
Job	Truss	Truss Type	Qty Ply Jose Moreno-Roof		Jose Moreno-Roof	
20030003-A	T1	Monopitch	16	1	Job Reference (optional)	E14442356

Scale = 1:78.8

											-		
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.89	DEFL Vert(LL)	in -0.18	(loc) 9-10	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.97	Vert(CT)	-0.38	12-14	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.94	Horz(CT)	0.10	9	n/a	n/a			
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH		-							
BCDL	10.0										Weight: 192 lb	FT = 20%	
LUMBER TOP CHORD		t* 1-4:2x4 SP No.2	DOL=1.	SCE 7-10; Pr=20.0 p 15 Plate DOL=1.15);	Pg=20.0 p	osf (ground							
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep 2.0E, 3-14:2x4 SP N		//	Pf=13.9 psf (flat roof s DL=1.15); Category II			5						
WEDGE	Left: 2x4 SP No.3		3) Unbalar	ced snow loads have	been cor	nsidered for th	nis						
BRACING			design.										
TOP CHORD	Structural wood she 2-2-0 oc purlins, ex	cept end verticals.	load of	ss has been designed 2.0 psf or 2.00 times gs non-concurrent wi	flat roof le	oad of 13.9 ps							
BOT CHORD	bracing.	applied or 2-2-0 oc	All plate	s are 3x5 MT20 unles	s otherwi	se indicated.	Draf						
WEBS		8-9, 3-12, 5-10, 7-9		uss has been designe ottom chord in all are									
REACTIONS	(size) 2=0-3-8, 9 Max Horiz 2=395 (LC Max Uplift 2=-58 (LC Max Grav 2=1383 (L	C 14) C 11), 9=-75 (LC 15)	3-06-00 chord a 7) One RT	 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) One RT7A USP connectors recommended to connect 									
FORCES	(lb) - Maximum Com Tension		/ 1103310	bearing walls due to l nection is for uplift or prces.									
TOP CHORD	1-2=0/36, 2-3=-2800 4-5=-1881/457, 5-6= 6-7=-984/316, 7-18= 8-18=-201/154, 8-9=	1108/299, 209/120,	7, 8) This true Internat R802.10	ss is designed in acco onal Residential Code 0.2 and referenced sta	e sections	R502.11.1 a	Ind					110m	
BOT CHORD		-14=-921/2546, 2-19=-651/1766, 0-11=-651/1766,	LOAD CAS	E (S) Standard					6	i'''	ORTH CA	ROIN	
WEBS	,	341/292, 5-12=-20/50	03,								SEA		
Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR 2) zone; cantilever left it t and right exposed;C- IWFRS for reactions s 9 plate grip DOL=1.33							THUNNESS.	A A A A A A A A A A A A A A A A A A A	111111	EERAK		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

May 27,2020

Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof	
20030003-A	T1A	Monopitch	4	1	Job Reference (optional)	E14442357

13-0-0

13-3-6

Scale = 1:79.4

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

WEDGE

WEBS

WFBS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

bracing.

Tension

LUMBER

TOP CHORD

BOT CHORD

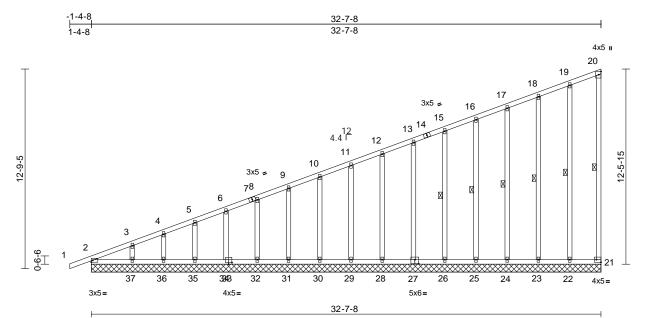
TCLL (roof)

Snow (Pf/Pg)

