GENERAL REQUIREMENTS

REFER TO SUBSEQUENT PLAN AND DETAIL NOTES FOR VARIATIONS AND REQUIREMENTS SPECIFIC TO REFERENCED PROJECT.

NOTES ON DRAWINGS TAKE PRECEDENCE OVER GENERAL STRUCTURAL NOTES.

DESIGN CRITERIA

2015 INTERNATIONAL BUILDING CODE (IBC)
2015 INTERNATIONAL RESIDENTIAL CODE (IRC)
2018 NORTH CAROLINA BUILDING CODE (NCBC) BUILDING CODE CONFORMANCE (MEETS OR EXCEEDS REQUIREMENTS):

2018 NORTH CAROLINA RESIDENTIAL CODE (NCRC)

DEAD LOADS: FLOOR DEAD LOAD INTERIOR WOOD WALL DEAD LOAD

FLOOR LIVE LOAD (RESIDENTIAL) LIVE LOADS:

15 PSF 9 PSF

40 PSF

REFERENCE STANDARDS: CONFORM TO IBC CHAPTER 18 "SOILS & FOUNDATIONS"

		NIEO		
	FSI SMARTJACK SYSTEM INFO	MINFO		
PART	DESCRIPTION	COMMENTS	MIN YIELD STRESS, F _y	MIN TENSILE STRESS, Fu
SJ350T	ASTM A500 GRADE C $3^{1}/2^{"}$ øx0.165x'L' TRIPLE—COATED IN-LINE GALVANIZED TUBE	27	50 KSI	55 KSI
SJ350TP	ASTM A36 $\mathbb{R}^3/_{8}$ x4 $^1/_{2}$ x0'- $^41/_{2}$ " ASTM A53 GRADE B $1^3/_{4}$ " 4 x1.38"L CONFINING RING	WOOD BEAM CONDITION	36 KSI 35 KSI	58 KSI 60 KSI
SJ350TPS4	ASTM A36 BENT $\mathbb{R}^3/_{16}$ X3x0'-6" ASTM A53 GRADE B $1^3/_4$ "9x $^1/_4$ "x1.38"L CONFINING RING (AT END & INTERMEDIATE LOCATIONS)	STEEL BEAM CONDITION	36 KSI 35 KSI	58 KSI
SJ350TBBS4	ASTM A36 $\mathbb{P}^3/_{8^{\times}}4^1/_{2^{\times}}0^{\circ}-5^{\circ}$ BOTT BEAM SPLICE BRACKET (AT BEAM SPLICE LOCATIONS)		36 KSI	58 KSI
SJTBTS4	ASTM A36 $\mathbb{R}^3/8^{\lambda 4} 1/2^{\lambda}0^{\lambda} - 5^{*}$ TOP BEAM SPLICE BRACKET W/ (4) ASTM A108 $1/2$ "9 \times 5 $1/2$ " BOLTS W/ NUTS (ASTM A307 MIN) &ASTM A53 GRADE B $1^3/4$ "9 \times 1 $/4$ \times 1.38"L CONFINING RING (AT BEAM SPLICE & END LOCATIONS)	STEEL BEAM CONDITION	36 KSI MIN 36 KSI MIN 35 KSI	58 KSI 60 KSI MIN
SJAFTG	AISI/AA 356.0-T6 $\Re 0.850 \times 12 \times 1'-0"$ CAST ALUMINUM BASE	CRUSHED STONE FTG CONDITION PER PLAN		30 KSI
SJ125ATR	ASTM A108 GRADE 1018 $1^1\!/_4$ " $\phi_{\rm x}$ REQ'D THREADED ROD WELDED HEAVY HEX NUT		54 KSI	64 KSI
SJ350TI	ASTM A108 GRADE 1018 $3^{1}\!/_{2}$ " $\phi_{\rm X}$ 1" TAPERED THREADED ROD INSERT		54 KSI	64 KSI

DATE SIGNED: 04/22/2022

EXPIRES:

12/31/22

S1.1

NOTE:

INSTALL PER MFR RECOMMENDATIONS

PROJECT NO: RBC22-133 DESIGNED BY: CHECKED BY: JLD DATE; 04.22.2022 DRAWN BY:

REVISIONS

GENERAL NOTES

BURCH RESIDENCE FLOOR SUPPORT 124 GOLDEN OATS DR. ANGIER, NC 27501

REFERENCE S1.1 FOR GENERAL REQUIREMENTS

CONTRACTOR TO NOTIFY ENGINEER OF RECORD OF DISCREPANCIES BETWEEN FIELD CONDITIONS & THOSE SHOWN IN THESE DOCUMENTS PRIOR TO WORK TYP

INDICATES (E) CMU STEMWALL ON (E) CONC FOOTING (NOTIFY ENGINEER OF RECORD IF FIELD CONDITIONS DIFFER IN THE AREA OF WORK))

SECTION CUT - DETAIL NUMBER/SHEET NUMBER

INDICATES LOCATION OF FSI SJ350 SMARTJACK ((6) TOTAL) MAX LOAD TO SMARTJACK = 3,707 LBS

0

- SMARTJACK SPACING SHALL BE AS INDICATED ON PLAN
- FOOTINGS SUPPORTING THE (E) FLOOR FRAMING CONTRACTOR SHALL NOT REMOVE ANY (E) POSTS OR PRE-CAST
- ALL CONSTRUCTION MATERIALS IN THESE DOCUMENTS ARE (N) UNO FILL ALL VISIBLE CRACKS IN THE FOUNDATION WALL WITH HYDRAULIC CEMENT OR EPOXY

REPLACE "N-KIND" ALL (E) WOOD MEMBERS (JOISTS, PURLINS, SUBPURLINS, SHEATHING, STUDS, WALL PLATES) WHICH SHOW SIGNS OF DRY ROT OR STRUCTURAL DAMAGE

REVISIONS

BURCH RESIDENCE FLOOR SUPPORT 124 GOLDEN OATS DR.

ANGIER, NC 27501

DATE SIGNED: 04/22/2022 EXPIRES:

12/31/22

SHEET NO: S2.1

SCALE: 1/8"=1'-0"

(E) FOUNDATION/(N) SMARTJACK LAYOUT PLAN/

DRAWN BY: DATE: 04.22.2022 CHECKED BY: DESIGNED BY

(E) FOUNDATION/ (N) SMARTJACK LAYOUT PLAN

\$4.1

PROJECT NO:
RBC22-133
DESIGNED BY:
IL
DRAWN BY:
L
UNED BY:
JUKED B

REVISIONS

DETAILS

BURCH RESIDENCE FLOOR SUPPORT 124 GOLDEN OATS DR. ANGIER, NC 27501

SEAL STATE STONES: 12/31/22

\$4.2

PROJECT NO:
RBC22-133
DESIGNED BY:
IL
DRAWN BY:
CHECKED BY:
JLD
OATE:
04.22.2022

REVISIONS

DETAILS

BURCH RESIDENCE FLOOR SUPPORT 124 GOLDEN OATS DR. ANGIER, NC 27501

SFA Design Group, LLC

STRUCTURAL | GEOTECHNICAL | SPECIAL INSPECTIONS PORTLAND, OR | LIVERMORE, CA | SEATTLE, WA 503.641.8311 | www.sfadg.com

STRUCTURAL CALCULATIONS

Burch Residence Floor Support 124 Golden Oats Dr., Angier, NC 27501

Date Signed: 04/22/2022

LIMITATIONS

ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY, OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS.

Project No. RBC22-133 April 22, 2022

SFA Design Group, LLC STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	PROJECT NO. RBC22-133	SHEET NO.
PROJECT		DATE
Burch Residence Floor Support		4/22/2022
SUBJECT		BY
SmartJack (Steel Beam)> Design Requirements		IL

Structural Narrative

The structural calculations and drawings enclosed support the use of FSI SmartJacks for mitigation of observed structural settlements, and support of the vertical loads tributary to it, at a residential property located in Angier, NC as referenced on the coversheet. Smart Jacks consist of a 3.5" diameter steel pipe attached to a plate by a 1.25" diameter adjustable threaded rod. This plate is attached to the bottom side of a supporting beam with (4) bolts with nuts. The steel pipe sits in a pre-fabricated base plate that bears on a 24" square x 24" deep compacted gravel base.

General	是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
Building Department	Harnett County
Building Code Conformance (Meets Or Exceeds Requirements)	
2015 International Building Code (IBC)	
2015 International Residential Code (IRC)	
2018 North Carolina Building Code	
2018 North Carolina Residential Code	
Dead Loads	
Floor Dead Load	15.0 psf
Interior Wall Dead Load	9.0 psf
Live Loads	
Floor Live Load (Residential)	40.0 psf
Soil Parameters	
Reference Standards	Conform to IBC Chapter 18
	"Soils & Foundations".
Allowable Foundation Pressure (Assumed)	1500 psf

SFA Design Group, LLC STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	PROJECT NO. RBC22-133	SHEET NO.
PROJECT		DATE
Burch		4/22/2022
SUBJECT		BY
SmartJack Layout		IL

Project Layout (See S2.1 for Enlarged Plan)

(E) FOUNDATION/(N) SMARTJACK LAYOUT PLAN

Steel Beam

Project File: ENERCALC.ec6

LIC#: KW-06015057, Build:20.22.2.9

SFA ENGINEERING LLC

(c) ENERCALC INC 1983-2022

DESCRIPTION: (N) STEEL BEAM (MID-POINT)

CODE REFERENCES

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10

Load Combination Set: IBC 2015

Material Properties

Analysis Method 'Allowable Strength Design Beam Bracing: Completely Unbraced Bending Axis: Major Axis Bending Fy: Steel Yield:

50.0 ksi

E: Modulus :

29.000.0 ksi

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Loads on all spans...

Uniform Load on ALL spans: D = 0.0240, L = 0.040 ksf, Tributary Width = 5.125 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio = Section used for this span	Bending Stress Ratio = 0.327 : 1 used for this span S4x7.7			hear Stress Ratio = ion used for this span	0.081 : 1 S4x7.7
Ma : Applied Mn / Omega : Allowable	2.412 k-ft 7.372 k-ft		Va : Applied Vn/Omega : Allowable		1.258 k 15.440 k
Load Combination	+D+L		Load Combination Location of maximum on span		+D+L 7.670 ft
Span # where maximum occurs	# where maximum occurs Span # 1		Span	# where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.091 in Ratio = 0.000 in Ratio = 0.146 in Ratio = 0.000 in Ratio =	1,007 0 629 0	>=360 <360 >=240. <240.0	Span: 1 : L Only Span: 1 : +D+L	

Vertical Reactions		Support notation : Far left is #			Values in KIPS	
Load Combination	Support 1	Support 2				
Overall MAXimum	1.258	1.258	0.783			
Overall MINimum	0.283	0.283	0.783			
D Only	0.472	0.472	0.783			
+D+L	1.258	1.258	0.783			
+D+0.750L	1.061	1.061	0.783			
+0.60D	0.283	0.283	0.783			
L Only	0.786	0.786	0.783			

Steel Beam

Project File: ENERCALC.ec6

LIC#: KW-06015057, Build:20.22.2.9

SFA ENGINEERING LLC

(c) ENERCALC INC 1983-2022

DESCRIPTION: (N) STEEL BEAM

CODE REFERENCES

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10

Load Combination Set: IBC 2015

Material Properties

Analysis Method : Allowable Strength Design
Beam Bracing : Completely Unbraced
Bending Axis : Major Axis Bending

Fy: Steel Yield:

50.0 ksi

E: Modulus :

29,000.0 ksi

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Loads on all spans...

Uniform Load on ALL spans: D = 0.0240, L = 0.040 ksf, Tributary Width = 5.125 ft

Maximum Bending Stress Ratio = Section used for this span	0.324 : 1 S4x7.7	Ма	,	hear Stress Ratio = ion used for this span	0.08 S4x 7	82 : 1 '.7	
Ma : Applied	2.391 k-fl	2.391 k-ft Va : Applied			1.26	63 k	
Mn / Omega : Allowable	7.385 k-ft +D+L			Vn/Omega : Allowable	15.44	10 k	
Load Combination			onidaon – – – – – – – – – – – – – – – – – – –			Combination tion of maximum on span	+D 0.5
Span # where maximum occurs	Span # 2		Span	# where maximum occurs	Span #	£ 1	
Maximum Deflection	0.004 (1.015	- 200	Ones Oct Only			
Max Downward Transient Deflection	0.091 in Ratio =	1,015	>=360	Span: 2 : L Only			
Max Upward Transient Deflection	nt Deflection -0.019 in Ratio =		ransient Deflection -0.019 in Ratio = 643 >=360 Span: 2 : L Only		Span: 2 : L Only		
Max Downward Total Deflection	0.145 in Ratio =	635	>=240.	Span: 2: +D+L			
Max Upward Total Deflection	-0.030 in Ratio =	402	>=240.	Span: 2: +D+L			

Ve	ertical Reactions				Support notation : Far left is #*	Values in KIPS	
1	oad Combination	Support 1	Support 2	Support 3	3		
	Overall MAXimum		1.427	1.253	3		
	Overall MINimum		0.321	0.282	2		
	D Only		0.535	0.470)		
	+D+L		1.427	1.253	3		
	+D+0.750L		1.204	1.057	7		
	+0.60D		0.321	0.282	2		
	L Only		0.892	0.783	3		

SFA Design Group, LLC		
	PROJECT NO.	SHEET NO.
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	RBC22-133	
PROJECT	-	DATE
Burch Residence Floor Support		4/22/2022
SUBJECT		BY
Foundation Supportworks SJ350 Smart Jack System		IL

Note: Section above is a general representation of smartjack system, refer to plan for layout and project specific details.

