | FT = 20%F, 11%E                      |
| LUMBEI<br>TOP CH               |                                       | SP No.2(fla           | t)                                                      |                              | ·                     |        |                      |  |                | BRACI                                             |                | C                        | Structu                | ral wood                    | sheath                   | ing directly           | / applied or 6-0-0 | ) oc purlins,                        |

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2(flat)

2x4 SP No.2(flat) BOT CHORD WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 17-10-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 26, 25, 24, 23, 22, 21, 20, 19, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

# NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| lob                  | Truss                | Truss Type                             |       | Qty          | Ply       | BCTH-44                                                 |                      | 10000005         |
|----------------------|----------------------|----------------------------------------|-------|--------------|-----------|---------------------------------------------------------|----------------------|------------------|
| 24021007             | L02                  | GABLE                                  |       | 1            | 1         |                                                         |                      | 16399695         |
| The Building Center, | Gastonia, NC - 28052 |                                        |       |              | 8 730 c E | Job Reference (optional)<br>eb 22 2024 MiTek Industries | Inc. Sat Mar. 2.20:0 | 2.18 2024 Page 1 |
| The building Center, | Gastonia, NC - 20032 | 3                                      |       | ID:sWUVkoBcB |           | E06iy7HxI-hAVXaKokwbC_6                                 |                      |                  |
| 0 <sub>1</sub> 18    |                      |                                        |       |              |           |                                                         |                      |                  |
| 1.1                  |                      |                                        |       |              |           |                                                         |                      |                  |
|                      |                      |                                        |       |              |           |                                                         |                      | Scale = 1:19     |
|                      |                      |                                        |       |              |           |                                                         |                      |                  |
|                      |                      |                                        |       |              |           |                                                         |                      |                  |
|                      |                      |                                        |       |              |           |                                                         |                      |                  |
|                      |                      |                                        |       |              |           |                                                         |                      | 3x3              |
| 1 2                  | 2 3                  | 4                                      | 5     | 6            |           | 7 8                                                     | 9                    | 10               |
| •                    | <u>e</u>             | • •                                    |       | o            |           | <u> </u>                                                | <u> </u>             |                  |
|                      |                      |                                        |       |              |           |                                                         |                      |                  |
|                      |                      |                                        |       |              |           |                                                         |                      |                  |
|                      |                      |                                        |       |              |           |                                                         |                      |                  |
|                      |                      |                                        |       |              | ******    |                                                         |                      |                  |
| 20 1                 | 19 18                | ************************************** | 16    | 15           |           | 14 13                                                   | 12                   | 11               |
| 3x3 =                |                      |                                        |       |              |           |                                                         |                      | 3x3              |
| 3x3 —                |                      |                                        |       |              |           |                                                         |                      | 372 []           |
|                      |                      |                                        |       |              |           |                                                         |                      |                  |
|                      |                      |                                        |       |              |           |                                                         |                      |                  |
|                      |                      |                                        |       |              |           |                                                         |                      |                  |
|                      |                      |                                        |       |              |           |                                                         |                      |                  |
| 1-4-0                | 2-8-0                | 4-0-0                                  | 5-4-0 | 6-8-0        | 8-0-0     | 9-4-0                                                   | 10-8-0               | 11-8-12          |

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

in (loc)

n/a

n/a

11

0.00

L/d

999

999

n/a

l/defl

n/a

n/a

n/a

except end verticals.

PLATES

Weight: 51 lb

MT20

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

GRIP

244/190

FT = 20%F, 11%E

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

# NOTES-

LOADING (psf)

40.0

10.0

0.0

5.0

TCLL

TCDL

BCLL

BCDL

WEBS

OTHERS

LUMBER-

TOP CHORD

BOT CHORD

REACTIONS.

1) All plates are 1.5x3 MT20 unless otherwise indicated.

All bearings 11-8-12.

2x4 SP No.2(flat)

2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)

2x4 SP No.3(flat)

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

(lb) - Max Grav All reactions 250 lb or less at joint(s) 20, 11, 19, 18, 17, 16, 15, 14, 13, 12

2-0-0

1.00

1.00

YES

CSI.

тс

BC

WB

Matrix-R

0.08

0.01

0.03

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

| b                    | Truss            |        | Truss Type | )        |       |       | Qty    | Ply      | BCTH-     | 44          |                  |              |                |
|----------------------|------------------|--------|------------|----------|-------|-------|--------|----------|-----------|-------------|------------------|--------------|----------------|
| 021007               | L01              |        | GABLE      |          |       |       | 1      |          |           |             |                  |              | 1639969        |
| The Building Center, | Gastonia, NC - 2 | 28052, |            |          |       |       |        |          | eb 22 202 |             | stries, Inc. Sat |              | 17 2024 Page 1 |
| 0 <sub>1</sub> 18    |                  |        |            |          |       | ID:sW | 'UVkoB | cB7eFy0G | brlE06iy7 | HxI-D_x9N_o | 69I47VRjVPHI     | Nfh_PqePn1Ji | HPjuZmgzesBK   |
| Н                    |                  |        |            |          |       |       |        |          |           |             |                  |              | Scale = 1:2    |
|                      |                  |        |            |          |       |       |        |          |           |             |                  |              | Scale = 1:2    |
|                      |                  |        |            |          |       |       |        |          |           |             |                  |              |                |
|                      |                  |        |            |          |       |       |        |          |           |             |                  |              |                |
|                      |                  |        |            |          |       |       |        |          |           |             |                  |              | 3x3            |
| 1 2                  | 3                | 4      | 5          | 6        | 7     |       | 8      | g        | )         | 10          | 11               | 12           | 13             |
|                      | 0                | 0      | 0          | 0        |       | 0     | •      |          | <u>e</u>  | 0           | 0                | 0            | Ŷ              |
| 1-2-8<br>88          |                  |        |            |          |       |       |        |          |           |             |                  |              |                |
|                      |                  |        |            |          |       | -<br> |        |          |           |             |                  |              |                |
| 27 26                | 25               | 24     | 23         | 22 21    | 2     | 0     | 19     | 1        | 8         | 17          | 16               | 15           | 14             |
| 3x3 =                |                  |        |            | 3x6 FP = |       |       |        |          |           |             |                  |              | 3x3            |
|                      |                  |        |            |          |       |       |        |          |           |             |                  |              |                |
|                      |                  |        |            |          |       |       |        |          |           |             |                  |              |                |
|                      |                  |        |            |          |       |       |        |          |           |             |                  |              |                |
|                      |                  |        |            |          |       |       |        |          |           |             |                  |              |                |
| 1-4-0                | 2-8-0            | 4-0-0  | 5-4-0      | 6-8-0    | 8-0-0 | 9-4-0 |        | 10-8-0   | 12-0      | 0 13        | -4-0 14          | 4-8-0        | 16-1-8         |