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:04 Page: 1 ID:jowHHpLKNZT2objaqeyzaUzCeuM-Vo5yvu9HDQgzYqN89MwHDWL1dkrSS2R373HJ4OzCbEj -1-4-8 8-2-12 16-3-3 24-3-9 32-7-8 34-0-0 1-4-8 1-4-8 8-2-12 8-0-7 8-0-7 8-3-15 5x10 = 9 8 3x5 -20 3x5 🚽 12 4 4 1 6 3x5 -5 1-8-1 3x5 🥃 3x5 -3 2 9-9-[4-6-∏ 90 14 13 21 12 22 11 3x8= 5x6= 3x5= 3x5= 3x5= 4x5= 4x6= 32-7-8 8-2-12 16-3-3 24-3-9 32-2-0 8-2-12 8-0-7 7-10-7 8-0-7 0-5-8 Plate Offsets (X, Y): [2:Edge,0-1-5], [2:0-2-10,Edge], [14:0-3-0,0-3-0] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.79 Vert(LL) -0.15 13-14 >999 240 MT20 244/190 13.9/20.0 Lumber DOL 1.15 BC 0.83 Vert(CT) -0.36 13-14 >999 180 Rep Stress Incr WB 0.86 Horz(CT) 10.0 YES 0.09 19 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MSH Weight: 220 lb FT = 20% 10.0 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2x4 SP No.2 Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C 2x4 SP No.2 Exterior (2) zone; cantilever left and right exposed ; end 2x4 SP No.2 *Except* 3-14:2x4 SP No.3 2x6 SP No.2 vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber Left: 2x4 SP No.2 DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) Structural wood sheathing directly applied or DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground 2-11-2 oc purlins, except end verticals. snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Rigid ceiling directly applied or 6-4-10 oc Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 1 Row at midpt 3-13. 5-11. 7-10 3) Unbalanced snow loads have been considered for this 2 Rows at 1/3 pts 8-19 desian. 2=0-3-8, 19=0-3-8 4) This truss has been designed for greater of min roof live Max Horiz 2=336 (LC 11) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on Max Uplift 2=-15 (LC 11), 19=-129 (LC 15) overhangs non-concurrent with other live loads Max Grav 2=1381 (LC 2), 19=1430 (LC 22) 5) All plates are 3x5 MT20 unless otherwise indicated. (Ib) - Maximum Compression/Maximum * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 1-2=0/36, 2-3=-2781/390, 3-4=-1958/209, 3-06-00 tall by 2-00-00 wide will fit between the bottom 4-5=-1878/239. 5-6=-1052/72. 6-7=-964/89. chord and any other members, with BCDL = 10.0psf. 7-20=-171/0, 8-20=-91/30, 8-9=-57/0, 7) Bearing at joint(s) 19 considers parallel to grain value 10-19=-266/1105, 8-19=-266/1105 using ANSI/TPI 1 angle to grain formula. Building 2-14=-823/2543, 13-14=-820/2547, designer should verify capacity of bearing surface. С 13-21=-556/1763, 12-21=-556/1763, One RT7A USP connectors recommended to connect 8) 11-12=-556/1763, 11-22=-289/917, truss to bearing walls due to UPLIFT at jt(s) 2 and 19. WITTER PARTY 10-22=-289/917 This connection is for uplift only and does not consider 3-14=0/155, 3-13=-846/285, 5-13=-11/505, SEAL lateral forces. 5-11=-1077/337, 7-11=-101/917, 9) This truss is designed in accordance with the 2015 036322 7-10=-1317/396, 8-19=-1431/519 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

GI mmm May 27,2020


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof		
20030003-A	T1GE	Monopitch Supported Gable	2	1	Job Reference (optional)	E14442358	

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:04 ID:7NcQwqNCgUrdf3R9VmVgC7zCeuJ-Vo5yvu9HDQgzYqN89MwHDWL3ekx6SEr373HJ4OzCbEj

818 Soundside Road Edenton, NC 27932

Scale = 1:73.7

Plate Offsets (X, Y): [21:Edge,0-2-0], [27:0-3-0,0-3-0], [33:0-2-8,0-1-4]

