| Job         | Truss | Truss Type | Qty | Ply | Castro House-Castro House |
|-------------|-------|------------|-----|-----|---------------------------|
| Q-2201750-1 | CAP1  | Piggyback  | 2   | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:36 Page: 1 ID:\_cX87gvRwtiixJFmspPO4iyiIS1-3g5IPeFV53BDKW3TjMVDd?OUtW1kY33WwCooYvyiHyb







2x4 =

2x4 II

4 - 6 - 2

Scale = 1:20.4

|             |       |                 | -               |           |      |          |      |       |        |     |               |          |
|-------------|-------|-----------------|-----------------|-----------|------|----------|------|-------|--------|-----|---------------|----------|
| Loading     | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL     | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.04 | Vert(LL) | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC        | 0.05 | Vert(CT) | n/a  | -     | n/a    | 999 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.01 | Horz(CT) | 0.00 | 11    | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MP |      |          |      |       |        |     | Weight: 19 lb | FT = 20% |

## LUMBER

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.3

## **REACTIONS** All bearings 4-6-2.

(lb) - Max Horiz 2=-33 (LC 9), 7=-33 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 2, 4, 7, 11

Max Grav All reactions 250 (lb) or less at joint(s) 2, 4, 6, 7, 11

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 2, 4.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

2x4 =

| Job         | Truss | Truss Type | Qty | Ply | Castro House-Castro House |
|-------------|-------|------------|-----|-----|---------------------------|
| Q-2201750-1 | CAP2  | Piggyback  | 33  | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:37 Page: 1 ID:\_cX87gvRwtiixJFmspPO4iyiIS1-Xtf8c\_G7sNJ4ygefH41SADwfdwNzHWJf8sXL4LyiHya







2x4 =

2x4 II

4 - 6 - 2

Scale = 1:20.4

|             |       |                 | -               |           |      |          |      |       |        |     |               |          |
|-------------|-------|-----------------|-----------------|-----------|------|----------|------|-------|--------|-----|---------------|----------|
| Loading     | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL     | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.04 | Vert(LL) | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC        | 0.05 | Vert(CT) | n/a  | -     | n/a    | 999 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.01 | Horz(CT) | 0.00 | 11    | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MP |      |          |      |       |        |     | Weight: 19 lb | FT = 20% |

## LUMBER

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.3

## **REACTIONS** All bearings 4-6-2.

(lb) - Max Horiz 2=-33 (LC 9), 7=-33 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 2, 4, 7, 11

Max Grav All reactions 250 (lb) or less at joint(s) 2, 4, 6, 7, 11

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 2, 4.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

2x4 =

| Job         | Truss | Truss Type     | Qty | Ply | Castro House-Castro House |
|-------------|-------|----------------|-----|-----|---------------------------|
| Q-2201750-1 | T1    | Piggyback Base | 11  | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:37 Page: 1 ID:er3yl0ineF\_xp?D41Rh0WXyilXS-Xtf8c\_G7sNJ4ygefH41SADwZowHpHPzf8sXL4LyiHya



#### Scale = 1:69.8

| Plate Offsets (X, Y): [2:0-2-9,0-1-8], [6:0-2-12,0-2-0], [7:0-2-12,0-2-0], [11:0-2-9,0-1-8] |       |                 |                 |           |      |          |       |       |        |     |                |          |  |
|---------------------------------------------------------------------------------------------|-------|-----------------|-----------------|-----------|------|----------|-------|-------|--------|-----|----------------|----------|--|
| Loading                                                                                     | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |  |
| TCLL (roof)                                                                                 | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.41 | Vert(LL) | -0.11 | 17-19 | >999   | 240 | MT20           | 244/190  |  |
| TCDL                                                                                        | 10.0  | Lumber DOL      | 1.15            | BC        | 0.44 | Vert(CT) | -0.18 | 17-19 | >999   | 180 |                |          |  |
| BCLL                                                                                        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.48 | Horz(CT) | 0.03  | 11    | n/a    | n/a |                |          |  |
| BCDL                                                                                        | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MS |      |          |       |       |        |     | Weight: 247 lb | FT = 20% |  |
|                                                                                             |       | -               |                 |           |      |          |       |       |        |     | -              |          |  |

| LUMBER           TOP CHORD         2x4 SP No.1           BOT CHORD         2x4 SP No.1           WEBS         2x4 SP No.3                              | BRACING<br>TOP CHORD | Structural wood sheathing directly applied or 4-10-2 oc purlins,<br>except<br>2-0-0 oc purlins (6-0-0 max.): 6-7.                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>REACTIONS</b> (lb/size) 2=1102/0-3-8, (min. 0-1-12), 11=537/0-3-8, (min. 0-1-8),<br>14=1568/0-3-8, (min. 0-2-7)                                     | BOT CHORD<br>WEBS    | Rigid ceiling directly applied or 10-0-0 oc bracing, Except:<br>6-0-0 oc bracing: 14-16.<br>1 Row at midpt 5-17, 7-16, 8-14                              |
| Max Holiz $2=216$ (LC 10)<br>Max Uplift $2=-175$ (LC 11), 11=-107 (LC 11), 14=-187 (LC 11)<br>Max Grav $2=1102$ (LC 1), 11=556 (LC 24), 14=1568 (LC 1) |                      | MiTek recommends that Stabilizers and required cross bracing be<br>installed during truss erection, in accordance with Stabilizer<br>Installation guide. |

 FORCES
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-26=-1534/189, 3-26=-1473/220, 3-4=-1381/214, 4-5=-1370/250, 5-6=-825/255, 6-27=-631/251, 27-28=-631/251, 7-8=-446/215, 10-29=-505/81, 11-29=-581/60

 BOT CHORD
 2-19=-60/1372, 19-30=0/1038, 18-30=0/1038, 18-31=0/1038, 17-31=0/1038, 17-32=0/378, 16-32=0/378, 15-16=-324/191, 14-15=-324/191, 13-14=0/420, 11-13=0/420

 WEBS
 3-19=-286/156, 5-19=-33/496, 5-17=-572/193, 7-17=-63/669, 7-16=-645/61, 8-16=-10/987, 8-14=-1267/195, 10-14=-450/116

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=38ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-4-0 to 2-5-11, Interior (1) 2-5-11 to 16-0-8, Exterior (2) 16-0-8 to 21-5-2, Interior (1) 21-5-2 to 22-0-8, Exterior (2) 22-0-8 to 27-3-6, Interior (1) 27-3-6 to 39-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 175 lb uplift at joint 2, 187 lb uplift at joint 14 and 107 lb uplift at joint 11.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

| Job         | Truss | Truss Type     | Qty | Ply | Castro House-Castro House |
|-------------|-------|----------------|-----|-----|---------------------------|
| Q-2201750-1 | T1A   | Piggyback Base | 14  | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:38 Page: 1 ID:POY\_loomj\_onDqdV6qurDyilXK-03DWqKHldgRxZqCrrnYhiQTjmKaF0vQoNWHudnyiHyZ



## Scale = 1:67.5

| Plate Offsets (X, Y): [2:0-2-9,0-1-8], [6:0-2-12,0-2-0], [7:0-2-12,0-2-0], [11:0-2-9,0-1-8] |       |                 |                 |           |      |          |       |       |        |     |                |          |
|---------------------------------------------------------------------------------------------|-------|-----------------|-----------------|-----------|------|----------|-------|-------|--------|-----|----------------|----------|
| Loading                                                                                     | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |
| TCLL (roof)                                                                                 | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.46 | Vert(LL) | -0.16 | 15-17 | >999   | 240 | MT20           | 244/190  |
| TCDL                                                                                        | 10.0  | Lumber DOL      | 1.15            | BC        | 0.56 | Vert(CT) | -0.29 | 12-14 | >999   | 180 |                |          |
| BCLL                                                                                        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.28 | Horz(CT) | 0.09  | 11    | n/a    | n/a |                |          |
| BCDL                                                                                        | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MS |      |          |       |       |        |     | Weight: 236 lb | FT = 20% |

| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS ( | 2x4 SP No.1<br>2x4 SP No.1<br>2x4 SP No.3<br>Ib/size) 2=1605/0-3-8, (min. 0-2-9), 11=1522/0-3-8, (min. 0-2-7)<br>Max Horiz 2=212 (LC 10)<br>Max Uplift 2=-236 (LC 11), 11=-186 (LC 11) | BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS | Structural wood sheathing directly applied or 3-8-15 oc purlins,<br>except<br>2-0-0 oc purlins (4-8-7 max.): 6-7.<br>Rigid ceiling directly applied or 10-0-0 oc bracing.<br>1 Row at midpt 5-15, 7-15, 8-14<br>MiTek recommends that Stabilizers and required cross bracing be |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ľ                                                       | Max Grav 2=1617 (LC 19), 11=1550 (LC 20)                                                                                                                                               |                                           | installed during truss erection, in accordance with Stabilizer<br>Installation guide.                                                                                                                                                                                           |

 FORCES
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-24=-2449/297, 3-24=-2386/328, 3-4=-2297/322, 4-5=-2286/358, 5-6=-1746/365, 6-25=-1389/342, 25-26=-1389/342, 7-26=-1389/342, 7-8=-1761/365, 8-9=-2308/366, 9-10=-2320/331, 10-27=-2378/337, 11-27=-2458/319

 BOT CHORD
 2-17=-191/2122, 17-28=-90/1795, 16-28=-90/1795, 16-29=-90/1795, 15-29=-90/1795, 15-30=0/1430, 14-30=0/1430,

 13-14=-93/1684, 13-31=-93/1684, 31-32=-93/1684, 12-32=-93/1684, 11-12=-201/1994

 WEBS
 3-17=-281/155, 5-17=-30/489, 5-15=-572/192, 6-15=-78/659, 7-14=-79/735, 8-14=-576/197, 8-12=-40/499, 10-12=-288/162

## NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=38ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-4-0 to 2-5-11, Interior (1) 2-5-11 to 16-0-8, Exterior (2) 16-0-8 to 21-5-2, Interior (1) 21-5-2 to 22-0-8, Exterior (2) 22-0-8 to 27-3-1, Interior (1) 27-3-1 to 38-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 236 lb uplift at joint 2 and 186 lb uplift at joint 11.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

| Job         | Truss | Truss Type     | Qty | Ply | Castro House-Castro House |
|-------------|-------|----------------|-----|-----|---------------------------|
| Q-2201750-1 | T1B   | Piggyback Base | 8   | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:39 Page: 1 ID:POY\_loomj\_onDqdV6qurDyilXK-UFnu1gINO\_ZoB\_n1OV3wFe0uVkwUILfycA0S9EyiHyY

GRIP

244/190



### Scale = 1:68.1

BCLL

#### Plate Offsets (X, Y): [5:0-2-12,0-2-0], [6:0-2-12,0-2-0], [10:0-2-9,0-1-8] Loading (psf) 2-0-0 CSI DEFL (loc) l/defl L/d PLATES Spacing in 20.0 Plate Grip DOL TCLL (roof) 1.15 TC 0.46 Vert(LL) -0.16 14-16 >999 240 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.56 Vert(CT) -0.29 11-13 >999 180

YES WB

| BCDL                                                  | 10.0                                                                               | Code                                     | IRC2015/TPI2014           | Matrix-MS  |                                    |                        |                                                                                                                              | Weight: 233 lb FT = 20%                                                                     |
|-------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|---------------------------|------------|------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP No.1<br>2x4 SP No.1<br>2x4 SP No.3<br>(lb/size) 1=1522/<br>Marchine 1=1522/ | Mechanical, (min. (                      | 0-1-8), 10=1522/0-3-8, (m | in. 0-2-7) | BRACIN<br>TOP CH<br>BOT CH<br>WEBS | <b>G</b><br>ORD<br>ORD | Structural wood sheathing di<br>except<br>2-0-0 oc purlins (4-8-7 max.):<br>Rigid ceiling directly applied<br>1 Row at midpt | rectly applied or 3-8-15 oc purlins,<br>: 5-6.<br>or 10-0-0 oc bracing.<br>4-14, 6-14, 7-13 |
|                                                       | Max Uplift 1=-187 (L<br>Max Grav 1=1542 (                                          | LC 11), 10=-187 (L<br>LC 19), 10=1549 (I | C 11)<br>LC 20)           |            |                                    |                        | MiTek recommends that Sta<br>installed during truss erectio<br>Installation guide.                                           | bilizers and required cross bracing be<br>n, in accordance with Stabilizer                  |

0.28

Horz(CT)

0.09

10

n/a n/a

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Rep Stress Incr

TOP CHORD 1-23=-2446/320, 2-23=-2351/337, 2-3=-2294/331, 3-4=-2282/367, 4-5=-1746/367, 5-24=-1388/344, 24-25=-1388/344,

6-25=-1388/344, 6-7=-1760/367, 7-8=-2307/368, 8-9=-2318/333, 9-26=-2377/339, 10-26=-2457/321

BOT CHORD 1-16=-201/2118, 16-27=-94/1793, 15-27=-94/1793, 15-28=-94/1793, 14-28=-94/1793, 14-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/1429, 13-29=0/14

12-13=-94/1684, 12-30=-94/1684, 30-31=-94/1684, 11-31=-94/1684, 10-11=-203/1993

WEBS 2-16=-280/161, 4-16=-38/486, 4-14=-571/196, 5-14=-79/659, 6-13=-79/735, 7-13=-576/196, 7-11=-40/499, 9-11=-288/162

#### NOTES

1) Unbalanced roof live loads have been considered for this design.

0.0

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=38ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-10-2, Interior (1) 3-10-2 to 16-0-8, Exterior (2) 16-0-8 to 21-5-1, Interior (1) 21-5-1 to 22-0-8, Exterior (2) 22-0-8 to 27-3-1, Interior (1) 27-3-1 to 38-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 187 lb uplift at joint 1 and 187 lb uplift at joint 10.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

| Job         | Truss | Truss Type                     | Qty | Ply | Castro House-Castro House |
|-------------|-------|--------------------------------|-----|-----|---------------------------|
| Q-2201750-1 | T1CGE | Piggyback Base Supported Gable | 1   | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:39 Page: 1 ID:61cLWMJPPZ6oR8oGb8CF3lyilXR-UFnu1gINO\_zoB\_n1OV3wFe0?4k2ilNeycA0S9EyiHyY



#### Scale = 1:65.6

| Plate Offsets (X, Y): [10:0-2-8,0-1-13], [13:0-2-8,0-1-13], [22:0-2-9,0-1-8], [30:0-2-8,0-3-0], [38:0-2-8,0-3-0] |       |                 |                 |           |      |           |      |       |        |     |                |          |  |
|------------------------------------------------------------------------------------------------------------------|-------|-----------------|-----------------|-----------|------|-----------|------|-------|--------|-----|----------------|----------|--|
| Loading                                                                                                          | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES         | GRIP     |  |
| TCLL (roof)                                                                                                      | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.04 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20           | 244/190  |  |
| TCDL                                                                                                             | 10.0  | Lumber DOL      | 1.15            | BC        | 0.03 | Vert(TL)  | n/a  | -     | n/a    | 999 |                |          |  |
| BCLL                                                                                                             | 0.0*  | Rep Stress Incr | YES             | WB        | 0.15 | Horiz(TL) | 0.01 | 22    | n/a    | n/a |                |          |  |
| BCDL                                                                                                             | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MS |      |           |      |       |        |     | Weight: 294 lb | FT = 20% |  |

| LUMBERTOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.3                                                                                                                                                                                                                                                                                                 | BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS | Structural wood sheathing directly applied or 6-0-0 oc purlins,<br>except<br>2-0-0 oc purlins (6-0-0 max.): 10-13.<br>Rigid ceiling directly applied or 10-0-0 oc bracing.<br>1 Row at midpt<br>14-29 |                                                                          |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
| REACTIONS All bearings 38-0-8.<br>(Ib) - Max Horiz 1=199 (LC 10), 41=199 (LC 10)<br>Max Uplift All uplift 100 (Ib) or less at joint(s) 1, 23, 24, 25, 26, 27, 28, 29,<br>31, 32, 34, 35, 36, 37, 38, 39, 40, 41<br>Max Grav All reactions 250 (Ib) or less at joint(s) 1, 22, 23, 24, 25, 26, 27,<br>28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44 |                                           |                                                                                                                                                                                                       |                                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 |                                           | MiTek recommends that Stabi<br>installed during truss erection.<br>Installation guide.                                                                                                                | ilizers and required cross bracing be<br>, in accordance with Stabilizer |  |  |  |  |
| FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when sho<br>NOTES                                                                                                                                                                                                                                                                          | wn.                                       |                                                                                                                                                                                                       |                                                                          |  |  |  |  |

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=38ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-0-8 to 4-0-8, Exterior (2) 4-0-8 to 16-0-8, Corner (3) 16-0-8 to 20-0-8, Exterior (2) 20-0-8 to 22-0-8, Corner (3) 22-0-8 to 26-0-8, Exterior (2) 26-0-8 to 38-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

Gable studs spaced at 2-0-0 oc.

8) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 31, 32, 34, 35, 36, 37, 38, 39, 40, 29, 28, 27, 26, 25, 24, 23, 1.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 22, 44.

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

| Job         | Truss | Truss Type                     | Qty | Ply | Castro House-Castro House |
|-------------|-------|--------------------------------|-----|-----|---------------------------|
| Q-2201750-1 | T1GE  | Piggyback Base Supported Gable | 1   | 1   | Job Reference (optional)  |

 Run: 8.43 S
 Feb
 3 2021 Print: 8.430 S
 Feb
 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:40
 Page: 1

 ID:aEAjjik1AtEe2INT8sjUbyyiIXQ-ySLGF?I?9Ihfp8MEyCa9nrY928OyUqu5rqm?hgyiHyX



### Scale = 1:67.5

| Plate Offsets (X, Y): [2:0-2-9,0-1-8], [11:0-2-8,0-1-13], [14:0-2-8,0-1-13], [23:0-2-9,0-1-8], [31:0-2-8,0-3-0], [39:0-2-8,0-3-0] |       |                 |                 |           |      |          |      |       |        |     |                |          |
|-----------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|-----------------|-----------|------|----------|------|-------|--------|-----|----------------|----------|
| Loading                                                                                                                           | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL     | in   | (loc) | l/defl | L/d | PLATES         | GRIP     |
| TCLL (roof)                                                                                                                       | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.09 | Vert(LL) | n/a  | -     | n/a    | 999 | MT20           | 244/190  |
| TCDL                                                                                                                              | 10.0  | Lumber DOL      | 1.15            | BC        | 0.03 | Vert(CT) | n/a  | -     | n/a    | 999 |                |          |
| BCLL                                                                                                                              | 0.0*  | Rep Stress Incr | YES             | WB        | 0.15 | Horz(CT) | 0.01 | 23    | n/a    | n/a |                |          |
| BCDL                                                                                                                              | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MS |      |          |      |       |        |     | Weight: 297 lb | FT = 20% |

| LUMBER           TOP CHORD         2x4 SP No.1           BOT CHORD         2x4 SP No.1           OTHERS         2x4 SP No.3                                                     | BRACING<br>TOP CHORD | Structural wood sheathing directly applied or 6-0-0 oc purlins,<br>except<br>2-0-0 oc purlins (6-0-0 max.): 11-14.<br>Rigid ceiling directly applied or 10-0-0 oc bracing.<br>1 Row at midpt<br>14-31, 13-32, 12-33, 11-34, 10-35<br>15-30 |                                                                      |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
| REACTIONS All bearings 38-1-0.<br>(Ib) - Max Horiz 2=211 (LC 10), 42=211 (LC 10)<br>Max Unlift All unlift 100 (Ib) or less at joint(s) 2, 24, 25, 26, 27, 28, 29, 30            | BOT CHORD<br>WEBS    |                                                                                                                                                                                                                                            |                                                                      |  |  |  |  |
| 32, 33, 35, 36, 37, 38, 39, 40, 41, 42<br>Max Grav All reactions 250 (lb) or less at joint(s) 2, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45 |                      | MiTek recommends that Stabil<br>installed during truss erection,<br>Installation guide.                                                                                                                                                    | izers and required cross bracing be<br>in accordance with Stabilizer |  |  |  |  |
| FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown NOTES                                                                                           |                      |                                                                                                                                                                                                                                            |                                                                      |  |  |  |  |

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=38ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) -1-4-0 to 2-5-11, Exterior (2) 2-5-11 to 16-0-8, Corner (3) 16-0-8 to 20-0-8, Exterior (2) 20-0-8 to 22-0-8, Corner (3) 22-0-8 to 26-0-8, Exterior (2) 26-0-8 to 38-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

Gable studs spaced at 2-0-0 oc.

8) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 32, 33, 35, 36, 37, 38, 39, 40, 41, 30, 29, 28, 27, 26, 25, 24, 2.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 23, 45.

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4) Ceiling dead load (5.0 psf) on member(s). 3-4, 6-7, 4-13, 6-13

5) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 10-12

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 2 and 118 lb uplift at joint 8.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Attic room checked for L/360 deflection.



BOT CHORD 2-11=0/1491, 10-11=0/1498, 9-10=0/1498, 8-9=0/1490

WEBS 7-9=0/1250, 3-11=0/1238, 4-12=-1850/164, 6-12=-1850/164

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=23ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 11-7-8, Exterior (2) 11-7-8 to 14-8-0, Interior (1) 14-8-0 to 23-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4) Ceiling dead load (5.0 psf) on member(s). 3-4, 6-7, 4-12, 6-12

5) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 9-11

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 8 and 120 lb uplift at joint 2.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Attic room checked for L/360 deflection.



9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Attic room checked for L/360 deflection.



10) Attic room checked for L/360 deflection.

| Job                                    | Truss                                            | T                                                     | russ Type                    |                          | Qty                           | Ply                           | Castro Hous                                  | e-Castro Hou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | se                               |                                            |
|----------------------------------------|--------------------------------------------------|-------------------------------------------------------|------------------------------|--------------------------|-------------------------------|-------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|
| Q-2201750-1                            | Т3                                               | с                                                     | Common                       |                          | 1                             | 1                             | Job Referen                                  | ce (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                                            |
| Peak Truss Builders LLC,               | New Hill, user                                   | I                                                     |                              | Run: 8.43 S Fe           | b 3 2021 P<br>ID              | rint: 8.430 S<br>:WcIT8OIIiUU | Feb 3 2021 MiT<br>JMIcWrGHlyhNy              | ek Industries, Industri | c. Wed Aug 31 1<br>SD4Dgb5pdL7sF | 6:19:43 Page: 1<br>PTAe?LLvhAxYXo_fl?yiHyU |
|                                        |                                                  | <u>-1-4-0</u>                                         | <u>4-4-7</u><br>4-4-7        | <u>8-4-0</u><br>3-11-9   |                               |                               | <u>12-3-9</u><br>3-11-9                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>16-8-0</u><br>4-4-7           |                                            |
| <b>_</b>                               |                                                  |                                                       |                              |                          |                               | 4x5 <b>=</b><br>4             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                            |
|                                        |                                                  |                                                       | 1<br>81                      | <u>2</u><br>2x4 <b>\</b> |                               |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                            |
| 2                                      |                                                  |                                                       | 3                            | 16<br>T1                 | ١                             | ₩2                            |                                              | 17 2x4 ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                            |
| 6-9-9<br>5-1                           |                                                  | 15                                                    | 5                            | WT                       |                               |                               | W1                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | 18                                         |
|                                        | <u>- )</u>                                       | 2                                                     |                              |                          |                               |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | 6                                          |
| 0-4 <u>-</u>                           | 1                                                | X                                                     |                              | B1                       |                               | 8<br>5x8=                     |                                              | B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                |                                            |
|                                        |                                                  | 3x4 =                                                 |                              |                          |                               | I                             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | 3x4 =                                      |
| Scale = 1:36.8                         |                                                  | <u>,</u>                                              | <u> </u>                     | I-0<br>I-0               |                               | 1                             |                                              | <u>16-8-0</u><br>8-4-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                            |
| Plate Offsets (X, Y): [8               | 8:0-4-0,0-3-0]                                   |                                                       |                              |                          |                               |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                            |
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL | (psf) <b>Sr</b><br>20.0 Pl<br>10.0 Lu<br>0.0* Br | pacing<br>ate Grip DOL<br>Imber DOL<br>ap Stress Incr | 2-0-0<br>1.15<br>1.15<br>YES | CSI<br>TC<br>BC<br>WB    | 0.17 Ve<br>0.33 Ve<br>0.20 Ho | FL<br>rt(LL) -(<br>rt(CT) -(  | in (loc)<br>0.02 8-14<br>0.10 8-14<br>0.02 6 | l/defl L/d<br>>999 240<br>>999 180<br>p/a p/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20                   | <b>GRIP</b><br>244/190                     |

#### LUMBER

BCDL

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3

REACTIONS (Ib/size) 2=747/0-3-8, (min. 0-1-8), 6=747/0-3-8, (min. 0-1-8) Max Horiz 2=115 (LC 10)

Code

Max Uplift 2=-129 (LC 11), 6=-129 (LC 11)

10.0

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-15=-905/123, 3-15=-872/146, 3-16=-698/107, 4-16=-621/127, 4-17=-621/127, 5-17=-698/107, 5-18=-872/146,

IRC2015/TPI2014

6-18=-905/123

BOT CHORD 2-8=-13/726, 6-8=-13/726

WEBS 4-8=-41/479, 5-8=-263/126, 3-8=-263/126

#### NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 8-4-0, Exterior (2) 8-4-0 to 11-4-0, Interior (1) 11-4-0 to 18-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

BRACING

TOP CHORD

BOT CHORD

Weight: 82 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing

Installation guide.

FT = 20%

3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 129 lb uplift at joint 2 and 129 lb uplift at joint 6.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

| Job         | Truss | Truss Type             | Qty | Ply | Castro House-Castro House |
|-------------|-------|------------------------|-----|-----|---------------------------|
| Q-2201750-1 | T3GE  | Common Supported Gable | 1   | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:43 Page: 1 ID:WcIT80IIiUUMIcWrGHlyhNyilXO-M10Pt1LuSD4Dgb5pdL7sPTAflLQehDAYXo\_fl?yiHyU



#### LUMBER

| TOP CHORD | 2x4 SP No.1 |
|-----------|-------------|
| BOT CHORD | 2x4 SP No.1 |
| OTHERS    | 2x4 SP No.3 |

## **REACTIONS** All bearings 16-8-0.

(lb) - Max Horiz 2=-115 (LC 9), 20=-115 (LC 9)

- Max Uplift All uplift 100 (lb) or less at joint(s) 2, 10, 12, 13, 14, 16, 17, 19, 20, 23 Max Grav All reactions 250 (lb) or less at joint(s) 2, 10, 12, 13, 14, 15, 16,
  - 17, 19, 20, 23
- FORCES (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

#### NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) -1-4-0 to 1-8-0, Exterior (2) 1-8-0 to 8-4-0, Corner (3) 8-4-0 to 11-4-0, Exterior (2) 11-4-0 to 18-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 17, 19, 14, 13, 12, 10, 2, 10.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.



LOAD CASE(S)

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 1) Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-7=-60, 1-7=-20

Concentrated Loads (lb)

Vert: 10=-1502 (F), 9=-1502 (F), 16=-1506 (F), 17=-1502 (F), 18=-1502 (F), 19=-1502 (F), 20=-1502 (F), 21=-1502 (F)

| Job         | Truss | Truss Type | Qty | Ply | Castro House-Castro House |
|-------------|-------|------------|-----|-----|---------------------------|
| Q-2201750-1 | Τ4    | Common     | 5   | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:45 Page: 1 ID:WcIT8OIIiUUMIcWrGHlyhNyiIXO-IP89IjM8zqKxvvFBllAKUuG?n94797pq\_6TmNtyiHyS



4x5 =

3





2x4 =

Scale = 1:24.5

|             |       | -               | -               |           |      |          |       |       |        |     | I             |          |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading     | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.09 | Vert(LL) | 0.00  | 6-12  | >999   | 240 | MT20          | 244/190  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC        | 0.09 | Vert(CT) | -0.01 | 6-12  | >999   | 180 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.04 | Horz(CT) | 0.00  | 4     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MP |      |          |       |       |        |     | Weight: 29 lb | FT = 20% |

# LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.3 WEBS **REACTIONS** (lb/size) 2=323/0-3-8, (min. 0-1-8), 4=323/0-3-8, (min. 0-1-8) Max Horiz 2=-51 (LC 9)

Max Uplift 2=-67 (LC 11), 4=-67 (LC 11)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-13=-289/34, 4-14=-289/34

## TOP CHORD

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-3-8, Exterior (2) 3-3-8 to 6-2-2, Interior (1) 6-2-2 to 7-7-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 3) any other members

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 2 and 67 lb uplift at joint 4. 4)

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

3-3-8

3-3-8

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

6-7-0

3-3-8

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

2x4 =



# LUMBER

| TOP CHORD | 2x4 SP No.1 |
|-----------|-------------|
| BOT CHORD | 2x4 SP No.1 |
| OTHERS    | 2x4 SP No.3 |

## **REACTIONS** All bearings 12-2-12.

(lb) - Max Horiz 1=70 (LC 10)

