

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24021008 BCTH-45

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by The Building Center.

Pages or sheets covered by this seal: I63996967 thru I63996972

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

March 4,2024

Johnson, Andrew

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty Ply BCTH-45 163996967 24021008 V1GE Valley Job Reference (optional) 8.730 s Feb 22 2024 MiTek Industries, Inc. Sat Mar 2 20:03:26 2024 Page 1 The Building Center, Gastonia, NC - 28052, ID:ljqY_Ye04nrl?s4UctGw?lzfTsj-IBtPWZNmvn5StnRLvgMLw_LDBSxtiWGRHy6jhAzesAF 3-5-6 1-8-11 1-8-11 Scale = 1:10.0 3x4 = 2 10.00 12 3 0-0-4 0-0-4 2x4 // 2x4 🚿 Plate Offsets (X,Y)-- [2:0-2-0,Edge] LOADING (psf) GRIP SPACING-2-0-0 CSI. in (loc) I/defI L/d **PLATES** TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.03 Vert(LL) 999 MT20 244/190 n/a n/a Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.08 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 * Code IRC2015/TPI2014 FT = 20% Matrix-P Weight: 10 lb BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 3-5-6 oc purlins. **BOT CHORD** BOT CHORD 2x4 SP No.2 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

1=3-4-13, 3=3-4-13 (size) Max Horz 1=-20(LC 12)

Max Uplift 1=-1(LC 14), 3=-1(LC 14) Max Grav 1=106(LC 2), 3=106(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

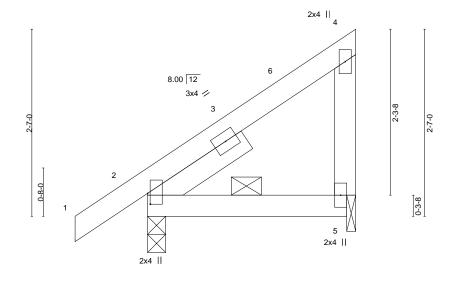
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty BCTH-45 163996968 MONOPITCH 24021008 B2 2

The Building Center, Gastonia, NC - 28052,

Job Reference (optional) 8.730 s Feb 22 2024 MiTek Industries, Inc. Sat Mar 2 20:03:25 2024 Page 1 ID:ljqY_Ye04nrl?s4UctGw?lzfTsj-p?J0JDM88TzbGds8Lzr6Ono152bbz30l2IMA8kzesAG


Structural wood sheathing directly applied or 2-10-8 oc purlins,

except end verticals.

1-6-0 oc bracing.

Scale: 3/4"=1

Plate Offsets (X,Y) [2:0-1-13,0-0-7]									
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.11 BC 0.08 WB 0.00	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.00 2-5 >999 240 MT20 244/19 Vert(CT) -0.01 2-5 >999 180 Horz(CT) 0.00 5 n/a n/a						
BCLL 0.0 * BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Weight: 17 lb FT	Γ = 20%					

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 **SLIDER** Left 2x4 SP No.3 1-6-13

REACTIONS.

(size) 2=0-3-0, 5=0-1-8 Max Horz 2=69(LC 11)

Max Uplift 2=-27(LC 14), 5=-16(LC 11) Max Grav 2=180(LC 2), 5=104(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 2-8-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

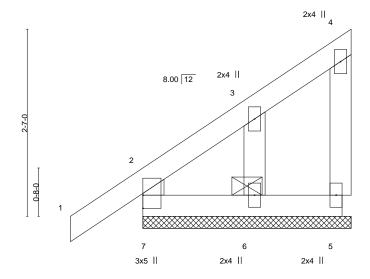
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply BCTH-45 163996969 24021008 B1GE MONOPITCH SUPPORTED 2 Job Reference (optional)

The Building Center, Gastonia, NC - 28052,

8.730 s Feb 22 2024 MiTek Industries, Inc. Sat Mar 2 20:03:24 2024 Page 1 ID:ljqY_Ye04nrl?s4UctGw?lzfTsj-Lple6tMVN9rkeTHyoFKtrZFsjfGCEcQ9pedcclzesAH


Structural wood sheathing directly applied or 2-10-8 oc purlins,

except end verticals.