			1			-	-	· · · · ·								
Loading		(psf)	Spacing	2-0-0)	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.66	Vert(LL)	n/a	-	n/a	999	MT20	244/190		
Snow (Pf/Pg)	1	3.9/20.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	n/a	-	n/a	999				
TCDL		10.0	Rep Stress Incr	YES		WB	0.13	Horz(CT)	-0.01	21	n/a	n/a]			
BCLL		0.0*	Code	IRC2	015/TPI2014	Matrix-MSH		, í								
BCDL		10.0											Weight: 256 lb	FT = 20%		
LUMBER TOP CHORD	2v4 SD N				FORCES	(lb) - Maximum Co Tension	ompressi	on/Maximum	:				or wind loads in th posed to wind (r			
BOT CHORD					TOP CHORD	1-2=0/36, 2-3=-64	10/323 3	4=-588/299					istry Gable End I			
WEBS	2x4 SF No.2 2x4 SP No.1					4-5=-560/291, 5-6	,	,	260				d building design			
OTHERS		lo.1 lo.2 *Excep	t*			7-8=-485/267, 8-9							; Pr=20.0 psf (ro			
OTTIERO			,36-4,37-3:2x4 SP N	0.3		10-11=-393/232,		,	,				OL=1.15); Pg=2			
BRACING	01 0,02 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,00 1,01 0.2X1 01 14	0.0		12-13=-326/209,		,					f (flat roof snow:			
TOP CHORD	Structure	l wood cho	athing directly applie	dor		14-15=-289/198,	15-16=-2	60/187,		Pla	te DOL=	1.15);	Category II; Exp	B; Fully Exp).;	
TOP CHORD			cept end verticals.	u ui		16-17=-227/175, ²				Ct=	1.10					
BOT CHORD			applied or 10-0-0 oc			18-19=-178/165, <i>1</i>	19-20=-1	40/142,		4) Un	balanced	l snow	loads have beer	 considered 	for this	
DOT ONORD	bracing.	ing ancony		•		20-21=-94/102					ign.					
WEBS	1 Row at	midpt	20-21, 19-22, 18-23		BOT CHORD	,		,	4				n designed for g			
			17-24, 16-25, 15-26			35-36=-169/188, 3		,		load of 12.0 psf or 2.00 times flat roof load of 13.9 ps						
REACTIONS	(size)	2=32-7-8	21=32-7-8. 22=32-7	7- 8		33-34=-169/188, 3		,			0		ncurrent with oth			
	()	,	3, 24=32-7-8, 25=32-	- /		31-32=-169/188, 3 29-30=-169/188, 2		,					MT20 unless oth			
			3, 27=32-7-8, 28=32-			29-30=-169/188, 2		,					ntinuous bottom ed at 2-0-0 oc.	chord bearin	ıg.	
		29=32-7-8	3, 30=32-7-8, 31=32-	-7-8,		25-26=-170/189, 2							en designed for	a live load c	f 20 Opef	
			3, 34=32-7-8, 35=32-			23-24=-170/189, 2				,			rd in all areas wh			
			3, 37=32-7-8, 38=32-			21-22=-170/189		,					0-00 wide will fit			
		· ·	C 14), 38=395 (LC 14	,	WEBS	19-22=-182/164,	18-23=-1	67/98,					er members.		bottom	
	Max Uplift		C 14), 22=-25 (LC 1			17-24=-169/74, 16	6-25=-13	1/73,				,		1111		
			(LC 15), 24=-18 (LC 15)			15-26=-120/72, 13							White CA	Dalle		
		```	C 15), 26=-14 (LC 1			12-28=-120/72, 12							atro	UTO !!	17	
			.C 15), 28=-12 (LC 1 .C 15), 30=-13 (LC 1			10-30=-120/73, 9-						~	OTTESE	12-1	14	
			C 15), 32=-13 (LC 1)			6-34=-120/72, 5-3	85=-121/7	7, 4-36=-116	/66,			25		PN:-	Sit	
			C 15), 35=-16 (LC 1			3-37=-135/125					<u> </u>		:0	-4-	6.	
			2 11), 37=-48 (LC 15)		NOTES						-	5 8			: =	
	Max Grav		C 30), 21=79 (LC 22)			CE 7-10; Vult=130m						:	SEA	<u>۲</u>	: =	
			_C 22), 23=206 (LC 2			mph; TCDL=6.0psf;		· · ·			=		0363	22	; =	
		24=209 (L	_C 22), 25=171 (LC 2	22),		B; Enclosed; MWF							. 0000		£ 5 -	
	26=159 (LC 2), 27=160 (LC 2), 28=161 (LC 2), 29=160 (LC 2),				) zone; cantilever le						-	N		1		
					cal left and right exposed;C-C for members and						2.	N. E.	Rik	5		
30=100 (LC 2), 31=100 (LC 2),				es & MWFRS for reactions shown; Lumber =1.60 plate grip DOL=1.33						25	GIN	EF	13			
32=160 (LC 2), 34=160 (LC 2),			DOL=1.00						CABEN							
			-C 2), 36=154 (LC 2)								SEAL 036322					
		37=182 (L	_C 2), 38=228 (LC 30	J)										mm.		
													Ma	y 27,2020	C	
														•		

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

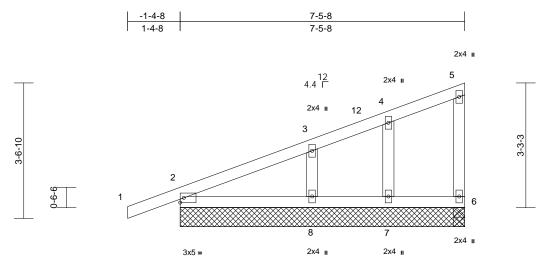
Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof		
20030003-A	T1GE	Monopitch Supported Gable	2	1	Job Reference (optional)	E14442358	

- 10) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, and 37. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:04 ID:7NcQwqNCgUrdf3R9VmVgC7zCeuJ-Vo5yvu9HDQgzYqN89MwHDWL3ekx6SEr373HJ4OzCbEj Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.




Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof	
20030003-A	T1SE	Monopitch Structural Gable	2	1	Job Reference (optional)	E14442359

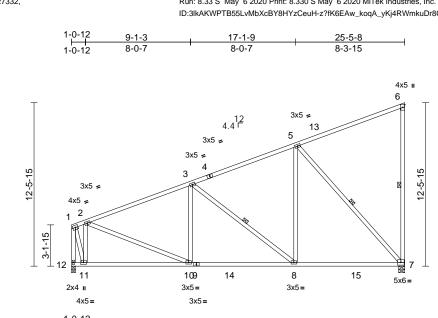
## Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:05 ID:bZAo7AOrQozUHD0L3U0vkKzCeuI-z?fK6EAw_koqA_yKj4RWmkuMG8NiBiOCMj0scqzCbEi

_





						7	-5-8						
Scale = 1:30.2		i		I	· · · ·								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015/		CSI TC BC WB Matrix-MP 7-10; Pr=20.0 psf	0.16 0.06 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 8-11 8-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 34 lb	<b>GRIP</b> 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS OTHERS <b>BRACING</b> TOP CHORD BOT CHORD <b>REACTIONS</b>	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=7-5-8, 6 8=7-5-8, 9 Max Horiz 2=99 (LC Max Uplift 2=-35 (LC (LC 11), 8 11) Max Grav 2=217 (LC	applied or 10-0-0 oc =7-5-8, 7=7-5-8, =7-5-8 14), 9=99 (LC 14) : 11), 6=-6 (LC 12), 7= =-24 (LC 15), 9=-35 (l	4) or 5) 6) 7) e-13 LC 8) 40	snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced si design. This truss hai load of 12.0 p overhangs no Gable studs si Cable studs si This truss ho on the bottom 3-06-00 tall b chord and an One RT7A U truss to beari 8. This conne	ate DOL=1.15); Pg .9 psf (flat roof snd .15); Category II; E snow loads have b s been designed f psf or 2.00 times fl on-concurrent with spaced at 2-0-0 oc as been designed n chord in all areas y 2-00-00 wide wil y other members. SP connectors rec ng walls due to UF	ow: Lum Exp B; F been cor or greate at roof lo other liv c. I for a liv s where II fit betw commen PLIFT at	ber DOL=1.1 ully Exp.; isidered for the or of min roof pad of 13.9 p re loads. e load of 20.0 a rectangle reen the botto ded to conne jt(s) 2, 6, 7, 5	nis live sf on Dpsf om ct					
FORCES	(lb) - Maximum Com Tension 1-2=0/36, 2-3=-161/		9)	<ul> <li>²⁾ consider lateral forces.</li> <li>9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.</li> </ul>									
BOT CHORD WEBS	4-12=-89/65, 4-5=-5 2-8=-146/75, 7-8=-5 4-7=-108/91, 3-8=-1	1/55, 6-7=-51/55		D CASE(S)								TH CA	Route
Vasd=103 Cat. II; Ex Exterior (2 vertical le forces & N DOL=1.60 2) Truss de only. For see Stanc										A. W. M.	the second secon	SEA 0363	EER HILL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate B18 Soundside Road Edenton, NC 27932

May 27,2020

Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof	
20030003-A	Т2	Monopitch	12	1	Job Reference (optional)	E14442360

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:05 ID:3lkAKWPTB55LvMbXcBY8HYzCeuH-z?fK6EAw_koqA_yKj4RWmkuDr8CLBYFCMj0scqzCbEi Page: 1



Scale = 1:88			1-0-12 	<u>9-1-3</u> 8-0-7		<u>17-1-9</u> 8-0-7		25-5-6 8-3-1					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	<b>CSI</b> TC BC WB Matrix-MSH	0.76 0.72 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.30 0.03	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 175 lb	<b>GRIP</b> 244/190 FT = 20%
BOT CHORD 2x4 WEBS 2x2 2.0 BRACING 5tr 4-5 BOT CHORD 45 BOT CHORD 8ig WEBS 1 F REACTIONS (size Max Max FORCES (br TOP CHORD 1-2 4-5 6-1 BOT CHORD 1-1 4-5 6-1 8-1 9-1 8-1 7-1 WEBS 2-1		* 6-7:2x4 SP 2400 :2x4 SP No.3 athing directly appliced or 6-11-15 6-7, 3-8, 5-7 2=0-3-8 C 12) 15), 12=-10 (LC 1 C 5), 12=1007 (LC pression/Maximum 155/268, 3-4=-856 -208/130, -268/151, 11=-702/668, 4=-583/1007, 5=-369/688, 0=-98/738, 428/269, 5-8=-38/5	DF 3) lied or 4) 5 oc 5) 1) C 2) 6) n /227, LC	DOL=1.15 P snow); Pf=12 Plate DOL=1 Ct=1.10 Unbalanced design. * This truss h on the bottor 3-06-00 tall h chord and ar One RT7A L truss to bear This connect lateral forces This truss is International	has been desig m chord in all a oy 2-00-00 wid ny other memb JSP connector ing walls due t tion is for uplift s. designed in ac Residential C nd referenced	(i); Pg=20.0 p f snow: Lum y II; Exp B; F ave been cor gned for a liv areas where le will fit betw ers, with BC s recommen to UPLIFT at only and do ccordance wi ode sections	sf (ground ber DOL=1.1 ully Exp.; asidered for th e load of 20.0 a rectangle veen the botto DL = 10.0psfded to connejt(s) 7 and 12es not considth the 2015R502.11.1 a	15 his Opsf om f. set 2. der				ORTH CA	ROLINI

#### NOTES

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof	
20030003-A	T2SE	Monopitch Structural Gable	2	1	Job Reference (optional)	E14442361

9-4-0

9-4-0

2x4 u 4

2x4 🛛 3

12

6x8=

MT20HS 8x12 II

|<u>2-0-0</u> 2-0-0

11

10

9-4-0

7-4-0

2x4 II 2x4 II 2x4 II

9

^{5x6} ≠ 2 1

13-0-0

9-0-14

13

12 2x4 **II** 

.. 145

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:06 ID:08sxICQjjjL28glwkcacMzzCeuF-SBCiKaBYI1who8XXHnylJxRRXYcUw?rLbNmP8GzCbEh

12-5-15

10-8-8

1-4-8

7 _

5x6 II

R

8

MT20HS 8x12 II

-

Page: 1

Scale = 1:81 F

Plate Offsets (	X, Y): [6:0-3-3,Edge],	[8:Edge,0-3-8], [12:0-3	3-8,0-3-0	)]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.57 0.47 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-13 12-13 8	l/defl >999 >999 n/a		PLATES MT20 MT20HS Weight: 136 lb	<b>GRIP</b> 244/190 187/143 FT = 20%	
	No.2 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 8=9-4-0, 11=9-4-0, Max Horiz 13=379 (L Max Uplift 8=-117 (L0 12=-1090 Max Grav 8=194 (LC 10=164 (L	applied or 6-0-0 oc 6-8, 1-13, 2-12, 3-11, 4-10, 5-9, 1-12 )=9-4-0, 10=9-4-0, 12=9-4-0, 13=0-3-8 C 12) C 12), 9=-29 (LC 11), C 12), 11=-22 (LC 11) (LC 12), 13=-324 (LC	or 2) 3) 4) , 13) 5) 0) 6)	Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 J overhangs nu All plates are	7-10; Vult=130mpl bh; TCDL=6.0psf; E 8; Enclosed; MWFF one; cantilever left nd right exposed; C FRS for reactions ; ate grip DOL=1.33 hed for wind loads ds exposed to wind l Industry Gable Er alified building des 7-10; Pr=20.0 psf ate DOL=1.15); Pg 9.9 psf (flat roof snd .15); Category II; E snow loads have b s been designed fo cosf or 2.00 times fit on-concurrent with MT20 plates unles ully sheatthed from	SCDL=6 S (enve and rigl -C for n shown; 1 in the pl d (norm- nd Detai igner as (roof liv- g=20.0 p bw: Lum Exp B; F een con or greate at roof lc other liv- ss other isss other	.0psf; h=25ft; elope) and C-( th exposed ; e nembers and Lumber ane of the trus al to the face), Is as applicab per ANSI/TPI e load: Lumbe sef (ground ber DOL=1.15 ully Exp.; usidered for thi er of min roof I ad of 13.9 psi re loads.	C nd ss le, l 1. sr s s ive f on	Ínte	rnationa )2.10.2 a	I Resid ind refi	erenced standard	ions R502.11.1 and I ANSI/TPI 1.	
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	braced again	st lateral movements paced at 2-0-0 oc	nt (i.e. d					AN	RTHUA	ROLL	
TOP CHORD				* This truss h on the botton 3-06-00 tall b	as been designed n chord in all areas y 2-00-00 wide wil y other members.	for a live where	a rectangle			4	is	SEA		
BOT CHORD	12-13=-628/527, 11- 10-11=-208/226, 9-1 8-9=-208/226		10	) Provide mec	hanical connection capable of withsta					11111		0363	22	
WEBS	2-12=-166/160, 3-11 4-10=-123/101, 5-9= 1-12=-1786/2365		11	One RT7A U truss to bear 10, and 9. Th	SP connectors rec ing walls due to UF is connection is fo	LIFT at	jt(s) 8, 13, 11,	,				SEA 0363	L 22 EERRALIU	
NOTES				consider late	ral forces.							A. G	ILBERT	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof	
20030003-A	ТЗ	Monopitch	4	1	Job Reference (optional)	E14442362

Scale = 1:62.1 Loading

TCLL (roof)

TCDL

BCLL

BCDL

WEBS

WEBS

BRACING

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

WFBS

NOTES 1)

2)

3)

Ct=1.10

design.

Snow (Pf/Pg)

# Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:06

Page: 1 ID:08sxICQjjjL28glwkcacMzzCeuF-SBCiKaBYI1who8XXHnylJxRL_Yc1w5nLbNmP8GzCbEh 8-5-2 16-5-0 8-5-2 7-11-14 3x5 II 1<u>2</u> 4.4 4 3x5 🚽 3x5 🚅 2 9-2-2 9-2-2 4x6 ≠ 3-1-15 8 1.1 5 × ₿ 7 6 10 2x4 II 3x5 =3x5= 3x5= 8-5-2 16-5-0 7-11-14 8-5-2 Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.93 Vert(LL) -0.08 5-6 >999 240 MT20 244/190 BC Vert(CT) 13 9/20 0 Lumber DOL 1 15 0.50 180 -0.16 5-6 >999 10.0 Rep Stress Incr YES WB 0.29 Horz(CT) 0.01 5 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MSH 10.0 Weight: 102 lb FT = 20% 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 2x4 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom 2x4 SP No.2 chord and any other members, with BCDL = 10.0psf. 2x4 SP No.2 *Except* 8-1:2x4 SP No.3 5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 8. Structural wood sheathing directly applied or This connection is for uplift only and does not consider 2-2-0 oc purlins, except end verticals. lateral forces. Rigid ceiling directly applied or 8-1-8 oc This truss is designed in accordance with the 2015 6) bracing. International Residential Code sections R502.11.1 and 1 Row at midpt 4-5, 3-5 R802.10.2 and referenced standard ANSI/TPI 1. 5=0-3-8.8=0-3-8 (size) LOAD CASE(S) Standard Max Horiz 8=274 (LC 12) Max Uplift 5=-48 (LC 12), 8=-7 (LC 11) Max Grav 5=645 (LC 2), 8=645 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=-642/147, 2-3=-514/166, 3-9=-179/91, 4-9=-140/131, 4-5=-212/139, 1-8=-572/195 7-8=-503/384, 6-7=-503/384, 6-10=-351/540, 5-10=-351/540 1-6=-95/544, 3-6=0/183, 3-5=-653/324 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber THE CONTRACTOR OF STREET DOL=1.60 plate grip DOL=1.33 SEAL TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 036322 DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow): Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Unbalanced snow loads have been considered for this GI minin May 27,2020


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof	
20030003-A	T3GE	Monopitch Supported Gable	2	1	Job Reference (optional)	E14442363

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:06 ID:nhKyRxWkrAMw5vMSCHjUhfzCeu7-SBCiKaBYI1who8XXHnyIJxRSnYgAw7MLbNmP8GzCbEh

Page: 1

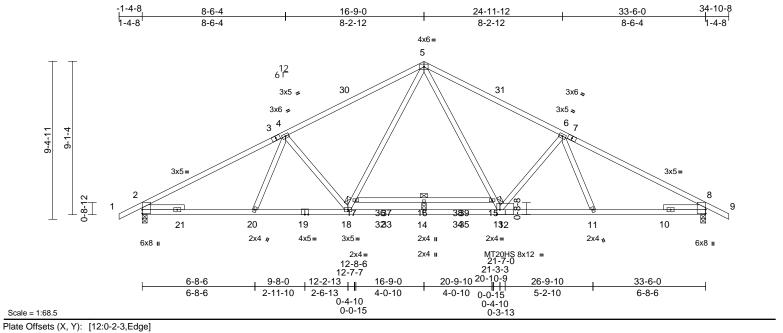


## Scale = 1:56.5

Plate Offsets (X	, Y):	[16:0-3-0,0-3-0]
------------------	-------	------------------

		-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.49	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC		Vert(TL)	n/a	-	n/a	999		2.1,100
TCDL	10.0	Rep Stress Incr	YES		WB		Horiz(TL)	0.00	11	n/a	n/a		
BCLL	0.0*	Code		5/TPI2014	Matrix-MSH	00		0.00	•••	1.70			
BCDL	10.0		110201	0/11/12011								Weight: 131 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *Excep 1-18:2x4 SP No.3 2x4 SP No.2 *Excep No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	t* 16-4,17-3,18-2:2x4 athing directly applied cept end verticals.	W SP NG	EBS OTES Wind: ASCE Vasd=103m Cat. II; Exp I	18-19=-481/340, 17 16-17=-137/151, 15 14-15=-138/152, 13 12-13=-138/152, 13 12-13=-138/152, 11 9-12=-145/134, 8-11 6-15=-120/75, 4-16- 2-18=-141/91, 1-18= 7-10; Vult=130mph ph; TCDL=6.0psf; B B; Enclosed; MWFR	-16=-1: -14=-1: -12=-1: 3=-130/ =-120/7 =-383/6 (3-sec CDL=6 S (enve	38/152, 38/152, 38/152 92, 7-14=-12 5, 3-17=-115, 35 ond gust) .0psf; h=25ft; elope) and C-	/74, .C	trus 14, and 11) This Inte	s to bear 15, 16, 1 does no truss is rnational 2.10.2 a	ring wa 7, and t cons desigr Resid nd refe	alls due to UPLIF I 18. This connect ider lateral forces ned in accordance lential Code sect erenced standard	e with the 2015 ions R502.11.1 and
	bracing, Except:				zone; cantilever left			end					
	8-6-6 oc bracing: 18 1 Row at midpt (size) 11=16-5-( 14=16-5-( 17=16-5-C Max Horiz 19=274 (L Max Uplift 11=-22 (L 13=-10 (L 15=-13 (L 17=-12 (L Max Grav 11=67 (LC 13=169 (L 15=158 (L	10-11, 9-12 0, 12=16-5-0, 13=16-4 0, 15=16-5-0, 19=16-4 C 12) C 12), 12=-17 (LC 11 C 15), 14=-15 (LC 15 C 15), 16=-13 (LC 15 C 15), 16=-13 (LC 21 C 21), 12=187 (LC 21 C 21), 12=187 (LC 21) C 2), 16=161 (LC 2), C 2), 18=190 (LC 2), C 2), 18=190 (LC 2), C 12) pression/Maximum 314/190, 3-4=-281/17 244/168, 6-7=-214/15 =-175/143,	5-0, 2) 5-0 ), 3) ), 3) ), 2) ), 4) 5) 6) 7) ⁸ , 8) 6, 9)	vertical left a forces & MW DOL=1.60 p Truss desig only. For sti see Standar or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=1: Plate DOL=' Ct=1.10 Unbalanced design. All plates art Gable requit Truss to be braced agait Gable studs * This truss on the bottot 3-06-00 tall	und right exposed;C- /FRS for reactions s late grip DOL=1.33 ned for wind loads i Jds exposed to wind d Industry Gable En Jalified building desi 7-10; Pr=20.0 psf ( late DOL=1.15); Pg 3.9 psf (flat roof sno 1.15); Category II; E snow loads have be a 2x4 MT20 unless of the continuous botto fully sheathed from of the stateral movemen spaced at 2-0-0 oc. has been designed f m chord in all areas by 2-00-00 wide will ny other members.	C for n hown; I (norm d Detais gner as (roof liv =20.0 p w: Lum xp B; F een cor btherwis m chor one fac t (i.e. d	nembers and Lumber ane of the tru al to the face is as applicat per ANSI/TF e load: Lumb ber DOL=1.1 ully Exp.; asidered for th se indicated. d bearing. e or securely iagonal web). e load of 20.0 a rectangle	uss ), ble, Pl 1. er 5 nis			1	SEA 0363	EER. AL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.




May 27,2020

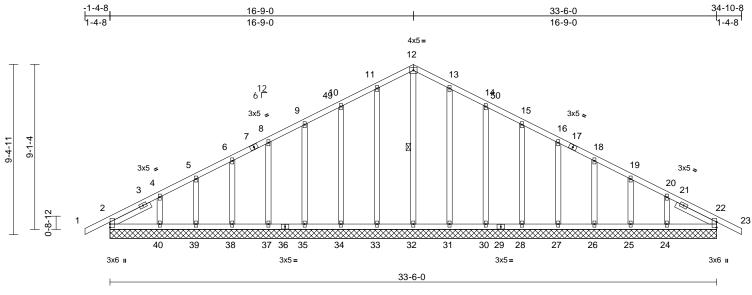
Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof	
20030003-A	Т4	Common	10	1	Job Reference (optional)	E14442364

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:07 ID:FtuLeHXMcUUnj3xfm?EjEszCeu6-wNm4XwCAWL2YPI6jrVT_r9zXmyp6fYkVp1VzhizCbEg

Page: 1



	x, i). [12.0 2 0,24g0				-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	<b>CSI</b> TC BC WB Matrix-MSH	0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.73 0.09	(loc) 16 16 8	l/defl >999 >553 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 191 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E No.2 2x4 SP No.1 *Excep 2x4 SP No.2 *Excep SP No.3 Left 2x4 SP No.3 2 2-6-0 Structural wood she Rigid ceiling directly bracing. Except:	t* 17-15:2x4 SP No. t* 20-4,11-6,14-16:2 2-6-0, Right 2x4 SP athing directly applie applied or 2-2-0 oc	2 x4 No.3 3) ed.	Vasd=103mj Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10	7-10; Vult=130m ph; TCDL=6.0psf; 3; Enclosed; MWF cone; cantilever lei ind right exposed; /FRS for reactions late grip DOL=1.3; 57-10; Pr=20.0 ps late DOL=1.15); F 3.9 psf (flat roof sr 1.15); Category II; snow loads have	BCDL=6 RS (envi t and rig C-C for n shown; 3 f (roof liv g=20.0 p iow: Lum Exp B; F	.0psf; h=25ft elope) and C ht exposed ; nembers and Lumber e load: Lumb ssf (ground ber DOL=1. ully Exp.;	-C end ber 15					
REACTIONS	6-0-0 oc bracing: 15 (size) 2=0-3-8, 8 Max Horiz 2=97 (LC Max Grav 2=1607 (L	3=0-3-8 14)	5)	design. This truss ha load of 12.0	as been designed psf or 2.00 times f on-concurrent with	for greate lat roof lo	er of min root bad of 13.9 p	live					
FORCES	(lb) - Maximum Com	pression/Maximum	6)	200.0lb AC เ	unit load placed or	the bott	om chord, 16	6-9-0					
TOP CHORD	Tension 1-2=0/46, 2-3=-2557 4-30=-2330/212, 5-3 5-31=-2232/235, 6-3 6-7=-2338/253, 7-8=	80=-2232/235, 81=-2330/212,	8)	All plates are * This truss I on the bottor	, supported at two MT20 plates unle nas been designed n chord in all area by 2-00-00 wide w	ess other d for a liv s where	wise indicate e load of 20. a rectangle	0psf					Della
BOT CHORD	$\begin{array}{l} 2\text{-}21\text{=-}388/610, 20\text{-}2\\ 19\text{-}20\text{=-}90/2238, 18\\ 18\text{-}32\text{=}0/1689, 32\text{-}33\\ 14\text{-}34\text{=}0/1689, 34\text{-}33\\ 12\text{-}13\text{=-}94/2202, 11\\ 10\text{-}11\text{=-}91/2187, 8\text{-}1\\ 17\text{-}36\text{=-}98/0, 38\text{-}37\text{=}\\ 16\text{-}38\text{=-}98/0, 38\text{-}37\text{=}\\ 4\text{-}20\text{=-}86/14, 4\text{-}18\text{=-}\\ 5\text{-}17\text{=}0/929, 5\text{-}15\text{=}0\\ 6\text{-}13\text{=-}468/332, 6\text{-}11 \end{array}$	.19=-90/2238, 3=0/1689, 14-33=0/ ⁻ 5=0/1689, 13-35=0/ ⁻ 12=-94/2202, 0=-406/610, -98/0, 16-37=-98/0, -98/0, 15-39=-98/0 468/332, 17-18=-42/ /929, 13-15=-42/778	1689, Lu /779,	chord and ar This truss is International	ny other members designed in accor Residential Code nd referenced star	, with BC dance w sections	DL = 10.0ps ith the 2015 R502.11.1 a	f.		4.0000	A. M.	SEA 0363	•