| 1-4-0         | 1-4-0 ' 1-4-0 ' 1-4-0 | <u>' 1-4-0 ' 1-4-0 ' 1-4-0</u> | 1-4-0 1-4-0 1-4     | 4-0 1-4-0 1-5-8               |
|---------------|-----------------------|--------------------------------|---------------------|-------------------------------|
| LOADING (psf) | <b>SPACING-</b> 2-0-0 | CSI. DEFL.                     | in (loc) l/defl L/d | PLATES GRIP                   |
| TCLL 40.0     | Plate Grip DOL 1.00   | TC 0.08 Vert(LL)               | n/a - n/a 999       | MT20 244/190                  |
| TCDL 10.0     | Lumber DOL 1.00       | BC 0.01 Vert(CT)               | n/a - n/a 999       |                               |
| BCLL 0.0      | Rep Stress Incr YES   | WB 0.03 Horz(CT)               | 0.00 14 n/a n/a     |                               |
| BCDL 5.0      | Code IRC2015/TPI2014  | Matrix-R                       |                     | Weight: 68 lb FT = 20%F, 11%E |
|               |                       |                                |                     | <u> </u>                      |

# LUMBER-

 TOP CHORD
 2x4 SP No.2(flat)

 BOT CHORD
 2x4 SP No.2(flat)

 WEBS
 2x4 SP No.3(flat)

 OTHERS
 2x4 SP No.3(flat)

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

**REACTIONS.** All bearings 16-1-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 27, 14, 26, 25, 24, 23, 21, 20, 19, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

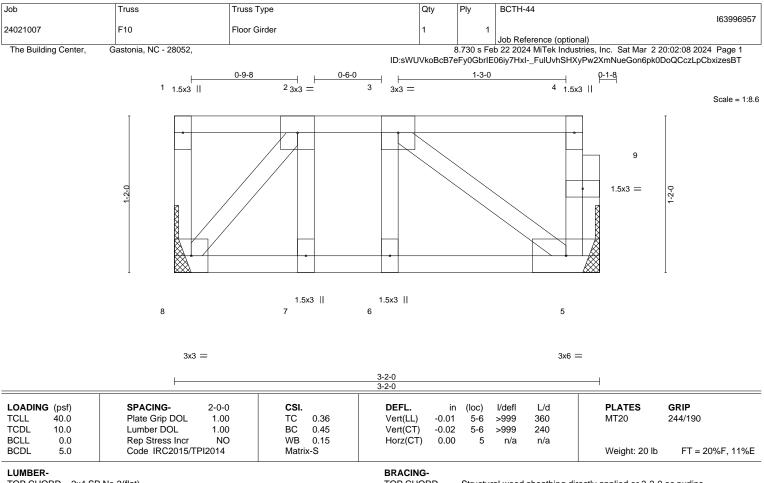
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)





#### TOP CHORD 2x4 SP No.2(flat) 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.3(flat) WEBS

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-2-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 5=Mechanical, 8=Mechanical (size) Max Grav 5=437(LC 1), 8=425(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-431/0

BOT CHORD 7-8=0/431, 6-7=0/431, 5-6=0/431 3-5=-526/0, 2-8=-653/0 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

5) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 591 lb down at 1-10-4 on top

chord. The design/selection of such connection device(s) is the responsibility of others.

6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

# LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 5-8=-10, 1-4=-100 Concentrated Loads (lb)

Vert: 3=-541(F)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Floor       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Job Reference (optional)<br>8.730 s Feb 22 2024 MiTek Industries, Inc. Sat Mar 2 20:02:16 2024 Page 1<br>ID:sWUVkoBcB7eFy0GbrIE06iy7HxI-InNn9enUO_yGtH8JrZn87TRB_Eyyloe8A380DEzesBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8.730 s Feb 22 2024 MiTek Industries, Inc. Sat Mar 2 20:02:16 2024 Page 1<br>ID:sWUVkoBcB7eFy0GbrIE06iy7HxI-InNn9enUO_yGtH8JrZn87TRB_Eyyloe8A380DEzesBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ID:sWUVkoBcB7eFy0GbrIE06iy7HxI-InNn9enUO_yGtH8JrZn87TRB_Eyyloe8A380DEzesBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-2-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.5x3    1.5x3    1.5x3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3 4 5 6 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