Max Uplift All uplift 100 (lb) or less at joint(s) 1, 5, 6, 8, 13

Max Grav All reactions 250 (lb) or less at joint(s) 1 except 6=312 (LC 21),

7=376 (LC 1), 8=299 (LC 20)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 3-7=-294/0

## WEBS

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 6-1-12, Exterior (2) 6-1-12 to 9-1-12, Interior (1) 9-1-12 to 12-3-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing. 3)

4) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6, 5. 5)

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing

| Job         | Truss | Truss Type | Qty | Ply | Castro House-Castro House |
|-------------|-------|------------|-----|-----|---------------------------|
| Q-2201750-1 | V2    | Valley     | 1   | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:46 Page: 1 ID:T?QDZ3nYE5k4XwgENhoQmoyiIXM-nciXV3Nmk8SoX3qOJThZ16o9WYPSuZI\_DmDKvKyiHyR



2x4 II

8-2-12



2x4 💋

Scale = 1:23.8

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|------|-----------|------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.16 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC        | 0.15 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.09 | Horiz(TL) | 0.00 | 3     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MP |      |           |      |       |        |     | Weight: 29 lb | FT = 20% |

#### LUMBER TOP CHORD

| TOP CHORD | 2x4 SP     | No.1                                                               |
|-----------|------------|--------------------------------------------------------------------|
| BOT CHORD | 2x4 SP     | No.1                                                               |
| OTHERS    | 2x4 SP     | No.3                                                               |
|           |            |                                                                    |
| REACTIONS | (lb/size)  | 1=36/8-2-12, (min. 0-1-8), 3=41/8-2-12, (min. 0-1-8),              |
|           |            | 4=581/8-2-12, (min. 0-1-8)                                         |
|           | Max Horiz  | 1=-46 (LC 9)                                                       |
|           | Max Uplift | 1=-14 (LC 21), 3=-11 (LC 20), 4=-98 (LC 11)                        |
| I         | Max Grav   | 1=68 (LC 20), 3=72 (LC 21), 4=581 (LC 1)                           |
| FORCES    | (lb) -     | Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. |
| TOP CHORD | 2-9=-      | -42/258, 2-10=-40/252                                              |
| WEBS      | 2-4=-      | -419/105                                                           |
| ··        |            |                                                                    |

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-1-12, Exterior (2) 4-1-12 to 7-3-15, Interior (1) 7-3-15 to 8-3-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing. 3)

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 1, 11 lb uplift at joint 3 and 98 lb uplift at joint 4. 5)

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 8-2-12 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

3

2x4 💊

| Job         | Truss | Truss Type | Qty | Ply | Castro House-Castro House |
|-------------|-------|------------|-----|-----|---------------------------|
| Q-2201750-1 | V3    | Valley     | 1   | 1   | Job Reference (optional)  |

1-5-3

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:46 Page: 1 ID:T?QDZ3nYE5k4XwgENhoQmoyiIXM-nciXV3Nmk8SoX3qOJThZ16oBWYRBuaK\_DmDKvKyiHyR





4-2-12



| Scale = 1:19.4 |       | 1               |                 |           |      |           |      |       |        |     |               |          |  |
|----------------|-------|-----------------|-----------------|-----------|------|-----------|------|-------|--------|-----|---------------|----------|--|
| Loading        | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |  |
| TCLL (roof)    | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.03 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 244/190  |  |
| TCDL           | 10.0  | Lumber DOL      | 1.15            | BC        | 0.04 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |  |
| BCLL           | 0.0*  | Rep Stress Incr | YES             | WB        | 0.03 | Horiz(TL) | 0.00 | 3     | n/a    | n/a |               |          |  |
| BCDL           | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MP |      |           |      |       |        |     | Weight: 13 lb | FT = 20% |  |

#### LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.3 OTHERS **REACTIONS** (lb/size) 1=49/4-2-12, (min. 0-1-8), 3=52/4-2-12, (min. 0-1-8), 4=238/4-2-12, (min. 0-1-8) Max Horiz 1=-22 (LC 9) Max Uplift 1=-6 (LC 11), 3=-6 (LC 11), 4=-30 (LC 11)

Max Grav 1=57 (LC 20), 3=60 (LC 21), 4=238 (LC 1)

V

1-1-7

0-0-#

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 1, 6 lb uplift at joint 3 and 30 lb uplift at joint 4. 5)

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-2-12 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

L

| Job                            | Truss      | Truss Type     | Qty          | Ply            | Castro House-Castro House                              |         |
|--------------------------------|------------|----------------|--------------|----------------|--------------------------------------------------------|---------|
| Q-2201750-1                    | V4         | Valley         | 1            | 1              | Job Reference (optional)                               |         |
| Peak Truss Builders LLC. New H | till, user | Run: 8,43 S Fe | 5 3 2021 Pri | int: 8.430 S I | Feb. 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:47 | Page: 1 |

Peak Truss Builders LLC, New Hill, user Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:47

ID:T?QDZ3nYE5k4XwgENhoQmoyiIXM-FoGwjPOOVRaf8DPasACoaJLM1ynTd157SQytRmyiHyQ

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 6-0-0 oc bracing

Installation guide.



BRACING

TOP CHORD

BOT CHORD

## LUMBER

TCDI

BCLL

BCDL

5-6-8

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.3 OTHERS

# REACTIONS All bearings 16-6-12.

(lb) - Max Horiz 1=-96 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 10, 11, 12, 14, 15, 17

- Max Grav All reactions 250 (lb) or less at joint(s) 1, 9, 10, 11, 12, 13, 14,
  - 15, 17
- (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

# FORCES NOTES

- Unbalanced roof live loads have been considered for this design. 1)
- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Corner (3) 0-0-6 to 3-0-6, Exterior (2) 3-0-6 to 8-3-12, Corner (3) 8-3-12 to 11-3-12, Exterior (2) 11-3-12 to 16-7-2 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 5)
- Gable studs spaced at 2-0-0 oc. 6)
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 7) any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 15, 17, 12, 11, 10.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9)



# LUMBER

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.3 OTHERS

# REACTIONS All bearings 12-6-12.

(lb) - Max Horiz 1=-72 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 6, 8

Max Grav All reactions 250 (lb) or less at joint(s) 1, 5 except 6=309 (LC

21), 7=266 (LC 1), 8=310 (LC 20)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# FORCES NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 6-3-12, Exterior (2) 6-3-12 to 9-3-12, Interior (1) 9-3-12 to 12-7-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6. 5)

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6)

LOAD CASE(S) Standard TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be

installed during truss erection, in accordance with Stabilizer Installation guide.

| Job         | Truss | Truss Type | Qty | Ply | Castro House-Castro House |
|-------------|-------|------------|-----|-----|---------------------------|
| Q-2201750-1 | V6    | Valley     | 1   | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:48 Page: 1

ID:T?QDZ3nYE5k4XwgENhoQmoyiIXM-j\_qIwIP1GliWmMzmQuj16XtVmM5kMTgHg4iQzCyiHyP



4x5 =



Peak Truss Builders LLC, New Hill, user



8-6-12

2x4 🍫

Scale = 1:24.2

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|------|-----------|------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.17 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC        | 0.16 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.10 | Horiz(TL) | 0.00 | 3     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MP |      |           |      |       |        |     | Weight: 30 lb | FT = 20% |

#### LUMBER P CHORD

| TOP CHORD 2x4 SF    | P No.1                                                               |
|---------------------|----------------------------------------------------------------------|
| BOT CHORD 2x4 SF    | P No.1                                                               |
| OTHERS 2x4 SF       | 2 No.3                                                               |
|                     |                                                                      |
| REACTIONS (lb/size) | 1=33/8-6-12, (min. 0-1-8), 3=37/8-6-12, (min. 0-1-8),                |
|                     | 4=615/8-6-12, (min. 0-1-8)                                           |
| Max Horiz           | z 1=-48 (LC 9)                                                       |
| Max Uplif           | t 1=-18 (LC 21), 3=-15 (LC 20), 4=-105 (LC 11)                       |
| Max Grav            | 1=67 (LC 20), 3=71 (LC 21), 4=615 (LC 1)                             |
| FORCES (lb)         | - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. |
| TOP CHORD 2-10      | )=-46/279, 2-11=-45/272                                              |
|                     |                                                                      |

WEBS 2-4=-448/114

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-3-12, Exterior (2) 4-3-12 to 7-3-12, Interior (1) 7-3-12 to 8-7-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing. 3)

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1, 15 lb uplift at joint 3 and 105 lb uplift at joint 4. 5)

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 8-6-12 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing

| Job         | Truss | Truss Type | Qty | Ply | Castro House-Castro House |
|-------------|-------|------------|-----|-----|---------------------------|
| Q-2201750-1 | V7    | Valley     | 1   | 1   | Job Reference (optional)  |

Page: 1 Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:48 ID:T?QDZ3nYE5k4XwgENhoQmoyiIXM-j\_qlwIP1GliWmMzmQuj16XtXvM7YMUmHg4iQzCyiHyP





2





4-6-12





Seele = 1:10 9

| Scale = 1:19.6 |       |                 |                 | 1         |      |           |      |       |        |     | 1             |          |  |
|----------------|-------|-----------------|-----------------|-----------|------|-----------|------|-------|--------|-----|---------------|----------|--|
| Loading        | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |  |
| TCLL (roof)    | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.03 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 244/190  |  |
| TCDL           | 10.0  | Lumber DOL      | 1.15            | BC        | 0.05 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |  |
| BCLL           | 0.0*  | Rep Stress Incr | YES             | WB        | 0.03 | Horiz(TL) | 0.00 | 3     | n/a    | n/a |               |          |  |
| BCDL           | 10.0  | Code            | IRC2015/TPI2014 | Matrix-MP |      |           |      |       |        |     | Weight: 15 lb | FT = 20% |  |