1-6-0 oc bracing.

2-10-8 1-0-0 2-10-8

Scale: 3/4"=1

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.09 BC 0.03 WB 0.02	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (0.00 -0.00 0.00	(loc) 1 1 5	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2015/TPI2014	Matrix-R	, ,					Weight: 16 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

REACTIONS. (size) 7=2-10-8, 5=2-10-8, 6=2-10-8

Max Horz 7=73(LC 11)

Max Uplift 7=-25(LC 14), 5=-7(LC 11), 6=-21(LC 11) Max Grav 7=149(LC 2), 5=44(LC 24), 6=96(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3) -1-0-0 to 2-0-0, Exterior(2) 2-0-0 to 2-8-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5, 6.

Job Truss Truss Type Qty Ply BCTH-45 163996970 24021008 АЗ COMMON 2 Job Reference (optional) 8.730 s Feb 22 2024 MiTek Industries, Inc. Sat Mar 2 20:03:24 2024 Page 1 The Building Center, Gastonia, NC - 28052, ID:ljqY_Ye04nrl?s4UctGw?lzfTsj-Lple6tMVN9rkeTHyoFKtrZFjTf3QEUK9pedcclzesAH 36-10-8 28-3-4 34-0-0

5-4-10

5-4-10

CSI.

TC

ВС

WB

Matrix-S

0.68

0.85

0.54

Scale = 1:65.5 4x4 =

L/d

240

180

n/a

Structural wood sheathing directly applied or 4-1-6 oc purlins,

7-15, 5-15, 3-18, 9-12

(loc)

12

-0.18 15-17

-0.31 15-17

except end verticals.

1 Row at midpt

0.08

I/defl

>999

>999

n/a

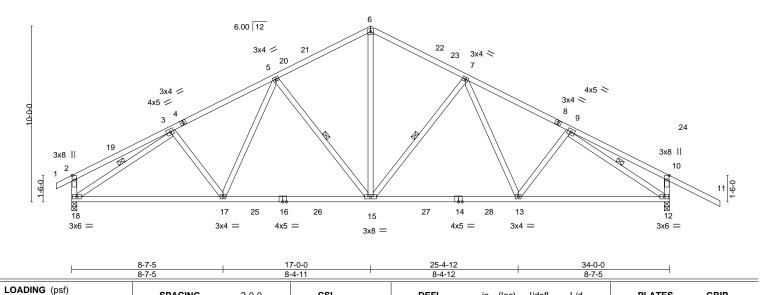
Rigid ceiling directly applied or 10-0-0 oc bracing.

PLATES

Weight: 211 lb

MT20

GRIP


244/190

FT = 20%

5-8-12

2-10-8

5-10-9

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-TOP CHORD

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg) 15.4/20.0

2x4 SP No.2 2x4 SP No.2

20.0

10.0

10.0

0.0

BOT CHORD WEBS 2x4 SP No.3

-0-10-8 0-10-8

5-8-12

5-10-9

REACTIONS. (size) 18=0-3-8, 12=0-3-8 Max Horz 18=-187(LC 14) Max Uplift 18=-33(LC 16), 12=-88(LC 16)

Max Grav 18=1402(LC 2), 12=1537(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