11

12

|                                                                                                          |                                                                                 |                                              | 11-10-0<br>11-10-0                                                  |                                                                                          |                                         |                        |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0 | SPACING- 2-0-0<br>Plate Grip DOL 1.00<br>Lumber DOL 1.00<br>Rep Stress Incr YES | <b>CSI.</b><br>TC 0.28<br>BC 0.50<br>WB 0.28 | <b>DEFL.</b> i<br>Vert(LL) -0.07<br>Vert(CT) -0.09<br>Horz(CT) 0.02 | 9 12 >999 240                                                                            | PLATES<br>MT20                          | <b>GRIP</b><br>244/190 |
| BOT CHORD 2x4 S                                                                                          | P No.2(flat)<br>P No.2(flat)<br>P No.3(flat)<br>P No.3(flat)                    | Matrix-S                                     | BRACING-<br>TOP CHORD<br>BOT CHORD                                  | Structural wood sheathing dire except end verticals.<br>Rigid ceiling directly applied o | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | FT = 20%F, 11%E        |

(size)

3x6 =

10

9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

14=0-3-8, 9=Mechanical

Max Grav 14=634(LC 1), 9=641(LC 1)

2-3=-1217/0, 3-4=-1769/0, 4-5=-1769/0, 5-6=-1769/0, 6-7=-1195/0 TOP CHORD

BOT CHORD 13-14=0/779, 12-13=0/1619, 11-12=0/1769, 10-11=0/1606, 9-10=0/750

13

2-14=-975/0, 2-13=0/570, 3-13=-523/0, 3-12=-24/370, 7-9=-958/0, 7-10=0/580, 6-10=-535/0, 6-11=-13/381 WEBS

# NOTES-

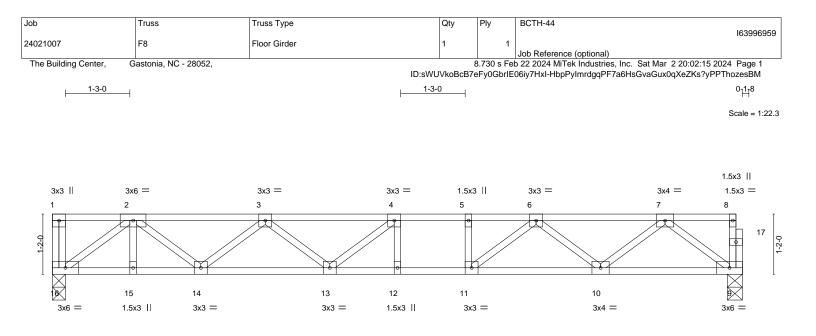
REACTIONS.

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x3 MT20 unless otherwise indicated.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





|                  |                      | 1        | 13-4-8<br>13-4-8                       |                                    |
|------------------|----------------------|----------|----------------------------------------|------------------------------------|
| LOADING (psf)    | SPACING- 2-0-0       | CSI.     | DEFL. in (loc) I/defl L/d              | PLATES GRIP                        |
| TCLL 40.0        | Plate Grip DOL 1.00  | TC 0.61  | Vert(LL) -0.13 12-13 >999 360          | MT20 244/190                       |
| TCDL 10.0        | Lumber DOL 1.00      | BC 0.83  | Vert(CT) -0.18 12-13 >864 240          |                                    |
| BCLL 0.0         | Rep Stress Incr NO   | WB 0.37  | Horz(CT) 0.03 9 n/a n/a                |                                    |
| BCDL 5.0         | Code IRC2015/TPI2014 | Matrix-S |                                        | Weight: 70 lb FT = 20%F, 11%       |
| LUMBER-          |                      | 1        | BRACING-                               |                                    |
| TOP CHORD 2x4 SP | PNo.2(flat)          |          | TOP CHORD Structural wood sheathing di | ectly applied or 6-0-0 oc purlins, |

BOT CHORD

TOP CHORD2x4 SP No.2(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 16=0-3-0, 9=0-3-8 Max Grav 16=989(LC 1), 9=749(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1799/0, 3-4=-2391/0, 4-5=-2418/0, 5-6=-2418/0, 6-7=-1491/0
- BOT CHORD 15-16=0/1284, 14-15=0/1284, 13-14=0/2273, 12-13=0/2418, 11-12=0/2418, 10-11=0/2050, 9-10=0/926

WEBS 2-16=-1586/0, 2-14=0/658, 3-14=-616/0, 7-9=-1159/0, 7-10=0/735, 6-10=-728/0, 6-11=0/623

# NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 381 lb down at 1-4-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

# LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 9-16=-10, 1-8=-100

Concentrated Loads (lb)

Vert: 2=-301(B)



