
SFA Design Group, LLC

STRUCTURAL | GEOTECHNICAL | SPECIAL INSPECTIONS PORTLAND, OR | LIVERMORE, CA | SEATTLE, WA 503.641.8311 | www.sfadg.com

STRUCTURAL CALCULATIONS REVISION #1 Bennett Residence Underpinning 4105 Red Hill Church Rd, Coats, NC 27521

Regional Foundation Solutions

LIMITATIONS

ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY, OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS.

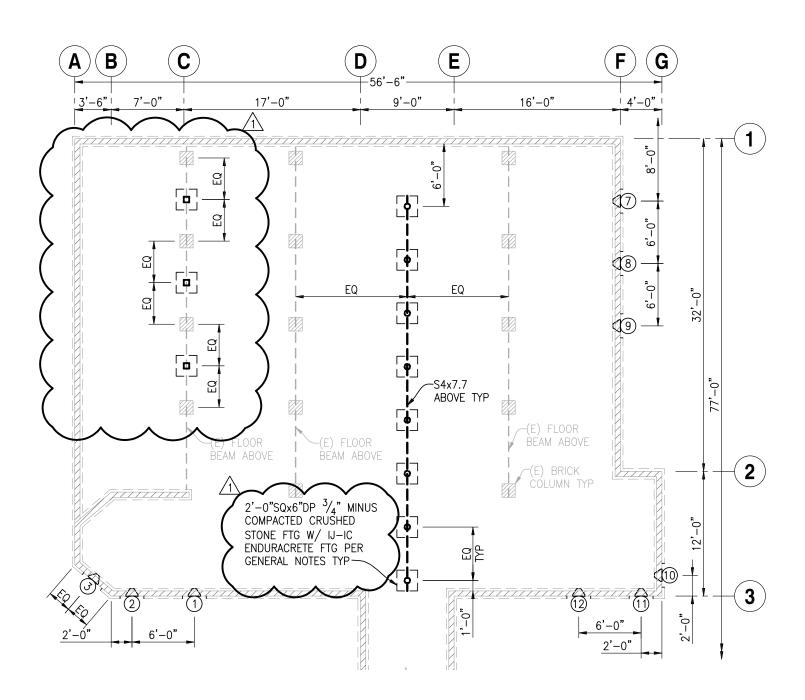
> Project No. RBC22-030 July 15, 2022

Revised: October 31, 2022

SFA Design Group, LLC

sta) structural geotechnical special inspections	PROJECT NO. RBC22-030	SHEET NO.
PROJECT		DATE
Bennett Residence Underpinning		10/31/2022
SUBJECT		BY
Push Pier Design Requirements		MEK

Structural Narrative


The structural calculations and drawings enclosed are in reference to the design of the foundation underpinning of the 1-story residence located in Coats, NC as referenced on the coversheet. The round steel tubes and retrofit brackets are used to stabilize and/or lift settling foundations. The bottom and back portion of the bracket is securely seated against the existing concrete footing. Using the weight of the existing structure, pier sections are continuously hydraulically driven through the foundation bracket and into the soil below until a load bearing stratum is encountered. Lateral earth confinement and a driven external sleeve with a starter pier provide additional stiffness to resist eccentric loading from the foundation. Once all piers are installed, they are simultaneously loaded with individual hydraulic jacks and closely monitored as pressure is applied to achieve desired stabilization and/or lift prior to locking off the pier cap. The piers are required to resist vertical loading from the roof framing, wall framing, floor framing, and concrete foundation. Underpinning the structure will remove lateral resistance provided by soil friction acting on the concrete foundation. Per the following calculation lateral resistance will be provided by soil friction acting on the unpiered portions of the concrete footing/concrete slab on grade and passive pressure acting on the buried footings perpendicular to the piered gridlines.