2-0-0

1.15

1.15

YES

TOP CHORD $3-5=-1801/151,\ 5-6=-1396/184,\ 6-7=-1396/174,\ 7-9=-1773/134,\ 2-18=-304/132,$

10-12=-375/175

BOT CHORD 17-18=0/1648, 15-17=0/1543, 13-15=0/1458, 12-13=0/1505

WFBS 6-15=-57/946, 7-15=-484/104, 7-13=0/282, 5-15=-499/107, 5-17=0/293, 3-18=-1729/58,

9-12=-1837/119

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=34ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) -0-10-8 to 2-6-5, Interior(1) 2-6-5 to 17-0-0, Exterior(2) 17-0-0 to 20-4-13, Interior(1) 20-4-13 to 36-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 12.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss Truss Type Qty Ply BCTH-45 163996971 24021008 A2 COMMON Job Reference (optional) 8.730 s Feb 22 2024 MiTek Industries, Inc. Sat Mar 2 20:03:22 2024 Page 1 The Building Center, Gastonia, NC - 28052, ID:ljqY_Ye04nrl?s4UctGw?lzfTsj-PQduhCKFrYa0PA7ZgrlPm8AJurMAmWvsMK8WYPzesAJ

5-4-10

8-1-12

Scale = 1:70.0 4x4 =

Structural wood sheathing directly applied or 2-3-2 oc purlins,

8-16, 10-13, 3-19

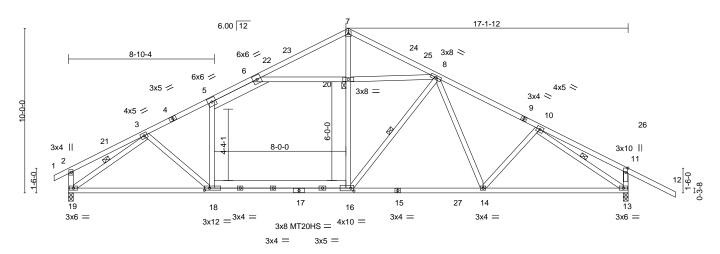
Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Brace at Jt(s): 20

1 Row at midpt

28-6-1


6-1-6

34-0-0

5-5-15

36-10-8

2-10-8

17-0-0 34-0-0 8-10-4 Plata Officate (V V) [16:0-2-4 0-2-0] [18:0-3-12 0-1-8]

BRACING-

TOP CHORD

BOT CHORD

WEBS

JOINTS

LUMBER-

TOP CHORD 2x4 SP No.1 *Except*

-0-10₇8 0-10-8

4-8-13

4-1-7

1-4,9-12: 2x4 SP No.2 2x4 SP No.2 *Except*

BOT CHORD 16-18: 2x6 SP No.1, 15-17: 2x4 SP No.1

WEBS 2x4 SP No.3 *Except*

7-16,5-18,6-20: 2x4 SP No.2, 5-6: 2x6 SP No.1

REACTIONS. (size) 13=0-3-8, 19=0-3-8

Max Horz 19=-187(LC 14)

Max Grav 13=1631(LC 2), 19=1604(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-5=-2168/0, 5-6=-1946/0, 6-7=-836/5, 7-8=-826/0, 8-10=-2018/0, 11-13=-370/167

BOT CHORD 18-19=0/1896, 16-18=0/1945, 14-16=0/1712, 13-14=0/1672

WEBS 16-20=-127/480, 7-20=-38/545, 8-16=-150/514, 10-13=-2026/0, 5-18=0/361,

6-20=-1409/22, 3-19=-2104/0, 8-20=-1407/22

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=34ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) -0-10-8 to 2-6-5, Interior(1) 2-6-5 to 17-0-0, Exterior(2) 17-0-0 to 20-4-13, Interior(1) 20-4-13 to 36-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-51, 2-5=-51, 5-6=-61, 6-7=-51, 7-11=-51, 11-12=-51, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

March 4,2024

Continued on page 2

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

The Building Center,

Gastonia, NC - 28052,

ID:ljqY_Ye04nrl?s4UctGw?lzfTsj-PQduhCKFrYa0PA7ZgrlPm8AJurMAmWvsMK8WYPzesAJ

LOAD CASE(S) Standard

2) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-5=-60, 5-6=-70, 6-7=-60, 7-11=-60, 11-12=-60, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

3) Dead + 0.75 Roof Live (balanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-50, 2-5=-50, 5-6=-60, 6-7=-50, 7-11=-50, 11-12=-50, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10