#### LUMBER

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.3 OTHERS **REACTIONS** (lb/size) 1=50/4-6-12, (min. 0-1-8), 3=53/4-6-12, (min. 0-1-8), 4=262/4-6-12, (min. 0-1-8) Max Horiz 1=-24 (LC 9) Max Uplift 1=-6 (LC 11), 3=-6 (LC 11), 4=-33 (LC 11)

Max Grav 1=60 (LC 20), 3=63 (LC 21), 4=262 (LC 1)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 1, 6 lb uplift at joint 3 and 33 lb uplift at joint 4. 5)

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-6-12 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing

| ſ                                       | Job         | Truss | Truss Type      | Qty          | Ply            | Castro House-Castro House                             |         |
|-----------------------------------------|-------------|-------|-----------------|--------------|----------------|-------------------------------------------------------|---------|
|                                         | Q-2201750-1 | V8    | Valley          | 1            | 1              | Job Reference (optional)                              |         |
| Peak Truss Builders LLC, New Hill, user |             |       | Run: 8.43 S Fel | o 3 2021 Pri | int: 8.430 S I | Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:49 | Page: 1 |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:49 Page: 1 ID:xB\_enPoA?Psx93FQxPJfl0yilXL-BANg84Pf12qNOWYy\_bEGfkQiUmTo5v0QvkR\_WfyiHyO



(lb) - Max Horiz 1=-170 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 1, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31 Max Grav All reactions 250 (lb) or less at joint(s) 1, 17, 18, 19, 20, 21, 22,

Srav All reactions 250 (lb) or less at joint(s) 1, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=29ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-0-6 to 3-0-6, Exterior (2) 3-0-6 to 14-5-8, Corner (3) 14-5-8 to 17-5-8, Exterior (2) 17-5-8 to 28-10-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.