General		
Building Department	City of Coats	
Building Code Conformance (Meets Or Exceeds Requirements)		
2015 International Building Code (IBC)		
2015 International Residential Code (IRC)		
2018 North Carolina Building Code		
2018 North Carolina Residential Code		
Dead Loads		
Roof Dead Load	15.0 psf	
Floor Dead Load	15.0 psf	
Wood Wall Dead Load	12.0 psf	
Interior Wall Dead Load	9.0 psf	
Brick Wall Dead Load	78.0 psf	
Concrete	150.0 pcf	
Live Londo		
Live Loads		
Roof Live Load	20.0 psf	
Floor Live Load (Residential)	40.0 psf	

SFA Design Group. LLC

PROJECT NO. SHEET NO. RBC22-030
DATE
10/31/2022
BY
MEK

Pier Layout (See S2.1 for Enlarged Plan)

SFA	Design	Group,	LLC
-----	--------	--------	-----

sfa structural geotechnical special inspections	PROJECT NO. RBC22-030	SHEET NO.
	RBC22-030	DATE
Bennett Residence Underpinning		10/31/2022
SUBJECT		BY
Design Loads		MEK

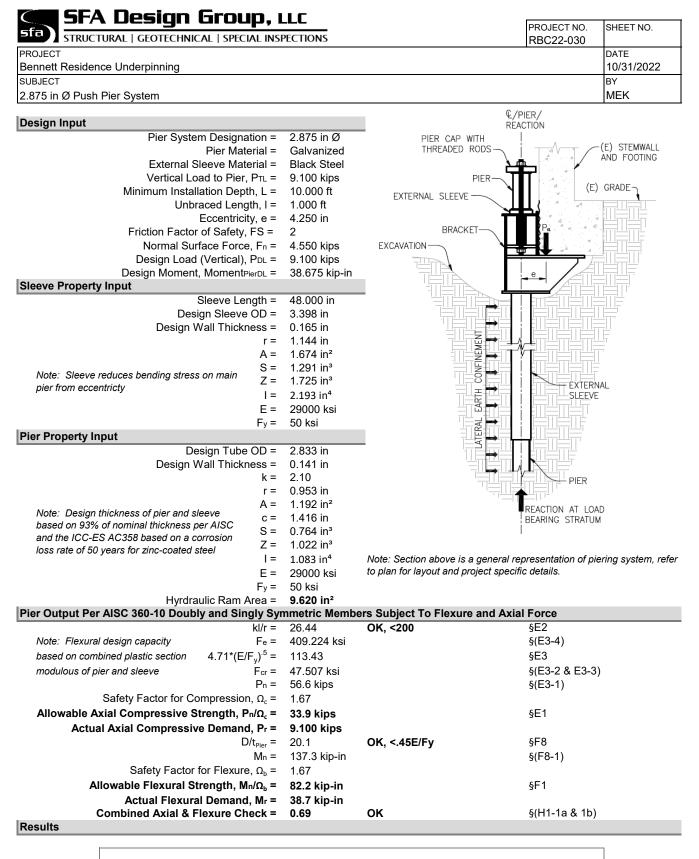
Worst Case Vertical Design Loads (Gridline 3)

 $\boldsymbol{\subset}$

Tributary Width To Pier =				= 6.00 ft		
Load Type	Design Load	Tributary Le	ength	Line Load		
Roofdl =	(15 psf)	(24.00 ft)		= 360 plf	Dead Load	5.266 kips
RoofLL =	(20 psf)	(24.00 ft)		= 480 plf	Floor Live Load	0.480 kips
1stFloor⊳∟ =	(15 psf)	(2.00 ft)		= 30 plf	Roof Live Load	2.880 kips
1stFloor∟∟ =	(40 psf)	(2.00 ft)		= 80 plf	Controlling ASD Load C	Combination:
InteriorWalloL =	(9 psf)	(2.00 ft)		= 18 plf	D+Lr	
ExteriorWalloL =	(12 psf)	(9.00 ft)		= 108 plf		
Brick WalloL =	(78 psf)	(30.00 in)		= 195 plf		
FootingDL =	(150 pcf)	(10.00 in)	(16.00 in)	= 167 plf		
			-	-		

Max Vertical Load to Worst Case Pier	8.146 kips
Max Unsupported Ftg Span from Arching Action	6.67 ft