4) Dead + 0.75 Snow (balanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-5=-43, 5-6=-53, 6-7=-43, 7-11=-43, 11-12=-43, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10

5) Dead + 0.75 Snow (Unbal. Left) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-43, 2-5=-43, 5-6=-53, 6-22=-43, 7-22=-65, 7-11=-27, 11-12=-27, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10

6) Dead + 0.75 Snow (Unbal. Right) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-27, 2-5=-27, 5-6=-37, 6-7=-27, 7-25=-63, 11-25=-43, 11-12=-43, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10

7) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-2=-20, 2-5=-20, 5-6=-30, 6-7=-20, 7-11=-20, 11-12=-20, 18-19=-40, 16-18=-60, 13-16=-40, 6-20=-10

8) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf) Vert: 1-2=46, 2-21=24, 5-21=14, 5-6=4, 6-7=14, 7-24=24, 11-24=14, 11-12=9, 18-19=-12, 16-18=-32, 13-16=-12, 6-20=-10

Horz: 1-2=-58, 2-21=-36, 7-21=-26, 7-24=36, 11-24=26, 11-12=21, 2-19=14, 11-13=26

9) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=9, 2-5=14, 5-6=4, 6-23=14, 7-23=24, 7-26=14, 11-26=24, 11-12=46, 18-19=-12, 16-18=-32, 13-16=-12, 6-20=-10

Horz: 1-2=-21, 2-23=-26, 7-23=-36, 7-26=26, 11-26=36, 11-12=58, 2-19=-26, 11-13=-14

10) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-12, 2-5=-33, 5-6=-43, 6-7=-33, 7-11=-33, 11-12=-28, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

Horz: 1-2=-8, 2-7=13, 7-11=-13, 11-12=-8, 2-19=-17, 11-13=-24

11) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-28, 2-5=-33, 5-6=-43, 6-7=-33, 7-11=-33, 11-12=-12, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

Horz: 1-2=8, 2-7=13, 7-11=-13, 11-12=8, 2-19=24, 11-13=17

12) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=12, 2-5=-0, 5-6=-10, 6-7=-0, 7-11=5, 11-12=1, 18-19=-12, 16-18=-32, 13-16=-12, 6-20=-10

Horz: 1-2=-24, 2-7=-12, 7-11=17, 11-12=13, 2-19=13, 11-13=15

13) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=1, 2-5=5, 5-6=-5, 6-7=5, 7-11=-0, 11-12=12, 18-19=-12, 16-18=-32, 13-16=-12, 6-20=-10

Horz: 1-2=-13, 2-7=-17, 7-11=12, 11-12=24, 2-19=-15, 11-13=-13

14) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-23, 2-5=-27, 5-6=-37, 6-7=-27, 7-11=-12, 11-12=-7, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

Horz: 1-2=3, 2-7=7, 7-11=8, 11-12=13, 2-19=22, 11-13=6

15) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-7, 2-5=-12, 5-6=-22, 6-7=-12, 7-11=-27, 11-12=-23, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

Horz: 1-2=-13, 2-7=-8, 7-11=-7, 11-12=-3, 2-19=-6, 11-13=-22

16) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=25, 2-5=13, 5-6=3, 6-7=13, 7-11=13, 11-12=25, 18-19=-12, 16-18=-32, 13-16=-12, 6-20=-10

Horz: 1-2=-37, 2-7=-25, 7-11=25, 11-12=37, 2-19=-19, 11-13=19

17) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=16, 2-5=4, 5-6=-6, 6-7=4, 7-11=4, 11-12=16, 18-19=-12, 16-18=-32, 13-16=-12, 6-20=-10

Horz: 1-2=-28, 2-7=-16, 7-11=16, 11-12=28, 2-19=-19, 11-13=19

18) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-16, 2-5=-21, 5-6=-31, 6-7=-21, 7-11=-21, 11-12=-16, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10 Horz: 1-2=-4, 2-7=1, 7-11=-1, 11-12=4, 2-19=-10, 11-13=10

19) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-16, 2-5=-21, 5-6=-31, 6-7=-21, 7-11=-21, 11-12=-16, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

Horz: 1-2=-4, 2-7=1, 7-11=-1, 11-12=4, 2-19=-10, 11-13=10

20) Dead + Snow on Overhangs: Lumber Increase=1.15. Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-51, 2-5=-20, 5-6=-30, 6-7=-20, 7-11=-20, 11-12=-51, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

21) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-51, 2-5=-51, 5-6=-61, 6-22=-51, 7-22=-80, 7-11=-29, 11-12=-29, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

22) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-29, 2-5=-29, 5-6=-39, 6-7=-29, 7-25=-77, 11-25=-51, 11-12=-51, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	BCTH-45	
24024000	4.2	COMMON	7			163996971
24021008	AZ	COMMON	'	'	Job Reference (optional)	

The Building Center,

Gastonia, NC - 28052,

8.730 s Feb 22 2024 MiTek Industries, Inc. Sat Mar 2 20:03:22 2024 Page 3

ID:ljqY_Ye04nrl?s4UctGw?lzfTsj-PQduhCKFrYa0PA7ZgrlPm8AJurMAmWvsMK8WYPzesAJ

LOAD CASE(S) Standard

23) Dead + Uninhabitable Attic Storage: Lumber Increase=1.25. Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-20, 2-5=-20, 5-6=-30, 6-7=-20, 7-11=-20, 11-12=-20, 18-19=-20, 16-18=-80, 15-16=-20, 15-27=-60, 13-27=-20, 6-20=-10

24) Dead + 0.75 Snow (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-45, 2-5=-49, 5-6=-59, 6-7=-49, 7-11=-37, 11-12=-34, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10 Horz: 1-2=2, 2-7=6, 7-11=6, 11-12=10, 2-19=16, 11-13=5

25) Dead + 0.75 Snow (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-34, 2-5=-37, 5-6=-47, 6-7=-37, 7-11=-49, 11-12=-45, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10 Horz: 1-2=-10, 2-7=-6, 7-11=-6, 11-12=-2, 2-19=-5, 11-13=-16

26) Dead + 0.75 Snow (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-40, 2-5=-44, 5-6=-54, 6-7=-44, 7-11=-44, 11-12=-40, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10 Horz: 1-2=-3, 2-7=1, 7-11=-1, 11-12=3, 2-19=-8, 11-13=8

27) Dead + 0.75 Snow (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-40, 2-5=-44, 5-6=-54, 6-7=-44, 7-11=-44, 11-12=-40, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10 Horz: 1-2=-3, 2-7=1, 7-11=-1, 11-12=3, 2-19=-8, 11-13=8

28) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-52, 2-5=-56, 5-6=-66, 6-7=-56, 7-11=-44, 11-12=-40, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10 Horz: 1-2=2, 2-7=6, 7-11=6, 11-12=10, 2-19=16, 11-13=5

29) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-40, 2-5=-44, 5-6=-54, 6-7=-44, 7-11=-56, 11-12=-52, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10 Horz: 1-2=-10, 2-7=-6, 7-11=-6, 11-12=-2, 2-19=-5, 11-13=-16

30) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-47, 2-5=-51, 5-6=-61, 6-7=-51, 7-11=-51, 11-12=-47, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10 Horz: 1-2=-3, 2-7=1, 7-11=-1, 11-12=3, 2-19=-8, 11-13=8

31) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-47, 2-5=-51, 5-6=-61, 6-7=-51, 7-11=-51, 11-12=-47, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10 Horz: 1-2=-3, 2-7=1, 7-11=-1, 11-12=3, 2-19=-8, 11-13=8

32) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-5=-60, 5-6=-70, 6-7=-60, 7-11=-20, 11-12=-20, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

33) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-20, 2-5=-20, 5-6=-30, 6-7=-20, 7-11=-60, 11-12=-60, 18-19=-20, 16-18=-40, 13-16=-20, 6-20=-10

34) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

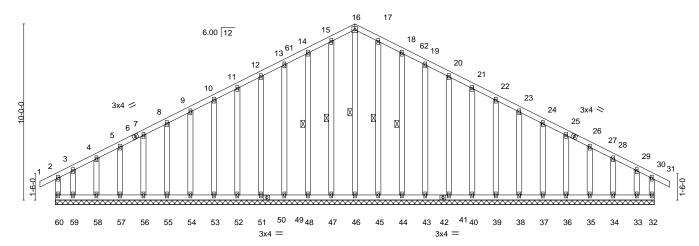
Vert: 1-2=-50, 2-5=-50, 5-6=-60, 6-7=-50, 7-11=-20, 11-12=-20, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10

35) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-20, 2-5=-20, 5-6=-30, 6-7=-20, 7-11=-50, 11-12=-50, 18-19=-20, 16-18=-70, 15-16=-20, 15-27=-50, 13-27=-20, 6-20=-10

Job Truss Truss Type Qty Ply BCTH-45 163996972 24021008 A1GE COMMON SUPPORTED GAB 2 Job Reference (optional) 8.730 s Feb 22 2024 MiTek Industries, Inc. Sat Mar 2 20:03:20 2024 Page 1 The Building Center, Gastonia, NC - 28052,

4x4 =


ID:ljqY_Ye04nrl?s4UctGw?IzfTsj-T1W7GWI?JxKI9s_BZQFxhj59U1uGInBZu0fPTWzesAL 34-10-8 0-10-8 17-0-0 17-0-0

Scale = 1:65.4

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals.

		34-0-	0					
CADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.17 BC 0.09 WB 0.10 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 31 -0.00 31 -0.00 32	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 310 lb	GRIP 244/190 FT = 20%

LUMBER-BRACING-

TOP CHORD TOP CHORD 2x4 SP No 2 2x4 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3 BOT CHORD **OTHERS**

2x4 SP No.3 WEBS 16-46, 15-47, 14-48, 17-45, 18-44

REACTIONS. All bearings 34-0-0.

-0-10-8 0-10-8

Max Horz 60=-175(LC 14) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 32, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 44, 43, 41, 40, 39,

38, 37, 36, 35, 34, 33 except 60=-135(LC 14), 59=-136(LC 15)

Max Grav All reactions 250 lb or less at joint(s) 60, 32, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59,

45, 44, 43, 41, 40, 39, 38, 37, 36, 35, 34, 33

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 12-13=-85/272, 13-14=-95/299, 14-15=-106/330, 15-16=-109/341, 16-17=-109/336,

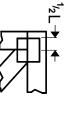
17-18=-106/325, 18-19=-95/293, 19-20=-85/266

NOTES-

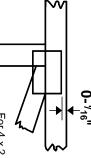
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=34ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3) -0-10-8 to 2-4-0, Exterior(2) 2-4-0 to 17-0-0, Corner(3) 17-0-0 to 20-4-13, Exterior(2) 20-4-13 to 34-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 1-4-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 32, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 44, 43, 41, 40, 39, 38, 37, 36, 35, 34, 33 except (jt=lb) 60=135, 59=136.

March 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated and fully embed teeth Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

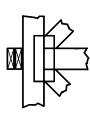
edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

₹

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek software or upon request

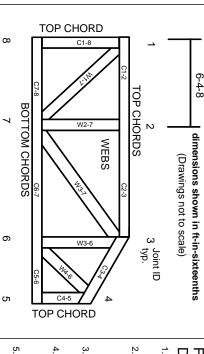
PLATE SIZE


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING


Min size shown is for crushing only number/letter where bearings occur reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

ANSI/TPI1: Industry Standards: National Design Specification for Metal

DSB-22:

Plate Connected Wood Trusses Installing, Restraining & Bracing of Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

'n

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.