7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 26, 27, 28, 29, 30, 31, 23, 22, 21, 20, 19, 18.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Truss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                | Truss Type                                                                                                                                                                                                                                                                 |                                                                                                                            | Qty                                                                                 | Ply                                                                                                                         | Cast                                                                                | ro Hous                                                                                    | e-Cast                                                                         | ro Hou                                                              | Ise                                                                                                                     |                                                                                                                                                  |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Q-2201750-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                | Valley                                                                                                                                                                                                                                                                     |                                                                                                                            | 1                                                                                   | 1                                                                                                                           | loh                                                                                 | Poforon                                                                                    | co (ont                                                                        | ional)                                                              |                                                                                                                         |                                                                                                                                                  |       |
| Peak Truss Builders LLC. New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hill. user                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            | Run: 8.43 S                                                                                                                | Feb 3 2021                                                                          | JOD Reference (optional)           J21 Print: 8.430 S Feb 3 2021 MiTek Industries. Inc. Wed Aug 31 16:19:49         Page: 1 |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
| -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            | ID:x                                                                                | B_cnPoA?F                                                                                                                   | Psx93FQxF                                                                           | Jfl0yilXL                                                                                  | -BANg8                                                                         | 4Pf12q                                                              | NOWYy_bEGfkQgd                                                                                                          | mR05s4QvkR_Wfyil                                                                                                                                 | ЧуО   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         | 24-10                                                                                                                                            | )_4   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  | 12-5-2                                                                                                                                                                                                                                                                     |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            | 24                                                                             | <b>1-</b> 5-1                                                       |                                                                                                                         |                                                                                                                                                  | ,     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  | 12-5-2                                                                                                                                                                                                                                                                     |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            | 11-                                                                            | 11-15                                                               |                                                                                                                         | 0-5-                                                                                                                                             | 3     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            | 4.                                                                                  | 5=                                                                                                                          |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            | 4                                                                                   | 5-                                                                                                                          |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            | 19                                                                                                                         |                                                                                     |                                                                                                                             | 2                                                                                   | 0                                                                                          |                                                                                |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            | 3                                                                                                                          |                                                                                     |                                                                                                                             |                                                                                     | 5                                                                                          |                                                                                |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  | TI                                                                                                                                                                                                                                                                         | P                                                                                                                          | стя                                                                                 | 1                                                                                                                           |                                                                                     | Ph.                                                                                        | r)                                                                             |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
| <u>+</u> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            | $\searrow$                                                                     |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
| 7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                | $\sim$                                                              |                                                                                                                         |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                |                                                                                                                                                                                                                                                                            | \$T2                                                                                                                       |                                                                                     |                                                                                                                             |                                                                                     | \$T4                                                                                       |                                                                                |                                                                     | 6                                                                                                                       |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                                                                                                                                                               | r                                                                                                                                                                                                                                                                          |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         | 21                                                                                                                                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>12</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>\$1</b>                                                                                                                                                                       | Г1                                                                                                                                                                                                                                                                         |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                |                                                                     | <b>S</b> Т5                                                                                                             | $\sim$                                                                                                                                           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                | P1                                                                                                                                                                                                                                                                         |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                | <b>P</b> 2                                                          |                                                                                                                         |                                                                                                                                                  | 7     |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:                                                                                                                                                                               | 3 22                                                                                                                                                                                                                                                                       | 1211                                                                                                                       | 10                                                                                  |                                                                                                                             |                                                                                     | 9                                                                                          |                                                                                | 23                                                                  | 8                                                                                                                       |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         |                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3x4 🛩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            | 3x4=                                                                                                                       |                                                                                     |                                                                                                                             |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         | 3x4 👟                                                                                                                                            |       |
| Scale = 1:45.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3x4 ≁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            | 3x4=                                                                                                                       | 24-10                                                                               | )-4                                                                                                                         |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         | 3x4 👟                                                                                                                                            |       |
| Scale = 1:45.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3x4 ≠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            | 3x4=                                                                                                                       | 24-10                                                                               | )-4                                                                                                                         |                                                                                     |                                                                                            |                                                                                |                                                                     |                                                                                                                         | 3x4 🗙                                                                                                                                            |       |
| Scale = 1:45.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3x4 ≈                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ing                                                                                                                                                                              | 2-0-0                                                                                                                                                                                                                                                                      | 3x4=                                                                                                                       | 24-10                                                                               | )-4<br><br>DEFL                                                                                                             | in                                                                                  | (loc)                                                                                      | l/defl                                                                         | L/d                                                                 | PLATES                                                                                                                  | 3x4 s                                                                                                                                            |       |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3x4 ≠<br>(psf) <b>Spac</b><br>20.0 Plate<br>10.0 Lumb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ing<br>Grip DOL<br>ber DOI                                                                                                                                                       | 2-0-0<br>1.15<br>1 15                                                                                                                                                                                                                                                      | 3x4=                                                                                                                       | 24-10<br>0.17 V<br>0.13 V                                                           | )-4<br>DEFL<br>/ert(LL)<br>/ert(TL)                                                                                         | in<br>n/a<br>n/a                                                                    | (loc)                                                                                      | l/defl<br>n/a<br>n/a                                                           | L/d<br>999<br>999                                                   | PLATES<br>MT20                                                                                                          | 3x4 <b>GRIP</b><br>244/190                                                                                                                       |       |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3x4 ≠<br>(psf) <b>Spac</b><br>20.0 Plate<br>10.0 Lumb<br>0.0* Rep 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>ing</b><br>Grip DOL<br>ber DOL<br>Stress Incr                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES                                                                                                                                                                                                                                               | 3x4=<br>CSI<br>TC<br>BC<br>WB                                                                                              | 24-10<br>0.17 V<br>0.13 V<br>0.35 H                                                 | )-4<br>DEFL<br>/ert(LL)<br>/ert(TL)<br>łoriz(TL)                                                                            | in<br>n/a<br>0.00                                                                   | (loc)<br>-<br>-<br>7                                                                       | l/defl<br>n/a<br>n/a<br>n/a                                                    | L/d<br>999<br>999<br>n/a                                            | PLATES<br>MT20                                                                                                          | 3x4 <b>*</b><br>GRIP<br>244/190                                                                                                                  | ,     |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3x4 ≠<br>(psf) <b>Spac</b><br>20.0 Plate<br>10.0 Lumb<br>0.0* Rep 3<br>10.0 Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>ing</b><br>Grip