SFA	Design	Group,	LLC
-----	--------	--------	-----

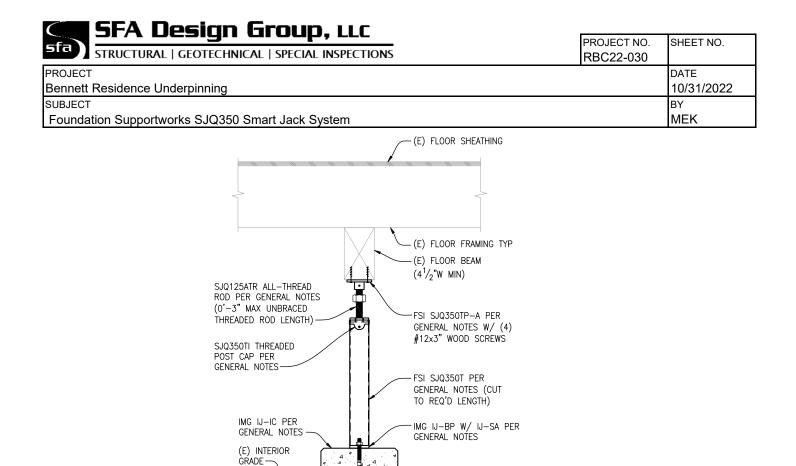

STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	PROJECT NO. RBC22-030	SHEET NO.
PROJECT		DATE
Bennett Residence Underpinning		10/31/2022
SUBJECT		BY
Design Loads		MEK

Worst Case Vertical Design Loads (Gridline 1)

 \boldsymbol{C}

Tributary Width To Pier =				= 6.00 ft		
<u>Load Type</u>	Design Load	Tributary Le	ength	Line Load		
Roofdl =	(15 psf)	(16.00 ft)		= 240 plf	Dead Load	5.770 kips
RoofLL =	(20 psf)	(16.00 ft)		= 320 plf	Floor Live Load	2.520 kips
1stFloor⊳∟ =	(15 psf)	(10.50 ft)		= 158 plf	Roof Live Load	1.920 kips
1stFloor∟∟ =	(40 psf)	(10.50 ft)		= 420 plf	Controlling ASD Load C	combination:
InteriorWalloL =	(9 psf)	(10.50 ft)		= 95 plf	D+0.75L+0.75Lr	
ExteriorWalloL =	(12 psf)	(9.00 ft)		= 108 plf		
Brick WalloL =	(78 psf)	(30.00 in)		= 195 plf		
FootingDL =	(150 pcf)	(10.00 in)	(16.00 in)	= 167 plf		

Max Vertical Load to Worst Case Pier	9.100 kips
Max Unsupported Ftg Span from Arching Action	6.67 ft


Max Load To Pier = Design Load = 9100 lb 2.875" Diameter Pipe Pier with 0.165" Thick Wall 3.5"Diameterx48" Long Pipe Sleeve With 0.216"ThickWall Minimum 10'-0" Installation Depth And Minimum 2000 psi Installation Pressure Minimum ¼" Foundation Lift During Installation

. _... _ u....g motu

SFA Design Group, LLC			
sfa structural geotechnical special inspections	PROJECT NO. RBC22-030	SHEET NO.	
PROJECT		DATE	
Bennett Residence Underpinning		10/31/2022	
SUBJECT		BY	
Design Loads		MEK	

Design Loads

Tributary Width To Pier	=		= 8.00 ft		
<u>_oad Type</u>	Design Load	Tributary Length	Line Load		
				Dead Load	2.016 kips
				Floor Live Load	3.360 kips
stFloorDL =	(15 psf)	(10.50 ft)	= 158 plf	Roof Live Load	0.000 kips
IstFloor∟∟ =	(40 psf)	(10.50 ft)	= 420 plf	Controlling ASD Load C	Combination:
nteriorWall _{DL} =	(9 psf)	(10.50 ft)	= 95 plf	D+L	
	Ī	Max Vertical Load to Wors	t Case Pier		5.376 kips

Note: Section above is a general representation of smartjack system, refer to plan for layout and project specific details.

PER PLAN COMPACTED CRUSHED STONE BASE PER PLAN

PLAN

= Smart Jack System Footing Type =		
÷ ••		kips
Maximum Tube Unbraced Length, d _t =	3.000	ft
Maximum Threaded Rod Unbraced Length, d _{tr} =	3.000	in
Eccentricity, e _{max} =	1.000	in
Moment =	5.376	in-kips
Tube Properties		
Design Tube OD =	3.500	in
Design Wall Thickness =	0.095	in
k =	1.00	
r=	1.380	in
Α=	1.261	in ²
c =	1.750	in
S =	1.373	in ³
=	2.402	in ⁴
E=	29000	ksi
Fy =	50	ksi