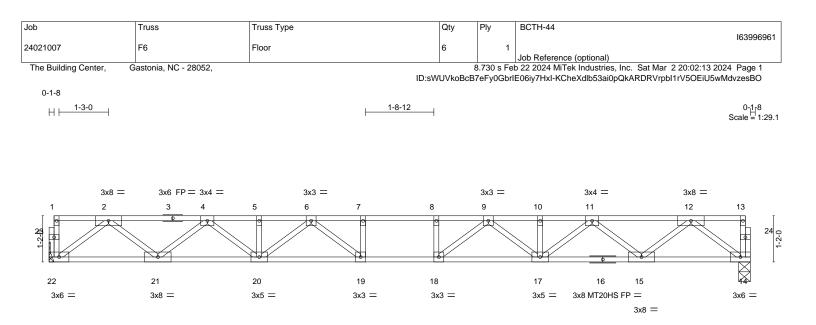
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job                    | Truss                      | Truss Type                          | Qty     | Ply                 | BCTH-44                     |                          |                         |
|------------------------|----------------------------|-------------------------------------|---------|---------------------|-----------------------------|--------------------------|-------------------------|
|                        |                            |                                     |         |                     |                             |                          | 163996960               |
| 24021007               | F7                         | Floor                               | 2       | 1                   | Job Reference (optional)    |                          |                         |
| The Building Center, G | ⊥<br>Gastonia, NC - 28052, |                                     |         | 8 730 s Fe          | b 22 2024 MiTek Industries, | Inc. Sat Mar. 2 20:02:14 | 2024 Page 1             |
|                        |                            |                                     |         |                     | 0GbrIE06iy7HxI-oPF1kzlDsl   |                          |                         |
| 0-1-8                  |                            |                                     |         | ,                   |                             |                          | ,                       |
|                        |                            |                                     |         |                     |                             |                          | 0.4.0                   |
| ⊣ ⊢ 1-3-0              |                            | ⊢ <mark>0-8-8</mark>   <u>1-3-4</u> |         |                     |                             |                          | 0-1-8<br>Scale = 1:29.8 |
|                        |                            |                                     |         |                     |                             |                          | Ocale = 1.23.0          |
|                        |                            |                                     |         |                     |                             |                          |                         |
|                        |                            |                                     |         |                     |                             |                          |                         |
|                        |                            |                                     |         |                     |                             |                          |                         |
|                        |                            |                                     |         | 3x3 =               |                             |                          |                         |
| 4x5 =                  | 3x4 =                      | 3x3 = 3x3 =                         |         | 3x                  | 6 FP = 3x4 =                | 4x5 =                    |                         |
| 1 2                    | 3                          | 4 5 6 7                             | 8       |                     | 10 11 12                    | 13                       | 14                      |
|                        | 3                          | 4 5 0 7                             | 8       |                     |                             |                          |                         |
|                        |                            |                                     | P       | _ <del>/\$\</del> _ |                             |                          |                         |
|                        |                            |                                     |         |                     |                             | $\sim$ // $^{\sim}$      |                         |
|                        |                            |                                     |         |                     |                             |                          | ÷                       |
|                        |                            |                                     | - Itali |                     |                             |                          |                         |
|                        |                            |                                     |         |                     |                             |                          |                         |
| 24                     | 23 22                      | 21 20 19                            | 18      |                     | 17                          | 16                       |                         |
| 3x6 =                  | 4x5 = 3x8 MT20HS FP =      | 3x5 =                               | 3x3 =   |                     | 3x5 =                       | 4x5 =                    | 3x6 =                   |
|                        |                            | 3x5 =                               |         |                     |                             |                          |                         |
|                        |                            |                                     |         |                     |                             |                          |                         |

| ŀ                                                                       | 8-0-0<br>8-0-0                                                                                                                                                      | 8-8-8 9<br>0-8-8               |                                 |            | <u>18-1-4</u><br>9-0-10 |                                                   |                            |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|------------|-------------------------|---------------------------------------------------|----------------------------|
| LOADING (psf)<br>TCLL 40.0                                              |                                                                                                                                                                     | <b>CSI.</b><br>TC 0.56         | DEFL. in<br>Vert(LL) -0.32      | ( )        | /defl L/d<br>•659 360   | PLATES<br>MT20                                    | <b>GRIP</b><br>244/190     |
| TCDL         10.0           BCLL         0.0           BCDL         5.0 | Rep Stress Incr YES                                                                                                                                                 | BC 0.87<br>WB 0.52<br>Matrix-S | Vert(CT) -0.45<br>Horz(CT) 0.07 | 19 ><br>15 | 480 240<br>n/a n/a      | MT20HS<br>Weight: 95 lb                           | 187/143<br>FT = 20%F, 11%E |
| BOT CHORD                                                               | 2x4 SP No.2(flat)<br>2x4 SP No.2(flat) *Except*<br>15-22: 2x4 SP No.1(flat)<br>2x4 SP No.3(flat)<br>(size) 24=0-5-8, 15=0-3-8                                       |                                | TOP CHORD<br>BOT CHORD          | except en  | d verticals.            | irectly applied or 5-8-1<br>or 10-0-0 oc bracing. | oc purlins,                |
|                                                                         | Max Grav 24=976(LC 1), 15=976(LC 1)<br>- Max. Comp./Max. Ten All forces 250 (lb) or                                                                                 |                                | 4164/0                          |            |                         |                                                   |                            |
| BOT CHORD                                                               | 2-3=-2073/0, 3-4=-3461/0, 4-5=-3461/0, 5-6=<br>8-9=-4164/0, 9-11=-3460/0, 11-12=-3460/0,<br>23-24=0/1227, 21-23=0/2885, 20-21=0/3892,<br>16-17=0/2884, 15-16=0/1227 | 2-13=-2073/0                   |                                 |            |                         |                                                   |                            |
| WEBS                                                                    | 2-24=-1536/0, 2-23=0/1102, 3-23=-1057/0, 3<br>13-15=-1537/0, 13-16=0/1102, 12-16=-1055/<br>7-20=-458/324                                                            |                                | ,                               |            |                         |                                                   |                            |
| NOTES-                                                                  |                                                                                                                                                                     |                                |                                 |            |                         |                                                   |                            |

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.