DOL<br>ber DOL<br>Stress Incr                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                                                            | 3x4=<br>CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                 | 24-10<br>0.17<br>0.13<br>0.35                                                       | )-4<br>DEFL<br>/ert(LL)<br>/ert(TL)<br>loriz(TL)                                                                            | in<br>n/a<br>n/a<br>0.00                                                            | (loc)<br>-<br>-<br>7                                                                       | l/defl<br>n/a<br>n/a<br>n/a                                                    | L/d<br>999<br>999<br>n/a                                            | PLATES<br>MT20<br>Weight: 114 lb                                                                                        | 3x4 <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                           |       |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3x4 ≠<br>(psf) <b>Spac</b><br>20.0 Plate<br>10.0 Lumt<br>0.0* Rep<br>10.0 Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>ing</b><br>Grip DOL<br>ber DOL<br>Stress Incr                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                                                            | 3x4=<br>CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                 | 24-10<br>0.17 V<br>0.13 V<br>0.35 H                                                 | DEFL<br>/ert(LL)<br>/ert(TL)<br>łoriz(TL)                                                                                   | in<br>n/a<br>n/a<br>0.00                                                            | (loc)<br>-<br>-<br>7                                                                       | l/defl<br>n/a<br>n/a<br>n/a                                                    | L/d<br>999<br>999<br>n/a                                            | <b>PLATES</b><br>MT20<br>Weight: 114 lb                                                                                 | 3x4 <b>CRIP</b><br>244/190<br>FT = 20%                                                                                                           |       |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD 2x4 SP N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3x4 ≠<br>(psf) Spac<br>20.0 Plate<br>10.0 Lumt<br>0.0* Rep<br>10.0 Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>ing</b><br>Grip DOL<br>ber DOL<br>Stress Incr                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                                                            | 3x4=<br>CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                 | 24-10<br>0.17 V<br>0.13 V<br>0.35 F<br>BRACING                                      | )-4<br>DEFL<br>/ert(LL)<br>/ert(TL)<br>łoriz(TL)                                                                            | in<br>n/a<br>n/a<br>0.00<br>Structur                                                | (loc)<br>-<br>-<br>7<br>al wood                                                            | l/defl<br>n/a<br>n/a<br>n/a                                                    | L/d<br>999<br>999<br>n/a                                            | PLATES<br>MT20<br>Weight: 114 lb                                                                                        | 3x4 <b>★</b><br>GRIP<br>244/190<br>FT = 20%                                                                                                      |       |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD 2x4 SP N<br>BOT CHORD 2x4 SP N<br>OTHERS 2x4 SP N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3x4 ≠<br>(psf) Spac<br>20.0 Plate<br>10.0 Lumt<br>0.0* Rep 1<br>10.0 Code<br>lo.1<br>lo.1<br>lo.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>ing</b><br>Grip DOL<br>Der DOL<br>Stress Incr                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                                                            | 3x4=<br>CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                 | 24-10<br>0.17<br>0.13<br>0.35<br>F<br>BRACING<br>BOT CHOF                           | D-4<br>DEFL<br>/ert(LL)<br>/ert(TL)<br>łoriz(TL)<br>łoriz(TL)<br>RD<br>RD                                                   | in<br>n/a<br>n/a<br>0.00<br>Structur<br>Rigid ce                                    | (loc)<br>-<br>-<br>7<br>al wood<br>iling dir.                                              | l/defl<br>n/a<br>n/a<br>n/a<br>sheath<br>ectly ap                              | L/d<br>999<br>999<br>n/a                                            | PLATES<br>MT20<br>Weight: 114 lb<br>prectly applied or 0<br>or 6-0-0 oc bracil                                          | 3x4 ⊾<br>GRIP<br>244/190<br>FT = 20%<br>6-0-0 oc purlins.<br>ng.                                                                                 | ,<br> |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD 2x4 SP N<br>BOT CHORD 2x4 SP N<br>OTHERS 2x4 SP N<br>REACTIONS All bearings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3x4 ≠<br>(psf) Spac<br>20.0 Plate<br>10.0 Lumt<br>0.0* Rep :<br>10.0 Code<br>10.1<br>10.1<br>10.3<br>24-10-4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s <b>ing</b><br>Grip DOL<br>Ser DOL<br>Stress Incr                                                                                                                               | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                                                            | 3x4=<br>CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                 | 24-10<br>0.17<br>0.13<br>0.35<br>H<br>BRACING<br>TOP CHOF<br>BOT CHOF               | D <b>EFL</b><br>/ert(LL)<br>/ert(TL)<br>łoriz(TL)<br>łoriz(TL)                                                              | in<br>n/a<br>n/a<br>0.00<br>Structur<br>Rigid ce<br>MiTek r<br>installe             | (loc)<br>-<br>7<br>al wood<br>iling din<br>ecomm<br>d during                               | l/defl<br>n/a<br>n/a<br>n/a<br>sheath<br>ectly ap<br>ends th<br>truss e        | L/d<br>999<br>999<br>n/a<br>sing din<br>oplied o<br>at Stal         | PLATES<br>MT20<br>Weight: 114 lb<br>rectly applied or (<br>or 6-0-0 oc bracin<br>bilizers and requin, in accordance     | 3x4 ₅<br>GRIP<br>244/190<br>FT = 20%<br>6-0-0 oc purlins.<br>19.<br>red cross bracing I<br>with Stabilizer                                       | be    |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD 2x4 SP N<br>BOT CHORD 2x4 SP N<br>OTHERS 2x4 SP N<br>REACTIONS All bearings<br>(lb) - Max Horiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3x4 ≠<br>(psf) Spac<br>20.0 Plate<br>10.0 Lumt<br>0.0* Rep 3<br>10.0 Code<br>10.1<br>10.1<br>10.3<br>24-10-4.<br>1=-146 (LC 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grip DOL<br>Sor DOL<br>Stress Incr                                                                                                                                               | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                                                            | 3x4=<br>CSI<br>TC<br>BC<br>WB<br>Matrix-MS                                                                                 | 24-10<br>0.17<br>0.13<br>0.35<br>F<br>BRACING<br>TOP CHOP<br>BOT CHOP               | D <b>EFL</b><br>Vert(LL)<br>/ert(TL)<br>łoriz(TL)<br>RD                                                                     | in<br>n/a<br>n/a<br>0.00<br>Structur<br>Rigid ce<br>MiTek r<br>installe<br>Installa | (loc)<br>-<br>7<br>al wood<br>iling dir<br>ecomm<br>d during<br>tion guid                  | l/defl<br>n/a<br>n/a<br>n/a<br>sheath<br>ectly ap<br>ends th<br>truss e<br>de. | L/d<br>999<br>999<br>n/a<br>ing dir<br>pplied o<br>at Stal          | PLATES<br>MT20<br>Weight: 114 lb<br>rectly applied or o<br>or 6-0-0 oc bracil<br>bilizers and requ<br>n, in accordance  | 3x4 ₅<br>GRIP<br>244/190<br>FT = 20%<br>6-0-0 oc purlins.<br>ng.<br>ired cross bracing i<br>with Stabilizer                                      | be    |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD 2x4 SP N<br>BOT CHORD 2x4 SP N<br>OTHERS 2x4 SP N<br>REACTIONS All bearings<br>(lb) - Max Horiz<br>Max Uplift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3x4 ≠<br>(psf) Spac<br>20.0 Plate<br>Lumt<br>0.0* Rep<br>10.0 Code<br>10.1<br>10.1<br>10.3<br>24-10-4.<br>1=-146 (LC 9)<br>All uplift 100 (lb<br>9=-104 (LC 11),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fing<br>Grip DOL<br>DOL<br>Stress Incr                                                                                                                                           | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014<br>(s) except 8=-107 (LC<br>1), 13=-105 (LC 11)                                                                                                                                                                            | 3x4=<br><b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS                                                                          | 24-10<br>0.17 \<br>0.13 \<br>0.35  <br>BRACING<br>TOP CHOF<br>BOT CHOF              | D <b>EFL</b><br>Vert(LL)<br>/ert(TL)<br>łoriz(TL)<br>RD                                                                     | in<br>n/a<br>0.00<br>Structur<br>Rigid ce<br>MiTek r<br>installe<br>Installa        | (loc)<br>-<br>-<br>7<br>al wood<br>iling dir<br>ecomm<br>d during<br>d during<br>tion guid | l/defl<br>n/a<br>n/a<br>n/a<br>sheath<br>ectly ap<br>ends th<br>truss e<br>de. | L/d<br>999<br>999<br>n/a<br>ing dir<br>pplied o<br>at Stal          | PLATES<br>MT20<br>Weight: 114 lb<br>rectly applied or or<br>or 6-0-0 oc bracin<br>bilizers and requ<br>n, in accordance | 3x4 ₅<br>GRIP<br>244/190<br>FT = 20%<br>6-0-0 oc purlins.<br>ng.<br>ired cross bracing i<br>with Stabilizer                                      | be    |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD 2x4 SP N<br>BOT CHORD 2x4 SP N<br>OTHERS 2x4 SP N<br>REACTIONS All bearings<br>(lb) - Max Horiz<br>Max Uplift A<br>State of the second s | 3x4 ≠<br>(psf) Spac<br>20.0 Plate<br>10.0 Lumt<br>0.0* Rep :<br>10.0 Code<br>10.1<br>10.3<br>24-10-4.<br>1=-146 (LC 9)<br>All uplift 100 (lb<br>9=-104 (LC 11),<br>All reactions 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ing<br>Grip DOL<br>per DOL<br>Stress Incr<br>) or less at jointr<br>12=-106 (LC 1<br>0 (Ib) or less at<br>17 100-487 (f                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014<br>(s) except 8=-107 (LC<br>1), 13=-105 (LC 11)<br>joint(s) 1, 7 except 8=<br>10 - 15) 12-427 (JC 45)                                                                                                                      | 3x4=<br><b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS<br>11),<br>390 (LC<br>12-397                                             | 24-10<br>0.17<br>0.13<br>0.35<br>F<br>BRACING<br>TOP CHOF<br>BOT CHOF               | D <b>EFL</b><br>/ert(LL)<br>/ert(TL)<br>łoriz(TL)<br>łoriz(TL)<br>RD                                                        | in<br>n/a<br>n/a<br>0.00<br>Structur<br>Rigid ce<br>MiTek r<br>installe<br>Installa | (loc)<br>-<br>-<br>7<br>al wood<br>iling dir<br>ecomm<br>d during<br>tion guid             | l/defl<br>n/a<br>n/a<br>n/a<br>sheath<br>ectly ap<br>ends th<br>truss e<br>de. | L/d<br>999<br>999<br>n/a<br>ping dir<br>pplied d<br>at Stal         | PLATES<br>MT20<br>Weight: 114 lb<br>rectly applied or of<br>or 6-0-0 oc bracin<br>bilizers and requ<br>n, in accordance | 3x4<br>GRIP<br>244/190<br>FT = 20%<br>6-0-0 oc purlins.<br>ng.<br>ired cross bracing i<br>with Stabilizer                                        | be    |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD 2x4 SP N<br>BOT CHORD 2x4 SP N<br>OTHERS 2x4 SP N<br>REACTIONS All bearings<br>(lb) - Max Horiz<br>Max Upliff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3x4 ≠<br>(psf) Spac<br>20.0 Plate<br>10.0 Lumb<br>0.0* Rep 3<br>10.0 Code<br>10.1<br>10.1<br>10.3<br>24-10-4.<br>1=-146 (LC 9)<br>All uplift 100 (lb)<br>9=-104 (LC 11),<br>All reactions 250<br>17), 9=434 (LC<br>(LC 16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ing<br>Grip DOL<br>Stress Incr<br>or less at joint<br>12=-106 (LC 1<br>0 (Ib) or less at<br>17), 10=467 (LC                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014<br>(s) except 8=-107 (LC<br>1), 13=-105 (LC 11)<br>joint(s) 1, 7 except 8=<br>C 16), 12=437 (LC 16                                                                                                                         | 3x4=<br><b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS<br>11),<br>390 (LC<br>), 13=387                                          | 24-10<br>0.17<br>0.13<br>0.35<br>BRACING<br>TOP CHOF<br>BOT CHOF                    | D <b>EFL</b><br>/ert(LL)<br>/ort(TL)<br>/oriz(TL)                                                                           | in<br>n/a<br>n/a<br>0.00<br>Structur<br>Rigid ce<br>MiTek r<br>installe<br>Installa | (loc)<br>-<br>-<br>7<br>al wood<br>iling dir<br>ecomm<br>d during<br>tion guid             | l/defl<br>n/a<br>n/a<br>n/a<br>sheath<br>ectly ap<br>ends th<br>truss e<br>de. | L/d<br>999<br>999<br>n/a<br>ning dii<br>p <u>plied d</u><br>at Stal | PLATES<br>MT20<br>Weight: 114 lb<br>rectly applied or (<br>or 6-0-0 oc bracin<br>bilizers and requ<br>n, in accordance  | 3x4 ⊾<br>GRIP<br>244/190<br>FT = 20%<br>6-0-0 oc purlins.<br>1g.<br>ired cross bracing i<br>with Stabilizer                                      | be    |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD 2x4 SP N<br>BOT CHORD 2x4 SP N<br>OTHERS 2x4 SP N<br>REACTIONS All bearings<br>(lb) - Max Horiz<br>Max Grav<br>(EPORCES (lb) - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3x4 ≠ (psf) Spac<br>20.0 Plate<br>10.0 Lumt<br>0.0* Rep 3<br>10.0 Code<br>10.1 C | ) or less at joint<br>12=-106 (LC 1<br>0 (lb) or less at<br>17), 10=467 (LC                                                                                                      | 2-0-0<br>1.15<br>1.5<br>YES<br>IRC2015/TPI2014<br>(s) except 8=-107 (LC<br>1), 13=-105 (LC 11)<br>joint(s) 1, 7 except 8=<br>C 16), 12=437 (LC 16<br>es 250 (lb) or less exc                                                                                               | 3x4=<br><b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS<br>11),<br>390 (LC<br>), 13=387<br>xept when shown.                      | 24-10<br>0.17<br>0.13<br>0.35<br>F<br>BRACING<br>TOP CHOF<br>BOT CHOF               | D <b>EFL</b><br>Vert(LL)<br>/ert(TL)<br>łoriz(TL)                                                                           | in<br>n/a<br>n/a<br>0.00<br>Structur<br>Rigid ce<br>MiTek r<br>installe<br>Installa | (loc)<br>-<br>-<br>7<br>al wood<br>iling din<br>ecomm<br>d during<br>tion gui              | l/defi<br>n/a<br>n/a<br>n/a<br>sheath<br>ectly ap<br>ends th<br>truss e<br>de. | L/d<br>999<br>999<br>n/a<br>n/a<br>at Stal                          | PLATES<br>MT20<br>Weight: 114 lb<br>rectly applied or o<br>or 6-0-0 oc bracil<br>bilizers and requ<br>n, in accordance  | 3x4 ⊾<br>GRIP<br>244/190<br>FT = 20%<br>3-0-0 oc purlins.<br>ng.<br>ired cross bracing i<br>with Stabilizer                                      | be    |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD 2x4 SP N<br>BOT CHORD 2x4 SP N<br>OTHERS 2x4 SP N<br>REACTIONS All bearings<br>(lb) - Max Horiz<br>Max Uplift<br>G<br>Max Grav<br>(ESS (lb) - N<br>WEBS 4-10=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3x4 ≠<br>(psf) Spac<br>20.0 Plate<br>10.0 Lumt<br>0.0* Rep 5<br>10.0 Code<br>10.1<br>10.3<br>24-10-4.<br>1=-146 (LC 9)<br>All uplift 100 (lb)<br>9=-104 (LC 11),<br>All reactions 25i<br>17), 9=434 (LC<br>(LC 16)<br>Max. Comp./Max.<br>-283/0, 3-12=-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or less at jointi<br>2=-106 (LC 1<br>0 (lb) or less at<br>12=-106 (LC 1<br>0 (lb) or less at<br>17), 10=467 (L0<br>x. Ten All forc<br>55/156, 2-13=-2                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014<br>(s) except 8=-107 (LC<br>1), 13=-105 (LC 11)<br>joint(s) 1, 7 except 8=<br>C 16), 12=437 (LC 16<br>es 250 (lb) or less exc<br>258/144, 5-9=-252/154                                                                     | 3x4=<br><b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS<br>* 11),<br>390 (LC<br>), 13=387<br>cept when shown.<br>4, 6-8=-261/145 | 24-10<br>0.17<br>0.13<br>0.35<br>F<br>BRACING<br>BOT CHOF<br>BOT CHOF               | D <b>EFL</b><br>(ert(LL)<br>(ert(TL)<br>Horiz(TL)<br>RD                                                                     | in<br>n/a<br>0.00<br>Structur<br>Rigid ce<br>MiTek r<br>installe<br>Installa        | (loc)<br>-<br>-<br>7<br>al wood<br>iling dir<br>ecomm<br>d during<br>tion guid             | l/defl<br>n/a<br>n/a<br>n/a<br>sheath<br>ectly ap<br>ends th<br>truss e<br>de. | L/d<br>999<br>999<br>n/a<br>ing dii<br>pplied d<br>at Stal          | PLATES<br>MT20<br>Weight: 114 lb<br>rectly applied or or<br>or 6-0-0 oc bracin<br>bilizers and requ<br>n, in accordance | 3x4 ⊾<br>GRIP<br>244/190<br>FT = 20%<br>6-0-0 oc purlins.<br>ng.<br>ired cross bracing i<br>with Stabilizer                                      | be    |
| Scale = 1:45.6<br>Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD 2x4 SP N<br>BOT CHORD 2x4 SP N<br>OTHERS 2x4 SP N<br>OTHERS 2x4 SP N<br>REACTIONS All bearings<br>(lb) - Max Horiz<br>Max Uplift A<br>SCALE<br>(lb) - M<br>WEBS 4-10=<br>NOTES<br>1) Unbalanced roof live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3x4 ≠<br>(psf) Spac<br>20.0 Plate<br>10.0 Lumb<br>0.0* Rep 3<br>10.0 Code<br>10.1<br>10.1<br>10.3<br>24-10-4.<br>1=-146 (LC 9)<br>All uplift 100 (Ib)<br>9=-104 (LC 11),<br>All reactions 255<br>17), 9=434 (LC<br>(LC 16)<br>Max. Comp./Mai<br>-283/0, 3-12=-2<br>loads have bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ing<br>Grip DOL<br>Stress Incr<br>) or less at joint<br>12=-106 (LC 1<br>0 (Ib) or less at<br>17), 10=467 (L0<br>x. Ten All forc<br>55/156, 2-13=-2<br>n considered fo           | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014<br>(s) except 8=-107 (LC<br>1), 13=-105 (LC 11)<br>joint(s) 1, 7 except 8=<br>C 16), 12=437 (LC 16<br>es 250 (lb) or less exc<br>258/144, 5-9=-252/156<br>or this design.                                                  | 3x4=<br><b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS<br>4.11),<br>390 (LC<br>), 13=387<br>cept when shown.<br>4, 6-8=-261/145 | 24-10<br>0.17<br>0.13<br>0.35<br>BRACING<br>TOP CHOF<br>BOT CHOF                    | DEFL<br>/ert(LL)<br>/ert(TL)<br>loriz(TL)<br>loriz(TL)                                                                      | in<br>n/a<br>n/a<br>0.00<br>Structur<br>Rigid ce<br>MiTek r<br>installe<br>Installa | (loc)<br>-<br>-<br>7<br>al wood<br><u>illing dir</u><br>ecomm<br>d during<br>tion guid     | l/defl<br>n/a<br>n/a<br>n/a<br>sheath<br>ectly ap<br>ends th<br>truss e<br>de. | L/d<br>999<br>999<br>n/a<br>ing din<br>p <u>plied</u> d<br>at Stal  | PLATES<br>MT20<br>Weight: 114 lb<br>rectly applied or i<br>or 6-0-0 oc bracin<br>bilizers and requin, in accordance     | 3x4<br>GRIP<br>244/190<br>FT = 20%<br>6-0-0 oc purlins.<br>19.<br>red cross bracing i<br>with Stabilizer                                         | be    |
| Scale = 1:45.6  Loading TCLL (roof) TCDL BCLL BCDL  LUMBER TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N OTHERS 2x4 SP N REACTIONS All bearings (Ib) - Max Horiz Max Uplift Max Grav FORCES (Ib) - M WEBS 4-10= NOTES 1) Unbalanced roof live 2) Wind: ASCE 7-10; Vu and C-C Exterior (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3x4 ≠ (psf) Spac<br>20.0 Plate<br>10.0 Lumb<br>0.0* Rep 3<br>10.0 Code<br>10.1 Lon<br>10.1 Lon<br>10.1 Lon<br>10.3 24-10-4.<br>11=-146 (LC 9)<br>All uplift 100 (lb<br>9=-104 (LC 11),<br>All reactions 25i<br>17), 9=-434 (LC<br>(LC 16)<br>Max. Comp./Max<br>-283/0, 3-12=-2<br>Loads have bees<br>ult=120mph (3-5)<br>0.6 to 3.0 5 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing<br>Grip DOL<br>Stress Incr<br>Stress Incr<br>2=-106 (LC 1<br>0 (Ib) or less at<br>17), 10=467 (LC<br>x. Ten All forc<br>55/156, 2-13=-2<br>n considered fo<br>econd gust) Va | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014<br>(s) except 8=-107 (LC<br>1), 13=-105 (LC 11)<br>joint(s) 1, 7 except 8=<br>C 16), 12=437 (LC 16<br>es 250 (lb) or less exc<br>258/144, 5-9=-252/154<br>or this design.<br>sd=95mph; TCDL=6.0<br>b to 12-5.6 Exterior /2 | 3x4=<br><b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MS<br>4, 6-8=-261/145<br>CC<br>CC<br>11),<br>125-8 to 15 5 8                | 24-10<br>0.17<br>0.13<br>0.35<br><b>BRACING</b><br>TOP CHOF<br>BOT CHOF<br>BOT CHOF | )-4<br><b>DEFL</b><br>/ert(LL)<br>/ert(TL)<br>łoriz(TL)<br>RD<br>RD<br>RD<br>20ft; L=2                                      | in<br>n/a<br>0.00<br>Structur<br>Rigid ce<br>MiTek r<br>installe<br>Installa        | (loc)<br>-<br>-<br>7<br>al wood<br>iling dir<br>ecomm<br>d during<br>tion guid             | l/defl<br>n/a<br>n/a<br>n/a<br>sheath<br>ectly ap<br>ends th<br>truss e<br>de. | L/d<br>999<br>999<br>n/a<br>at Stal<br>erectio                      | PLATES<br>MT20<br>Weight: 114 lb<br>rectly applied or (<br>or 6-0-0 oc bracin<br>bilizers and requin, in accordance     | 3x4<br>GRIP<br>244/190<br>FT = 20%<br>6-0-0 oc purlins.<br>19.<br>red cross bracing l<br>with Stabilizer<br>S (directional)<br>ad : and vertical | be    |