kl/r = 26.09 Slenderness OK Cc = 107.00 F'e = 219.35 ksi Fa = 27.62 ksi fa = 4.26 ksi Fb = 33.00 ksi fb = 3.92 ksi	
F'e = 219.35 ksi Fa = 27.62 ksi fa = 4.26 ksi Fb = 33.00 ksi	
Fa = 27.62 ksi fa = 4.26 ksi Fb = 33.00 ksi	
fa = 4.26 ksi Fb = 33.00 ksi	
Fb = 33.00 ksi	
fb = 3.92 ksi	
Cm = 1.00	
fa/Fa = 0.15 Eq H1-1 and Eq H1-2	
Eq H1-1 0.27534 Tube OK Eq H1-2 0.26076 Tube OK	
Eq H1-2 0.26076 Tube OK Eq H1-3 NA	
Threaded Rod Properties	
Threaded Rod Dia. = 1.250 in	
k = 1.00	
r = 0.313 in	
$A = 1.227 \text{ in}^2$	
c = 0.625 in	
$S = 0.192 \text{ in}^3$	
$I = 0.120 \text{ in}^4$	
E = 29000 ksi	
Fy = 70 ksi	
Threaded Rod Output	
kl/r = 9.60 Slenderness OK	
Cc = 90.43	
F'e = 1619.74 ksi	
Fa = 40.79 ksi	
ra - 40.73 KSI	
fa = 4.38 ksi	
fa = 4.38 ksi	
fa = 4.38 ksi Fb = 46.20 ksi	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK Bearing Capacity of Crushed Stone Footing Eq H1-3 0.71 Tube OK	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK Bearing Capacity of Crushed Stone Footing Footing Depth = 6 in	
fa = 4.38 ksi $Fb = 46.20 ksi$ $fb = 28.04 ksi$ $Cm = 1.00$ $fa/Fa = 0.11 Eq H1-3 may be used$ $Eq H1-1 NA$ $Eq H1-2 NA$ $Eq H1-3 0.71 Tube OK$ $Bearing Capacity of Crushed Stone Footing$ $Footing Depth = 6 in$ Footing Width = 24 in	
$fa = 4.38 ksi$ $Fb = 46.20 ksi$ $fb = 28.04 ksi$ $Cm = 1.00$ $fa/Fa = 0.11 \qquad Eq H1-3 may be used$ $Eq H1-1 NA$ $Eq H1-2 NA$ $Eq H1-2 NA$ $Eq H1-3 0.71 \qquad Tube OK$ $Bearing Capacity of Crushed Stone Footing$ $Footing Depth = 6 in$ $Footing Width = 24 in$ $Footing Length = 24 in$	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK Bearing Capacity of Crushed Stone Footing Footing Depth = 6 in Footing Width = 24 in Footing Length = 24 in Soil Bearing Capacity = 1500 psf Capacity = 6.00 k OK	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK Bearing Capacity of Crushed Stone Footing Footing Depth = 6 in Footing Width = 24 in Footing Length = 24 in Soil Bearing Capacity = 1500 psf Capacity = 6.00 k OK	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK Bearing Capacity of Crushed Stone Footing Footing Depth = 6 in Footing Length = 24 in Footing Length = 24 in Soil Bearing Capacity = 1500 psf Capacity = 6.00 k OK Results	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK Bearing Capacity of Crushed Stone Footing Footing Depth = 6 in Footing Width = 24 in Footing Length = 24 in Soil Bearing Capacity = 1500 psf Capacity = 6.00 k OK Results MAX LOAD TO SMART JACK = 5376LB	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK Bearing Capacity of Crushed Stone Footing Footing Depth = 6 in Footing Width = 24 in Footing Length = 24 in Soil Bearing Capacity = 1500 psf Capacity = 6.00 k OK Results MAX LOAD TO SMART JACK = 5376LB 3.5 IN DIAMETER SMART JACK TUBE WITH 0.095 IN. THICK WALL AND MAX HEIGHT OF 3FT	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK Bearing Capacity of Crushed Stone Footing Footing Depth = 6 in Footing Width = 24 in Footing Length = 24 in Footing Length = 24 in Soil Bearing Capacity = Soil Bearing Capacity = 1500 psf Capacity = psf MAX LOAD TO SMART JACK = 5376LB Stin DIAMETER SMART JACK TUBE WITH 0.095 IN. THICK WALL AND MAX HEIGHT OF 3FT 1.25 IN DIAMETER SOLID THREADED ROD WITH MAX HEIGHT OF 3 IN	
fa = 4.38 ksi Fb = 46.20 ksi fb = 28.04 ksi Cm = 1.00 fa/Fa = 0.11 Eq H1-3 may be used Eq H1-1 NA Eq H1-2 NA Eq H1-3 0.71 Tube OK Bearing Capacity of Crushed Stone Footing Footing Depth = 6 in Footing Width = 24 in Footing Length = 24 in Soil Bearing Capacity = 1500 psf Capacity = 6.00 k OK Results MAX LOAD TO SMART JACK = 5376LB 3.5 IN DIAMETER SMART JACK TUBE WITH 0.095 IN. THICK WALL AND MAX HEIGHT OF 3FT	

Tube Output

Project Title: Engineer: Project ID: Project Descr:

Project File: Calcs.ec6 Steel Beam (c) ENERCALC INC 1983-2022 LIC# : KW-06015057, Build:20.22.3.31 SFA ENGINEERING LLC **DESCRIPTION:** Supplemental Steel Beam Span Calcs (End Cond) CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 **Material Properties** Analysis Method Allowable Strength Design Fy : Steel Yield : 50.0 ksi E: Modulus : Beam Bracing : Completely Unbraced 29,000.0 ksi Bending Axis : Major Axis Bending D(0.2460) L(0.410) S4x7.7 S4x7.7 Span = 1.0 ft Span = 6.0 ft Service loads entered. Load Factors will be applied for calculations. Applied Loads Beam self weight NOT internally calculated and added Loads on all spans... Uniform Load on ALL spans : D = 0.0240, L = 0.040 ksf, Tributary Width = 10.250 ft **DESIGN SUMMARY** Design OK Maximum Bending Stress Ratio = Maximum Shear Stress Ratio = 0.340:1 0.131:1 Section used for this span S4x7.7 Section used for this span S4x7.7 Va: Applied Ma: Applied 2.790 k-ft 2.023 k Mn / Omega : Allowable Vn/Omega : Allowable 8.199 k-ft 15.440 k Load Combination Load Combination +D+L +D+L 1.000 ft Location of maximum on span Span # where maximum occurs Span # 2 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 0.064 in Ratio = 1.125 >=180 Span: 2 : L Only Max Upward Transient Deflection -0.032 in Ratio = >=180 Span: 2 : L Only 754 Max Downward Total Deflection 0.102 in Ratio = >=180 Span: 2 : +D+L 703 Max Upward Total Deflection Span: 2 : +D+L -0.051 in Ratio = >=180 472 **Overall Maximum Deflections** Load Combination Max. "-" Defl Location in Span Load Combination Max. "+" Defl Location in Span Span 0.0000 0.000 +D+L 1 -0.05090.000 +D+L 2 0.1024 3.048 0.0000 0.000 Values in KIPS Vertical Reactions Support notation : Far left is #7 Load Combination Support 1 Support 2 Support 3 Overall MAXimum 2.679 1.913 **Overall MINimum** 0.603 0.431 D Only 1.005 0.718 +D+L 2.679 1.913 +D+0.750L 2.260 1.614 +0.60D 0.603 0.431 L Only 1.674 1.196

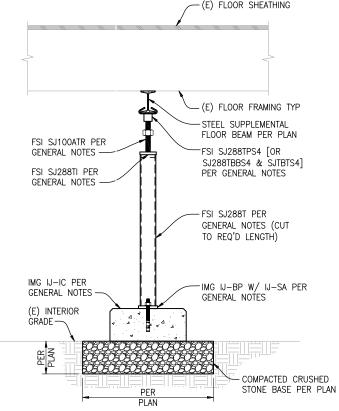
Steel Beam			Project File: Calcs.ec6
LIC# : KW-06015057, Build:20.22.3.31	SFA ENGINEERING LLC		(c) ENERCALC INC 1983-202
DESCRIPTION: Supplemental S	Steel Beam Span Calcs (Mid Cond)		
CODE REFERENCES			
Calculations per AISC 360-16, IBC 20	018, CBC 2019, ASCE 7-16		
Load Combination Set : ASCE 7-16			
Aaterial Properties			
Analysis Method Allowable Strength D	esign	Fy : Steel Yield :	50.0 ksi
Beam Bracing : Completely Unbrac	ed	E: Modulus :	29,000.0 ksi
Bending Axis : Major Axis Bending			
	D(0.2460) L(0.410)	*	
) J			X
	S4x7.7		
-	Span = 6.0 ft		
Applied Loads	Service II	oads entered Load Fac	tors will be applied for calculations
Beam self weight NOT internally of			