Smart Jack System = SJ350

Footing Type = Gravel

 $P_{max} = 2.506$ kips

Maximum Tube Unbraced Length, $d_t = 8.000$ ft

Maximum Threaded Rod Unbraced Length, $d_{tr} = 3.000$ in

Eccentricity, $e_{max} = 0.670$ in

Moment = 1.679 in-kips

Tube Properties

Design Tube OD =	3.500	in
Design Wall Thickness =	0.165	in
k =	1.00	
r =	1.181	in
A =	1.729	in ²
c =	1.750	in
S =	1.377	in ³
1 =	2.409	in ⁴
E =	29000	ksi
Fy =	50	ksi

Tube Output	-	81.32		Slenderness OK
	kl/r =			Sienderness OK
	Cc =	107.00	kei	
	F'e =	22.57	ksi	
	Fa =	18.75	ksi	
	fa =	1.45	ksi	
	Fb =	33.00	ksi	
	fb =	1.22	ksi	
	Cm =	1.00		
	fa/Fa =	0.08		Eq H1-3 may be used
	Eq H1-1	NA		
	Eq H1-2	NA		
	Eq H1-3	0.11		Pier OK
Threaded Rod Properties				
	Threaded Rod Dia. =	1.250	in	
	k =	1.00		
	r =	0.313	in	
	A =	1.227	in ²	
	c =	0.625	in	
	S =	0.192	in^3	
	I =	0.120	in ⁴	
	E=	29000	ksi	
	Fy =	70	ksi	
Threaded Rod Output				
•	kl/r =	9.60		Slenderness OK
	Cc =	90.43		
	F'e =	1619.74	ksi	
	Fa=	40.79	ksi	
	fa =	2.04	ksi	
	Fb =	46.20	ksi	
	fb =	8.76	ksi	
	Cm =	1.00		
	fa/Fa =	0.05		Eq H1-3 may be used
	Eq H1-1	NA		
	Eq H1-2	NA		
	Eq H1-3			Tube OK
Bearing Capacity of Crushed Stone Footing				
	Footing Depth =	16 in		JOSEPH CONTRACTOR OF THE PROPERTY OF THE PROPE
	Footing Width =	16 in		
	Footing Length =	16 in		
	Soil Bearing Capacity =		psf	
	Capacity =	2.67	k	ок

MAX LOAD TO SMART JACK = 2506LB

3.5 IN DIAMETER SMART JACK TUBE WITH 0.165 IN. THICK WALL AND MAX HEIGHT OF 8FT
1.25 IN DIAMETER SOLID THREADED ROD WITH MAX HEIGHT OF 3 IN
16 IN SQR X 16 IN DP STRUCTURAL FILL
EMBED THREADED ROD A MINIMUM OF 3/4 IN INTO CONFINING RING AND THREADED INSERT

General Beam Analysis

LIC#: KW-06015057, Build:20.22.2.9

SFA ENGINEERING LLC

Project File: ENERCALC.ec6
(c) ENERCALC INC 1983-2022

DESCRIPTION: (E) WOOD BEAM

General Beam Properties

Elastic Modulus	29,000.0 ksi								
Span #1	Span Length =	5.580 ft	Area =	10.0 in^2	Moment of Inertia	= 1	0.00	in^4	
Span #2	Span Length =	2.790 ft	Area =	10.0 in^2	Moment of Inertia	= 1	0.00	in^4	
Span #3	Span Length =	2.790 ft	Area =	10.0 in^2	Moment of Inertia	= 1	0.00	in^4	
Span #4	Span Length =	2.790 ft	Area =	10.0 in^2	Moment of Inertia	= 1	0.00	in^4	
Span #5	Span Length =	2.790 ft	Area =	10.0 in^2	Moment of Inertia	= 1	0.00	in^4	
Span #6	Span Length =	5.580 ft	Area =	10.0 in^2	Moment of Inertia	= 1	0.00	in^4	
Span #7	Span Length =	5.580 ft	Area =	10.0 in^2	Moment of Inertia	= 1	0.00	in^4	
Span #8	Span Length =	5.580 ft	Area =	10.0 in^2	Moment of Inertia	= 1	0.00	in^4	

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Loads on all spans...

Uniform Load on ALL spans: D = 0.0240, L = 0.040 k/ft, Tributary Width = 10.250 ft

DESIGN SUMMARY

Maximum Bending = Load Combination	2.131 k-ft +D+L	Maximum Shear = Load Combination	2.212 k +D+L
Span # where maximum occurs	Span # 7	Span # where maximum occurs	Span # 7
Location of maximum on span	5.580 ft	Location of maximum on span	5.580 ft
Maximum Deflection Max Downward Transient Deflection	0.002 in	37538	
Max Upward Transient Deflection	0.000 in	0	
Max Downward Total Deflection	0.003 in	23461	
Max Upward Total Deflection	-0.000 in	110570	

Vertical Reactions			Support notation : Far left is #				Values in KIPS		
Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	Support 6	Support 7	Support 8	Support 9
Overall MAXimum	1.487	3.770	0.939	2.197	1.255	3.099	3.646	4.122	1.448
Overall MINimum									
D Only	0.558	1.414	0.352	0.824	0.471	1.162	1.367	1.546	0.543
+D+L	1.487	3.770	0.939	2.197	1.255	3.099	3.646	4.122	1.448
+D+0.750L	1.255	3.181	0.792	1.854	1.059	2.615	3.077	3.478	1.222
+0.60D	0.335	0.848	0.211	0.494	0.282	0.697	0.820	0.927	0.326
L Only	0.930	2.356	0.587	1.373	0.784	1.937	2.279	2.576	0.905

SFA Design Group, LLC		
	PROJECT NO. SHEE	ET NO.
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	RBC22-133	
PROJECT	DATE	Ē.,
Burch Residence Floor Support	4/22	/2022
SUBJECT	BY	
Foundation Supportworks SJ350 Smart Jack System	IL	

Note: Section above is a general representation of smartjack system, refer to plan for layout and project specific details.

Smart Jack System = SJ350 Footing Type = Gravel

 $P_{\text{max}} = 3.770 \text{ kips}$

Maximum Tube Unbraced Length, $d_t = 8.000$ ft

Maximum Threaded Rod Unbraced Length, $d_{tr} = 3.000$ in

Eccentricity, e_{max} = 0.670 in Moment = 2.526 in-kips

Tube Properties

Design Tube OD = 3.500 in 0.165 Design Wall Thickness = in 1.00 k = 1.181 r =in in^2 A= 1.729 1.750 c = in in^3 1.377 S = 2.409 in⁴ 1= 29000 E = ksi 50 Fy = ksi

	kl/r =	81.32		Slenderness OK
	Cc =	107.00		Glerider ricos Gr
	F'e =	22.57	ksi	
	Fa =	18.75	ksi	
	fa =	2.18	ksi	
	Fb =	33.00	ksi	
	fb =	1.83	ksi	
	Cm =	1.00	KSI	
	fa/Fa =	0.12		Eq H1-3 may be used
	1a/ra =	0.12		Eq H1-3 may be used
	Eq H1-1	NA		
	Eq H1-2	NA		
	Eq H1-3	0.17		Pier OK
Threaded Rod Properties				
•	Threaded Rod Dia. =	1.250	in	
	k =	1.00		
	r =	0.313	in	
	A =	1.227	in ²	
	c =	0.625	in	
	S =	0.192	in ³	
] =	0.132	in ⁴	
	E =	29000	ksi	
Threaded Rod Output	Fy =	70	ksi	
Threaded Rod Output	kl/r =	9.60		Slenderness OK
	Cc =	90.43		Ololla Ollino Go Oliv
	F'e =	1619.74	ksi	
	Fa =	40.79	ksi	
	fa =	3.07	ksi	
	Fb =	46.20	ksi	
	fb =	13.17	ksi	
	Cm =	1.00	NOI	
	fa/Fa =	0.08		Eq H1-3 may be used
	1a/r a =	0.00		Eq III-5 may be used
	Eq H1-1	NA		
	Eq H1-2	NA		
	Eq H1-3	0.36		Tube OK
Bearing Capacity of Crushed Stone Footing				
During Supusity of Classica Stolle (Souling	Footing Depth =	24 in		
	Footing Width = 24 in			
	Footing Length =			
	Soil Bearing Capacity =		psf	
	Join Dodning Capacity -		PO.	
	Capacity =	6.00	k	OK

MAX LOAD TO SMART JACK = 3770LB

3.5 IN DIAMETER SMART JACK TUBE WITH 0.165 IN. THICK WALL AND MAX HEIGHT OF 8FT

1.25 IN DIAMETER SOLID THREADED ROD WITH MAX HEIGHT OF 3 IN

24 IN SQR X 24 IN DP STRUCTURAL FILL

EMBED THREADED ROD A MINIMUM OF 3/4 IN INTO CONFINING RING AND THREADED INSERT