left and right exp 3) All plates are 2x4 MT20 unless otherwise indicated.

4)

Gable requires continuous bottom chord bearing. \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 5) any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint 12, 105 lb uplift at joint 13, 104 lb uplift at joint 9 and 107 lb 6) uplift at joint 8.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



- 2) Wind: ASCE 7-10; Vull=12Umph (3-second gust) Vasa=95mph; 1 CDL=6.Upst; BCDL=6.Upst; n=30f; B=20f; L=2.1f; eave=4f; Cat. If; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 10-5-8, Exterior (2) 10-5-8 to 13-5-8, Interior (1) 13-5-8 to 20-10-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 8 except (jt=lb) 11=113, 9=111.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



```
2x4 SP No.1
BOT CHORD
             2x4 SP No.3
OTHERS
```

# **REACTIONS** All bearings 16-10-4.

(lb) - Max Horiz 1=98 (LC 10)

Max Uplift All uplift 100 (lb) or less at joint(s) except 6=-120 (LC 11),

9=-120 (LC 11)

Max Grav All reactions 250 (lb) or less at joint(s) 1, 5 except 6=410 (LC 17), 7=449 (LC 16), 9=409 (LC 16)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-7=-309/1, 2-9=-284/157, 4-6=-283/156 WEBS

#### NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 8-5-8, Exterior (2) 8-5-8 to 11-5-8, Interior (1) 11-5-8 to 16-10-10 zone; cantilever left and right exposed; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 120 lb uplift at joint 9 and 119 lb uplift at joint 6. 5)

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing



(lb) - Max Horiz 1=-74 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 6, 8

Max Grav All reactions 250 (lb) or less at joint(s) 1, 5 except 6=312 (LC

21), 7=271 (LC 1), 8=314 (LC 20)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# FORCES NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 6-5-8, Exterior (2) 6-5-8 to 9-5-8, Interior (1) 9-5-8 to 12-10-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6. 5)

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6)

| Job                      | Truss          | Truss Type | Qty                                 | Ply           | Castro House-Castro House               |                     |            |  |  |
|--------------------------|----------------|------------|-------------------------------------|---------------|-----------------------------------------|---------------------|------------|--|--|
| Q-2201750-1              | V13            | Valley     | Valley 1 1 Job Reference (optional) |               |                                         |                     |            |  |  |
| Peak Truss Builders LLC, | New Hill, user |            | Run: 8.43 S Feb 3 2021 Pi           | rint: 8.430 S | Feb 3 2021 MiTek Industries, Inc. Wed / | Aug 31 16:19:51     | Page: 1    |  |  |
|                          |                |            | ID:_psi                             | rMjmw locDv   | /m52q_HBDbyIIXN-7ZVQZmRvZg45dqil        | L50Hkk9V0oZ6GZqIJM2 | 2w4aXyiHyM |  |  |
|                          |                | 1          |                                     | I.            |                                         | 8-10-4              |            |  |  |
|                          |                |            | 4-5-2                               |               | 8-5-1                                   |                     |            |  |  |
|                          |                |            | 4-5-2                               | 1             | 3-11-15                                 | 1 1                 |            |  |  |
|                          |                |            |                                     |               |                                         | 0-5-3               |            |  |  |





8-10-4

4x5 =

2

2x4 🍬

1

2x4 💊

GRIP

244/190

FT = 20%

| Scale = 1:24.5 | <u> </u> | 8-10-4          |                 |           |      |           |      |       |        |     |               |  |
|----------------|----------|-----------------|-----------------|-----------|------|-----------|------|-------|--------|-----|---------------|--|
| Loading        | (psf)    | Spacing         | 2-0-0           | CSI       | -    | DEFL      | in   | (loc) | l/defl | L/d | PLATES        |  |
| TCLL (roof)    | 20.0     | Plate Grip DOL  | 1.15            | тс        | 0.19 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          |  |
| TCDL           | 10.0     | Lumber DOL      | 1.15            | BC        | 0.17 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |  |
| BCLL           | 0.0*     | Rep Stress Incr | YES             | WB        | 0.11 | Horiz(TL) | 0.00 | 3     | n/a    | n/a |               |  |
| BCDL           | 10.0     | Code            | IRC2015/TPI2014 | Matrix-MP |      |           |      |       |        |     | Weight: 31 lb |  |

#### LUMBER OP CHORD

| TOP CHORD   | 2x4 SP     | No.1                                                                                |
|-------------|------------|-------------------------------------------------------------------------------------|
| BOT CHORD   | 2x4 SP     | No.1                                                                                |
| OTHERS      | 2x4 SP     | No.3                                                                                |
| REACTIONS ( | (lb/size)  | 1=29/8-10-4, (min. 0-1-8), 3=34/8-10-4, (min. 0-1-8),<br>4=646/8-10-4, (min. 0-1-8) |
| 1           | Max Horiz  | 1=-50 (LC 9)                                                                        |
| n           | Max Uplift | 1=-22 (LC 21), 3=-19 (LC 20), 4=-112 (LC 11)                                        |
| 1           | Max Grav   | 1=66 (LC 20), 3=70 (LC 21), 4=646 (LC 1)                                            |
| FORCES      | (lb) -     | Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.                  |
|             | 0 10.      |                                                                                     |

TOP CHORD 9-10=-52/255, 2-10=-52/297, 2-11=-50/291

WEBS 2-4=-474/123

NOTES

Unbalanced roof live loads have been considered for this design. 1)

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-5-8, Exterior (2) 4-5-8 to 7-5-8, Interior (1) 7-5-8 to 8-10-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing. 3)

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1, 19 lb uplift at joint 3 and 112 lb uplift at joint 4. 5)

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 8-10-4 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

| Job         | Truss | Truss Type | Qty | Ply | Castro House-Castro House |
|-------------|-------|------------|-----|-----|---------------------------|
| Q-2201750-1 | V14   | Valley     | 1   | 1   | Job Reference (optional)  |

Run: 8.43 S Feb 3 2021 Print: 8.430 S Feb 3 2021 MiTek Industries, Inc. Wed Aug 31 16:19:52

Page: 1 ID:T?QDZ3nYE5k4XwgENhoQmoyilXM-bl3pm6SXKzCyF\_HXfkozHN2CazTIIH4sbige6\_yiHyL





2x4 II





2x4 。

| Scale = 1:22.9                                 |                                       |                                                                    | 7-4-4                                           |                                    |                      |                                                  |                          |                      |                             |                          |                                 | $\neq$                             |  |
|------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|------------------------------------|----------------------|--------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|--|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>10.0<br>0.0*<br>10.0 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014 | CSI<br>TC<br>BC<br>WB<br>Matrix-MP | 0.12<br>0.12<br>0.07 | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 25 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |

# LUMBER

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.3 OTHERS **REACTIONS** (lb/size)

Peak Truss Builders LLC, New Hill, user

1=44/7-4-4, (min. 0-1-8), 3=49/7-4-4, (min. 0-1-8), 4=495/7-4-4, (min. 0-1-8) Max Horiz 1=-41 (LC 9) Max Uplift 1=-3 (LC 21), 3=-1 (LC 20), 4=-79 (LC 11)

Max Grav 1=70 (LC 20), 3=73 (LC 21), 4=495 (LC 1)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-4=-346/85

#### WEBS

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 3-8-8, Exterior (2) 3-8-8 to 6-5-7, Interior (1) 6-5-7 to 7-4-10 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing. 3)

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 3 lb uplift at joint 1, 1 lb uplift at joint 3 and 79 lb uplift at joint 4. 5)

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 7-4-4 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing