
Client Name: Karen Faircloth
111 W Stewart St
Coats, NC 37521
910-890-6842

Adding Front Porch

111 West Stewart St.

Karen Faireloth
III w stewart St
Coats, NC
910 890 6842

Trenco

818 Soundside Rd Edenton, NC 27932

Re: P-9334-1

Faircloth Parents-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Peak Truss Builders, LLC.

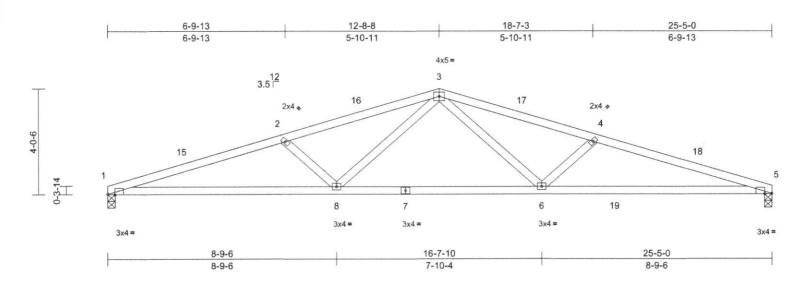
Pages or sheets covered by this seal: I55968174 thru I55968175

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

January 4,2023

Gilbert, Eric


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Faircloth Parents-Roof		
P-9334-1	T1	Common	6	1	Job Reference (optional)	155968174	

Peak Truss Builders, LLC, New Hill, NC - 27562

Run: 8 63 S. Nov 19 2022 Print: 8 630 S. Nov 19 2022 MiTek Industries, Inc. Tue Jan 03 16:12:01 ID:7FS8xsINquDC9bbPPZ9AYOyJ_hA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.3

Plate Offsets (X, Y): [1:0-3-5,Edge], [5:0-3-5,Edge]													
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.19	6-14	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.33	6-14	>924	180			
BCLL	0.0*	Rep Stress Incr	NO	WB	0.25	Horz(CT)	0.05	5	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		11. The second of 11.000 10.			1120200		Weight: 101 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-11-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=0-3-8, 5=0-3-8

Max Horiz 1=-23 (LC 9)

Max Uplift 1=-83 (LC 11), 5=-83 (LC 11) Max Grav 1=697 (LC 1), 5=739 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1898/256, 2-3=-1680/211,

3-4=-1770/211, 4-5=-1996/256

BOT CHORD 1-8=-216/1807, 6-8=-113/1232,

5-6=-216/1903

WEBS 3-6=-25/607, 4-6=-339/116, 3-8=-25/487,

2-8=-326/116

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=25ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 12-8-8, Exterior (2) 12-8-8 to 15-8-8, Interior (1) 15-8-8 to 25-5-0 zone; cantilever left and right exposed : end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 83 lb uplift at joint 1 and 83 lb uplift at joint 5.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 80 lb down at 19-5-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15,

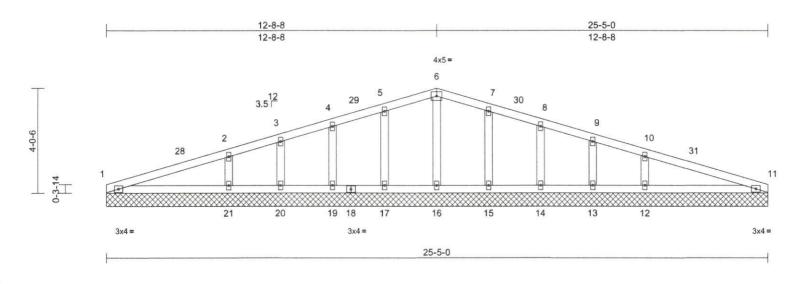
Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-3=-40, 3-5=-40, 9-12=-13

Concentrated Loads (lb)

Vert: 19=-80 (F)

Karen Faicloth 111 W Stewart 3+ Cocts NC 910 890 6842


January 4,2023

Job	Truss	Truss Type	Qty	Ply	Faircloth Parents-Roof	
P-9334-1	T1GE	Common Supported Gable	1	1	Job Reference (optional)	155968175

Peak Truss Builders, LLC, New Hill, NC - 27562,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Jan 03 16:12:03 ID:7FS8xsINquDC9bbPPZ9AYOyJ_hA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.5

Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	11	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		2500 50					Weight: 107 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=25

1=25-5-0, 11=25-5-0, 12=25-5-0, 13=25-5-0, 14=25-5-0, 15=25-5-0, 16=25-5-0, 17=25-5-0, 19=25-5-0, 20=25-5-0, 21=25-5-0, 22=25-5-0, 21=25-5-0, 22=25-5-0, 21=25-5-0, 2

25=25-5-0

Max Horiz 1=23 (LC 10), 22=23 (LC 10)
Max Uplift 1=-9 (LC 11), 11=-9 (LC 11), 12=-42 (LC 11), 13=-5 (LC 11), 14=-20 (LC 11), 15=-17 (LC 11), 17=-17 (LC 11), 19=-20 (LC 11), 20=-5 (LC 11), 21=-42 (LC 11),

22=-9 (LC 11), 21=-42 (LC 11), 22=-9 (LC 11), 25=-9 (LC 11) Max Grav 1=105 (LC 1), 11=105 (LC 1),

12=261 (LC 21), 13=34 (LC 21), 14=124 (LC 1), 15=108 (LC 21), 16=97 (LC 1), 17=108 (LC 20), 19=124 (LC 1), 20=34 (LC 20), 21=261 (LC 20), 22=105 (LC 1),

25=105 (LC 1)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-74/27, 2-3=-31/34, 3-4=-18/43,

4-5=-24/59, 5-6=-30/73, 6-7=-30/73, 7-8=-24/59, 8-9=-17/43, 9-10=-29/34,

10-11=-74/24

BOT CHORD 1-21=-21/66, 20-21=-4/27, 19-20=-4/27, 17-19=-4/27, 16-17=-4/27, 15-16=-4/27, 14-15=-4/27, 13-14=-4/27, 12-13=-4/27,

11-12=-21/66

WFBS

6-16=-69/6, 5-17=-84/67, 4-19=-89/42, 3-20=-40/24, 2-21=-170/86, 7-15=-84/67, 8-14=-89/42, 9-13=-40/24, 10-12=-170/86

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=25ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-0-0 to 3-0-0, Exterior (2) 3-0-0 to 12-8-8, Corner (3) 12-8-8 to 15-8-8, Exterior (2) 15-8-8 to 25-5-0 zone; cantilever left and right exposed; end vertical left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1, 9 lb uplift at joint 11, 17 lb uplift at joint 17, 20 lb uplift at joint 19, 5 lb uplift at joint 20, 42 lb uplift at joint 21, 17 lb uplift at joint 15, 20 lb uplift at joint 14, 5 lb uplift at joint 13, 42 lb uplift at joint 12, 9 lb uplift at joint 1 and 9 lb uplift at joint 11.
- This truss is designed in accordance with the 2015
 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

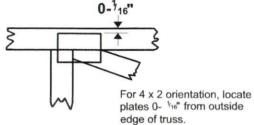
LOAD CASE(S) Standard

Karen Faircloth
111 W Stewartst
Coats NC
910 890 6842

January 4,2023

WARNING - Verify design parar inters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7673 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSILTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information a valiable from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Roa Edenton, NC 27932

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated. Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss and fully embed teeth.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

 4×4

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

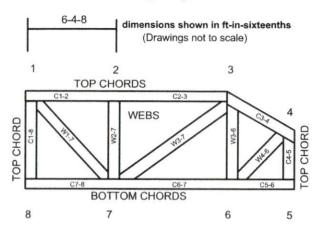
BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only.

Industry Standards:

ANSI/TPI1: National Design Specification for Metal

Plate Connected Wood Truss Construction.


DSB-89: Design Standard for Bracing.

BCSI:

Building Component Safety Information. Guide to Good Practice for Handling. Installing & Bracing of Metal Plate

Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

tedart

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber,
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft, spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

THIS LAYOUT IS TO BE USED AS A TRUSS PLACEMENT GUILDING PLASE REFER TO BUILDING PLANS FOR BUILDING CONSTRUCTION SUCH AS PLUMBING OR DUCT DROPS.

Karen Faircloth
111 W Stewart St
Coats, NC
910 890 6842

60lb per LF per customer

Fair R