3) All plates are 1.5x3 MT20 unless otherwise indicated.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

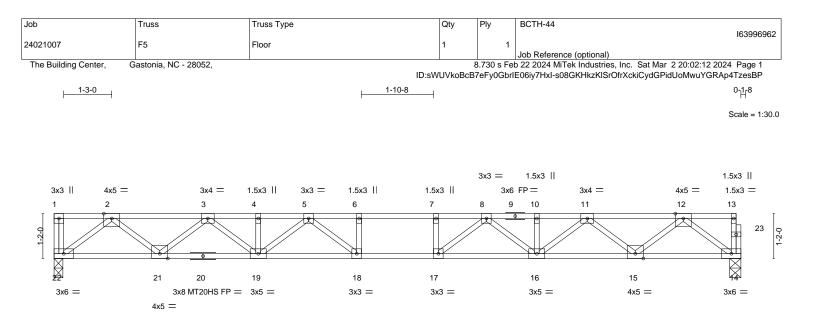


|                                                                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                                                        | <u>17-8-12</u><br>17-8-12                             |                                                                            |                                |                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|------------------------------------------------------|
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0            | SPACING- 2-0-0<br>Plate Grip DOL 1.00<br>Lumber DOL 1.00<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014                                                                                                                                                                                           | CSI.<br>TC 0.62<br>BC 0.80<br>WB 0.51<br>Matrix-S                                                      | Vert(LL) -0.29                                        | n (loc) l/defl L/d<br>9 18-19 >713 360<br>0 18-19 >519 240<br>7 14 n/a n/a | MT20<br>MT20HS                 | <b>GRIP</b><br>244/190<br>187/143<br>FT = 20%F, 11%E |
| BOT CHORD 2x4 SF<br>14-16:<br>WEBS 2x4 SF<br>REACTIONS. (size                                                                                  | <ul> <li><sup>2</sup> No.2(flat)</li> <li><sup>2</sup> No.1(flat) *Except*</li> <li><sup>2</sup> X4 SP No.2(flat)</li> <li><sup>3</sup> No.3(flat)</li> <li><sup>4</sup> No.3(flat)</li> <li><sup>6</sup> 22=Mechanical, 14=0-3-8</li> <li><sup>4</sup> ray 22=955(LC 1), 14=955(LC 1)</li> </ul> |                                                                                                        | BRACING-<br>TOP CHORD<br>BOT CHORD                    | except end verticals.                                                      | ning directly applied or 5-8-1 | 4 oc purlins,                                        |
| FORCES.         (lb) - Max.           TOP CHORD         2-4=-<br>9-10=           BOT CHORD         21-22           WEBS         2-22=<br>11-15 | Comp./Max. Ten All forces 250 (lb) o<br>-2021/0, 4-5=-3360/0, 5-6=-3360/0, 6-7=<br>3360/0, 10-11=-3360/0, 11-12=-2021/<br>2=0/1200, 20-21=0/2809, 19-20=0/3760<br>5=0/1200<br>1502/0, 2-21=0/1069, 4-21=-1025/0, 4<br>5=-1025/0, 11-17=0/704, 9-17=-511/0, 5<br>=-270/0, 8-18=-270/0              | =-3993/0, 7 <sup>-</sup> 8=-3993/0, 8-9<br>0<br>, 18-19=0/3993, 17-18=0/3<br>I-20=0/704, 12-14=-1502/0 | )=-3993/0,<br>3760, 15-17=0/2809,<br>0, 12-15=0/1070, |                                                                            |                                |                                                      |
| NOTES                                                                                                                                          |                                                                                                                                                                                                                                                                                                   |                                                                                                        |                                                       |                                                                            |                                |                                                      |

17-9-12

### NOTES-

1) Unbalanced floor live loads have been considered for this design.


2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 1.5x3 MT20 unless otherwise indicated.

4) Refer to girder(s) for truss to truss connections.
5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