Uniform Load on ALL spans : D = 0.0240, L = 0.040 ksf, Tributary Width = 10.250 ft

DESIGN SUMMARY

Maximum Bending Stress Ratio = 0.363 : 1		Maximum Shear Stress Ratio =	0.127:1
Section used for this span	S4x7.7	Section used for this span	S4x7.7
Ma : Applied 2.952 k-ft		Va : Applied	1.968 k
Mn / Omega : Allowable 8.127 k-ft		Vn/Omega : Allowable	15.440 k
Load Combination	+D+L	Load Combination Location of maximum on span	+D+L 0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Aximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.068 in Ratio = 1 0.000 in Ratio = 0.110 in Ratio = 0.000 in Ratio =	,051 >=180 0 <180 Span: 1 : L Only 657 >=180 Span: 1 : +D+L 0 <180	

Overall Maximum Deflections


Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl L	ocation in Span
+D+L	1	0.1095	3.017		0.0000	0.000
Vertical Reactions			Suppor	t notation : Far left is #'	Values in KIPS	
Load Combination	Support 1	Support 2				
Overall MAXimum	1.968	1.968	1.196			
Overall MINimum	0.443	0.443	1.196			
D Only	0.738	0.738	1.196			
+D+L	1.968	1.968	1.196			
+D+0.750L	1.661	1.661	1.196			
+0.60D	0.443	0.443	1.196			
L Only	1.230	1.230	1.196			

S 3FA Design druup, LLL		
	PROJECT NO.	SHEET NO.
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	RBC22-030	
PROJECT		DATE
Bennett Residence Underpinning		10/31/2022
SUBJECT		BY
Foundation Supportworks SJ288 Smart Jack System		MEK
	ATUNO	
	ATHING	

- 7 6

.

.

Note: Section above is a general representation of smartjack system, refer to plan for layout and project specific details.

SJ288	
Gravel	
3.936	kips
3.000	ft
3.000	in
1.000	in
3.936	in-kips
2.875	in
0.165	in
1.00	
0.960	in
1.405	in ²
1.438	in
0.900	in ³
1.294	in ⁴
29000	ksi
50	ksi
	3.000 3.000 1.000 3.936 2.875 0.165 1.00 0.960 1.405 1.438 0.900 1.294 29000

Tube Output				
	kl/r =	37.50		Slenderness OK
	Cc =	107.00		
	F'e =	106.13	ksi	
	Fa =	26.18	ksi	
	fa =	2.80	ksi	
	Fb =	33.00	ksi	
	fb =	4.37	ksi	
	Cm =	1.00		
	fa/Fa =	0.11		Eq H1-3 may be used
	Eq H1-1	NA		
	Eq H1-2	NA		
	Eq H1-3	0.24		Pier OK
Threaded Rod Properties				
	Threaded Rod Dia. =	1.000	in	
	k =	1.00		
	r =	0.250	in	
	A =	0.785	in ²	
	c =	0.500	in	
	S =	0.098	in ³	
	I =	0.049	in⁴	
	E =	29000	ksi	
	Fy =	70	ksi	
Threaded Rod Output	11/	40.00		
	kl/r =	12.00		Slenderness OK
	Cc =	90.43 1036.63	ka:	
	Fe- Fa=	40.43	ksi ksi	
	fa =	40.43 5.01	ksi	
	Fb =	46.20	ksi	
	fb =	40.09	ksi	
	Cm =	1.00	NOI	
	fa/Fa =	0.12		Eq H1-3 may be used
	Eq H1-1	NA		
	Eq H1-2	NA		
	Eq H1-3	0.99		Tube OK
Bearing Capacity of Crushed Stone Footing				
	Footing Depth =			
	Footing Width =			
	Footing Length =			
	Soil Bearing Capacity =		psf	OK
	Capacity =	6.00	k	OK
Results				
	LOAD TO SMART JACK =			
2.875 IN DIAMETER SMART JAC				
	LID THREADED ROD WIT			
14 IN SQ x 6 IN H PRE-CAST ENDURACI				
EMBED THREADED ROD A MININ	IUM OF 3/4 IN INTO CONF	INING RI	NG AN	