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	r								and and	111111	LBERTIN


818 Soundside Road Edenton, NC 27932

May 27,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof	
20030003-A	T4GE	Common Supported Gable	2	1	Job Reference (optional)	E14442365

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:08 ID:j3SjsdY_NnceLCWrJilym4zCeu5-wNm4XwCAWL2YPI6jrVT_r9ziiy2MfatVp1VzhizCbEg



Scale = 1:63.6

# Plate Offsets (X, Y): [2:0-2-4,0-0-1], [22:0-3-10,0-0-1]

	Λ, Ι). [2.0-2-4,	,001],	[22.0-3-10,0-0-1]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.9/2	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-( 1.15 1.15 YES IRC2	) 2015/TPI2014	CSI TC BC WB Mat	rix-MSH	0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01		c) l/defl - n/a - n/a 22 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 226 lb	<b>GRIP</b> 244/190 FT = 20%
	x4 SP No.2 Left 2x4 SP N 2-6-0 Structural wor 6-0-0 oc purlin Rigid ceiling of bracing. 1 Row at midµ (size) 2=5 28- 33= 45= Max Uplift 2=- 25= 27= 30= 33= 35= 33= 35= 35= 35= 35= 35= 35= 35	34-10,3 lo.3 2 od shea ns. directly pt 33-6-0, =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =33-6-0 =13 (LC =-19 (LC =	5-9,31-13,30-14,28 2-6-0, Right 2x4 SP athing directly appli applied or 6-0-0 oc 12-32 22=33-6-0, 24=33- 0, 26=33-6-0, 27=33 1, 30=33-6-0, 31=33 1, 37=33-6-0, 38=33 1, 40=33-6-0, 41=33	- No.3 ied or -6-0, 3-6-0, 3-6-0, 3-6-0, 3-6-0, 3-6-0, 3-6-0, 16), 16), 16), 15), 15),	FORCES TOP CHORD BOT CHORD WEBS	(lb) - N Tensic 1-2=0, 4-5=-{ 7-8=-4 10-49; 11-12; 13-14; 15-50; 16-17; 19-20; 22-23; 2-40= 38-39; 36-37; 34-355; 32-33; 30-31; 28-29; 24-25; 12-32; 10-34; 6-38= 13-31; 15-28; 18-26;	24=189 26=162 28=161 31=202 35=161 38=162 40=189 45=210 Maximum Cc on (46, 2-3=-75 33/57, 5-6=- 12/82, 8-9=- -61/176, 10 =-61/176, 10 =-61/176, 10 =-78/81, 17- =-55/19, 20- =0/46 -33/144, 37 =-33/144, 37 =-33/144, 37 =-33/144, 25 =-33/144, 27 =-33/144, 27	(LC 34), (LC 34), (LC 34), (LC 34), (LC 34), (LC 33), (LC	7=-69/76, -49=-77/171, '226, 10/270, '176, '129, .6, 18-19=-45 0, 21-22=-55 44, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '144, '14,	2), 2), 23), 32), 22), 2), 2), 2), 5/33, 5/52, 9/82,	4) T 5) U 4) T 5) U	Jnbalanced nis design. Vind: ASCI (asd=103n ast. II; Exp ixterior (2) ertical left proces & MM DOL=1.60 I Truss design nly. For si ee Standa r consult c "CLL: ASC DOL=1.15 now); Pf=1 Plate DOL= :t=1.10 Jnbalanced lesign.	E 7-10; ph; TC B; Enc zone; and rigg WFRS g gned fc truds exe rd Indu ualifice E 7-10 Plate D 3.9 ps 1.1.15); d snow	Vult=130mph (3 CDL=6.0psf; BCD loosed; MWFRS ( cantilever left and ht exposed;C-C f for reactions sho rip DOL=1.33 or wind loads in th posed to wind (n istry Gable End D d building designe ; Pr=20.0 psf (roo OL=1.15); Pg=20 f (flat roof snow: Category II; Exp loads have been	L=6.0psf; h=25ft; envelope) and C-C fright exposed; end or members and wn; Lumber he plane of the truss ormal to the face), vetails as applicable, er as per ANSI/TPI 1. of live load: Lumber J.0 psf (ground Lumber DOL=1.15

May 27,2020

Page: 1



Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek/® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Job	Truss	Truss Type	Qty	Ply	Jose Moreno-Roof	
20030003-A	T4GE	Common Supported Gable	2	1	Job Reference (optional)	E14442365

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.

9) Gable studs spaced at 2-0-0 oc.

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 33, 34, 35, 37, 38, 39, 40, 31, 30, 28, 27, 26, 25, and 24. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.33 S May 6 2020 Print: 8.330 S May 6 2020 MiTek Industries, Inc. Tue May 26 15:13:08 ID:j3SjsdY_NnceLCWrJilym4zCeu5-wNm4XwCAWL2YPI6jrVT_r9ziiy2MfatVp1VzhizCbEg Page: 2