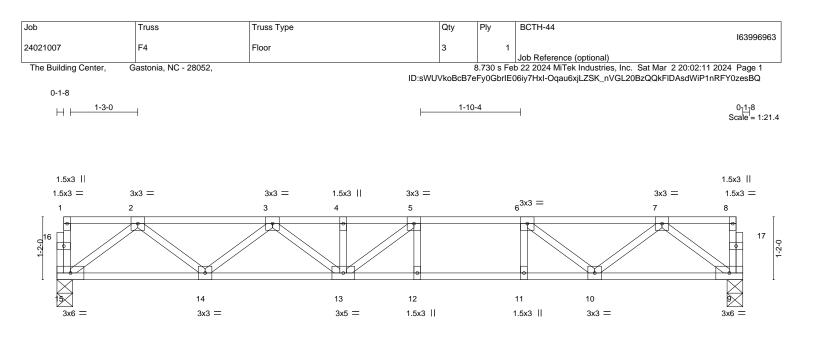


|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         | 17-10-8                                             |                                           |                                               |                    |                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------|--------------------|------------------------------------------------------|--|
|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         | 17-10-8                                             |                                           |                                               |                    |                                                      |  |
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0 | SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                 | <b>CSI.</b><br>TC 0.68<br>BC 0.83<br>WB 0.52<br>Matrix-S                                | Vert(LL) -0.3                                       | in (loc)<br>30 17-18<br>32 17-18<br>37 14 | I/defl L/d<br>>696 360<br>>506 240<br>n/a n/d | 0 MT20<br>0 MT20HS | <b>GRIP</b><br>244/190<br>187/143<br>FT = 20%F, 11%E |  |
| BOT CHORD 2x4<br>14-<br>WEBS 2x4<br>REACTIONS. (                                                                                    | TOP CHORD       2x4 SP No.2(flat)       TOP CHORD       Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals.         BOT CHORD       2x4 SP No.2(flat) *Except*       BOT CHORD       BOT CHORD       Rigid ceiling directly applied or 10-0-0 oc bracing.         WEBS       2x4 SP No.3(flat)       2x4 SP No.3(flat)       BOT CHORD       Rigid ceiling directly applied or 10-0-0 oc bracing. |                                                                                         |                                                     |                                           |                                               |                    |                                                      |  |
| TOP CHORD 2-<br>8-<br>BOT CHORD 2-<br>1<br>WEBS 2-<br>12                                                                            | ax. Comp./Max. Ten All forces 250 (lb) o<br>3=-2042/0, 3-4=-3400/0, 4-5=-3400/0, 5-6-<br>10=-3400/0, 10-11=-3400/0, 11-12=-2041/<br>-22=0/1211, 19-21=0/2838, 18-19=0/3809<br>4-15=0/1210<br>22=-1519/0, 2-21=0/1081, 3-21=-1037/0, 3<br>-14=-1516/0, 12-15=0/1082, 11-15=-1038<br>17=-285/0, 6-18=-285/0                                                                                                                           | 4057/0, 6-7=-4057/0, 7-8<br>0<br>, 17-18=0/4057, 16-17=0/<br>;-19=0/717, 5-19=-522/0, ; | 8=-4057/0,<br>/3809, 15-16=0/2838,<br>5-18=-73/638, |                                           |                                               |                    |                                                      |  |

### NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.


3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 22.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



|                                                                                                                                     |                                                                                     |                                                          | 12-8-12<br>12-8-12                                                                          |                                                                           |                                 |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|-------------------------------------------|
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0 | SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014 | <b>CSI.</b><br>TC 0.63<br>BC 0.82<br>WB 0.32<br>Matrix-S | Vert(LL) -0.1                                                                               | n (loc) l/defl L/d<br>5 12-13 >999 360<br>0 12-13 >764 240<br>3 9 n/a n/a | PLATES<br>MT20<br>Weight: 65 lb | <b>GRIP</b><br>244/190<br>FT = 20%F, 11%E |
| BOT CHORD 2x4 SF                                                                                                                    | 2 No.2(flat)<br>2 No.1(flat)<br>2 No.3(flat)                                        | BRACING-<br>TOP CHORD<br>BOT CHORD                       | Structural wood sheathing dire<br>except end verticals.<br>Rigid ceiling directly applied o |                                                                           | ) oc purlins,                   |                                           |

REACTIONS. (size) 15=0-3-8, 9=0-3-8 Max Grav 15=680(LC 1), 9=680(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1328/0, 3-4=-2022/0, 4-5=-2022/0, 5-6=-1935/0, 6-7=-1334/0

BOT CHORD 14-15=0/838, 13-14=0/1791, 12-13=0/1935, 11-12=0/1935, 10-11=0/1935, 9-10=0/817

WEBS 2-15=-1049/0, 2-14=0/638, 3-14=-603/0, 3-13=0/294, 5-13=-239/280, 7-9=-1022/0, 7-10=0/673, 6-10=-766/0

# NOTES-

1) Unbalanced floor live loads have been considered for this design.

 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

|                      | 1                     |                  |       |        |          |          |                       |                    |              |             |       |
|----------------------|-----------------------|------------------|-------|--------|----------|----------|-----------------------|--------------------|--------------|-------------|-------|
| Job                  | Truss                 | Truss Type       |       | 1      | Qty      | Ply      | BCTH-44               |                    |              | 16399696    | 64    |
| 24021007             | F3                    | Floor Girder     |       |        | 1        | 1        |                       |                    |              | 10399090    | 54    |
| 21021001             |                       |                  |       |        |          |          | Job Reference (option | al)                |              |             |       |
| The Building Center, | Gastonia, NC - 28052, |                  |       |        |          |          | b 22 2024 MiTek Indus | tries, Inc. Sat Ma |              |             |       |
|                      |                       |                  |       | ID:sWL | JVkoBcB7 | eFy0Gbrl | E06iy7HxI-wd0Wvbijo8  | C79Mh9UJgktCB      | 2nppdu0mGo   | 7hi0azesBR  |       |
| 0-1-8                |                       |                  |       |        |          |          |                       |                    |              |             |       |
| ⊣ ⊢ 1-3-0            |                       |                  | 1-4-4 |        |          |          |                       |                    |              | Scale = 1:2 | 7.0   |
|                      |                       |                  |       |        |          |          |                       |                    |              |             |       |
|                      |                       |                  |       |        |          |          |                       |                    |              |             |       |
|                      |                       |                  |       |        |          |          |                       |                    |              |             |       |
|                      |                       |                  |       |        |          |          |                       |                    |              |             |       |
| 1.5x3                |                       |                  |       |        |          |          |                       |                    |              |             |       |
| 1.5x3 = 3x5          | = 3x3                 | = 1.5x3          | 3x3 = | 1.5x3  | 3x3 =    | 1.       | 5x3    3x3 =          |                    | $4x5 \equiv$ | 1.5x3       |       |
| 1 2                  | 3                     | 4                | 5     | 6      | 7        | 8        | 3 9                   |                    | 10           | 11          |       |
|                      |                       | •                | 8     | 0      | 12       |          | 0 /2                  |                    | 1 e          | •           | I     |
| 020<br>7<br>7        |                       | $\sim$ $\square$ |       |        |          | $\sim$   |                       | < <i>//</i>        |              |             | 1-2-0 |
| ÷                    |                       |                  |       |        |          |          |                       |                    |              |             | ÷-    |
|                      |                       |                  | 0     |        |          |          |                       |                    |              |             | I     |
|                      | 18                    | 17               | 16    | 15     |          | 1        | 14 2 <sup>2</sup>     | 1 13               |              | 12          |       |
|                      |                       |                  |       |        |          |          |                       |                    |              |             |       |
| 3x6 =                | 3x5 =                 | 3x5 =            | 1.5x3 | 3x3 =  |          | 3        | 8x5 =                 | 4x5 =              |              | 3x4 =       |       |

| F                                                                                                                                   |                                                                                    |                                                   | 15-11-12<br>15-11-12                                                                                                                             |                                                                            |                                 |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|-------------------------------------------|
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0 | SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014 | CSI.<br>TC 0.71<br>BC 0.88<br>WB 0.56<br>Matrix-S | Vert(LL) -0.23                                                                                                                                   | n (loc) I/defl L/d<br>3 14-15 >818 360<br>2 14-15 >591 240<br>3 12 n/a n/a | PLATES<br>MT20<br>Weight: 82 lb | <b>GRIP</b><br>244/190<br>FT = 20%F, 11%E |
| BOT CHORD 2                                                                                                                         | 4 SP No.2(flat)<br>4 SP No.1(flat)<br>4 SP No.3(flat)                              | BRACING-<br>TOP CHORD<br>BOT CHORD                | Structural wood sheathing directly applied or 6-0-0 oc purlins,<br>except end verticals.<br>Rigid ceiling directly applied or 10-0-0 oc bracing. |                                                                            |                                 |                                           |

# REACTIONS. (size) 19=0-3-8, 12=Mechanical

Max Grav 19=890(LC 1), 12=1112(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1859/0, 3-4=-3019/0, 4-5=-3019/0, 5-6=-3442/0, 6-7=-3442/0, 7-8=-3159/0, 8-9=-3159/0, 9-10=-2122/0

- BOT CHORD 18-19=0/1114, 17-18=0/2565, 16-17=0/3442, 15-16=0/3442, 14-15=0/3418, 13-14=0/2763, 12-13=0/1224
- WEBS 2-19=-1395/0, 2-18=0/970, 3-18=-919/0, 3-17=0/579, 5-17=-749/0, 10-12=-1562/0, 10-13=0/1169, 9-13=-835/0, 9-14=0/505, 7-14=-331/0, 7-15=-237/334

#### NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

CAUTION, Do not erect truss backwards.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

### LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 19-21=-10, 12-21=-95(B=-85), 1-11=-100



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Af 818 Soundside Road Edenton, NC 27932

| Job                    | Truss                 | Truss Type |          | Qty        | Ply         | BCTH-44                |                   |                                 |                |
|------------------------|-----------------------|------------|----------|------------|-------------|------------------------|-------------------|---------------------------------|----------------|
|                        |                       |            |          |            |             |                        |                   | 1639969                         | 965            |
| 24021007               | F2                    | Floor      |          | 5          | 1           |                        |                   |                                 |                |
|                        |                       |            |          |            |             | Job Reference (option  |                   |                                 |                |
| The Building Center, 0 | Gastonia, NC - 28052, |            |          |            |             | eb 22 2024 MiTek Indus |                   |                                 |                |
|                        |                       |            |          | ID:sWUVkoB | cB7eFy0Gbrl | E06iy7HxI-SRS8hFh51c   | 4GXC6yxb9VL?fx8QF | Rs9bM6ZTy8T8zesBS               |                |
| 0-1-8                  |                       |            |          |            |             |                        |                   |                                 |                |
| 1-3-0                  |                       |            | 1-2-12   | 1          |             |                        |                   | 0 <sub>1</sub> 1 <sub>7</sub> 8 | 3              |
| H                      |                       |            |          |            |             |                        |                   | 0-1-8<br>Scale = 1:             | :26.2          |
|                        |                       |            |          |            |             |                        |                   |                                 |                |
|                        |                       |            |          |            |             |                        |                   |                                 |                |
|                        |                       |            |          |            |             |                        |                   |                                 |                |
|                        |                       |            |          |            |             |                        |                   |                                 |                |
|                        |                       |            |          |            |             |                        |                   |                                 |                |
|                        |                       |            |          |            |             |                        |                   |                                 |                |
| 3x5 =                  | 3x3 =                 |            | 3x3 =    | 3>         | 3 <b>=</b>  | 3x3 =                  | 3                 | 8x5 =                           |                |
| 1 2                    | 3                     | 4          | 5        | 6 7        |             | 8 9                    | 1                 | 10 11                           |                |
|                        |                       | 0          | <b>P</b> |            | P           |                        |                   | •                               | Ī              |
|                        |                       | . H /      |          | Н //       | $\prec$     | H / K                  | . /7              | K H                             | 21             |
| 28                     | $\sim$ // $\sim$      | //         |          |            |             |                        | $\sim$ //         |                                 | 1-2-0<br>1-2-1 |
| 4                      |                       |            |          |            |             |                        |                   |                                 | ÷              |
|                        |                       | Y\$\$/     |          |            |             | 3.K/                   |                   |                                 |                |
| · X ·                  |                       |            |          |            |             |                        |                   | /X                              | 1              |
|                        | 18                    | 17         | 16       | 15         |             | 14                     | 13                | 12                              |                |
|                        |                       |            | 10       |            |             |                        |                   |                                 |                |
| 3x6 =                  | 3x5 =                 | 3x5 =      |          | 3x3 =      |             | 3x5 =                  | 3x5 =             | 3x6 =                           |                |

|                                         |                                       |                                                                                     |                                                          | 15-11-12<br>15-11-12               |                                                                                             |                                 |                                           |
|-----------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|
| LOADING<br>TCLL<br>TCDL<br>BCLL<br>BCDL | i (psf)<br>40.0<br>10.0<br>0.0<br>5.0 | SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014 | <b>CSI.</b><br>TC 0.51<br>BC 0.98<br>WB 0.44<br>Matrix-S | Vert(LL) -0.2                      | in (loc) l/defl L/d<br>2 14-15 >862 360<br>0 14-15 >623 240<br>6 12 n/a n/a                 | PLATES<br>MT20<br>Weight: 83 lb | <b>GRIP</b><br>244/190<br>FT = 20%F, 11%E |
| LUMBER-<br>TOP CHO<br>BOT CHO<br>WEBS   | RD 2x4 SF<br>RD 2x4 SF                | P No.2(flat)<br>P No.2(flat)<br>P No.3(flat)                                        |                                                          | BRACING-<br>TOP CHORD<br>BOT CHORD | Structural wood sheathing dire<br>except end verticals.<br>Rigid ceiling directly applied o | , ,,                            | ) oc purlins,                             |

REACTIONS. (size) 19=0-3-8, 12=Mechanical Max Grav 19=859(LC 1), 12=859(LC 1)

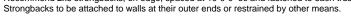
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1781/0, 3-4=-2873/0, 4-5=-2873/0, 5-6=-3224/0, 6-7=-3224/0, 7-8=-2886/0, 8-9=-2886/0, 9-10=-1779/0

BOT CHORD 18-19=0/1074, 17-18=0/2451, 16-17=0/3224, 15-16=0/3224, 14-15=0/3164, 13-14=0/2454, 12-13=0/1073

 $2-19 = -1344/0, \ 2-18 = 0/921, \ 3-18 = -872/0, \ 3-17 = 0/538, \ 5-17 = -650/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 9-13 = -879/0, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-12 = -1343/0, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/919, \ 10-13 = 0/91$ WEBS

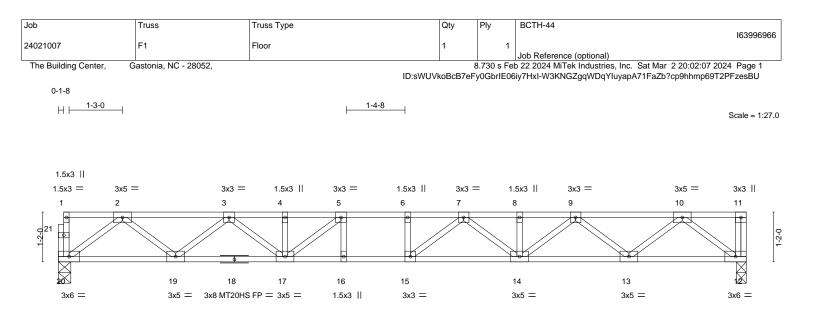
9-14=0/552, 7-14=-355/0, 7-15=-188/378


NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Refer to girder(s) for truss to truss connections.


4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>5-4-8</u><br>5-4-8                                                                                   |                                                   | <u>16-1-8</u><br>10-9-0 |                                                                |                          |                                           |                                                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|----------------------------------------------------------------|--------------------------|-------------------------------------------|------------------------------------------------------|--|--|
| LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0                                                                                                                                                                                                                                                                                                                                                                           | SPACING- 2-0-0<br>Plate Grip DOL 1.00<br>Lumber DOL 1.00<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014 | CSI.<br>TC 0.55<br>BC 0.74<br>WB 0.44<br>Matrix-S | Vert(CT) -0.            | in (loc) l/defl<br>22 14-15 >880<br>30 14-15 >636<br>05 12 n/a | L/d<br>360<br>240<br>n/a | PLATES<br>MT20<br>MT20HS<br>Weight: 84 lb | <b>GRIP</b><br>244/190<br>187/143<br>FT = 20%F, 11%E |  |  |
| LUMBER-<br>TOP CHORD       2x4 SP No.2(flat)<br>BOT CHORD       BRACING-<br>TOP CHORD         BOT CHORD       2x4 SP No.2(flat) *Except*<br>12-18: 2x4 SP No.1(flat)       TOP CHORD       Structural wood sheathing directly applied or 6-0-0 oc purlins,<br>except end verticals.         WEBS       2x4 SP No.3(flat)       BOT CHORD       Rigid ceiling directly applied or 10-0-0 oc bracing.         REACTIONS.       (size)       20=0-3-8, 12=0-2-12<br>Max Grav       BOT CHORD                     |                                                                                                         |                                                   |                         |                                                                |                          |                                           | ) oc purlins,                                        |  |  |
| FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       2-3=-1802/0, 3-4=-2910/0, 4-5=-2910/0, 5-6=-3282/0, 6-7=-3282/0, 7-8=-2926/0, 8-9=-2926/0, 9-10=-1799/0         BOT CHORD       19-20=0/1084, 17-19=0/2481, 16-17=0/3282, 15-16=0/3282, 14-15=0/3214, 13-14=0/2484, 12-13=0/1084         WEBS       2-20=-1358/0, 2-19=0/934, 3-19=-884/0, 3-17=0/548, 10-12=-1360/0, 10-13=0/931, 9-13=-892/0, 9-14=0/564, 7-14=-367/0, 7-15=-181/396, 5-17=-685/0 |                                                                                                         |                                                   |                         |                                                                |                          |                                           |                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e loads have been considered for this d                                                                 | esign.                                            |                         |                                                                |                          |                                           |                                                      |  |  |

All plates are MT20 plates unless otherwise indicated.

3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



