From: Delilah Pearce

Fax: 19199482713

To:

Fax: (910) 893-2793

Page: 4 of 11

03/10/2021 2:48 PM





4400 NE 77th Ave, Suite 275 Vancouver, WA 98662 P: 360.566.7343 E: starkd@starkfdn.com

# STRUCTURAL CALCULATIONS

PREPARED FOR

# TARHEEL BASEMENT SYSTEMS

FOR

# **GLOVER RESIDENCE**

## **FOUNDATION REPAIR**

955 BUNNLEVEL ERWIN ROAD BUNNLEVEL, NORTH CAROLINA

PROJECT NUMBER: 21.056.TBS

DATE: February 23, 2021

PROJECT MANAGER: DANIEL STARK, P.E.





4400 NE 77th Ave, Suite 275 Vancouver, WA 98662 P: 360.566.7343 E: starkd@starkfdn.com

Project No.: 21.056.TBS

February 23, 2021

Tonya Gunn Tarheel Basement Systems 2910 Griffith Road Winston-Salem, North Carolina 27103

RE: Foundation repair - 955 Bunnlevel Erwin Road, Bunnlevel, North Carolina

## PROJECT BACKGROUND

We understand that the structure is a single-family residence and has experienced settlement at the chimney. It is our understanding that (2) 2 7/8 inch diameter push piers have been proposed to provide additional foundation support.



Image 1: Front Elevation

From: Delilah Pearce Fax: 19199482713 To: Fax: (910) 893-2793 Page: 6 of 11 03/10/2021 2:48 PM

## **GEOLOGIC SETTING**

The existing structure is located in Bunnlevel, North Carolina. The geologic structure in the area is comprised of sandy loam and the site is relatively flat. It is our opinion that the localized settlement is a result of improper foundation drainage and/or undersized footings. We believe that suitable support can be achieved by installing helical and/or push piers.

#### SUMMARY

The ultimate load requirement for the push piers is 20000 lbs, and based on the geologic setting, we expect the piers to achieve adequate capacity at approximately 8 – 25 feet. We recommend that the piers with a 2 7/8 inch shaft and be installed to a minimum depth of 8 feet and a minimum installation pressure of 2100 psi, or refusal, using a 9.62 square inch hydraulic ram.

Regards,

Daniel Stark, P.E. Stark Foundations

# FLOOR LEVEL SURVEY



Front

From: Delilah Pearce

Fax: 19199482713

To:

Fax: (910) 893-2793

Page: 8 of 11

03/10/2021 2:48 PM



PROJECT

Foundation Underpinning 955 Bunnlevel Erwin Road Bunnlevel, North Carolina

Date: 23-Feb-21 Designed by: NDS

Project No.: 21.056.TBS

## Design Criteria

Code(s):

International Building Code (IBC) 2015/2018

ASCE 7-10

Design Loads:

Dead:

Soil:

Roof = 15 psf Chimney = 45

Active Pressure = 60

Third Floor = 15 psf Second Floor = 15 psf First Floor = 15

psf Walls = 8 psf

8" Foundation Wall = 100 psf Soil = 110 psf

Live:

Roof (snow) = 25 psf Third Floor = 40 Second Floor = 40

Wind: (not applicable)

Exposure = C Wind Speed, V = 120

Gust Effect Factor, G = 0.85 Internal Pressure Coefficient, GCpi = -0.18

Allow Lateral Bearing Pressure = 200

psf/ft

psf psf First Floor = 40 psf

External Pressure Coefficient, Cp = 0.8

Risk Category = 11

1.0  $K_{z1} =$  $K_d = 0.85$  $K_z = 0.98$ Height, hz = 30

Design Wind Pressure:

where:  $p_w = q_z (GCp - GC_{pl})$ 

 $q_z = 0.00256 K_z K_{z1} K_d V^2$ 

Therefore:

 $q_z = 30.7$  psf  $p_w = 26.4$  psf

Factored Wind Pressure, p'w = 15.8 psf (say 16 psf)

Design Load Combo = D + 0.6W

 $\omega = 0.6$ 

Fax: 19199482713

To:

Fax: (910) 893-2793

Page: 9 of 11

03/10/2021 2:48 PM



Foundation Underpinning 955 Bunnlevel Erwin Road Bunnlevel, North Carolina Date: 23-Feb-21 Designed by: NDS

Project No.: 21.056.TBS

# Push Pier Design - Worst Case

## Vertical Design Loads:

Tributary Widths:

| f =   | 0   | ft                                                    | >                                                                                           | 0                                                                                                        | plf                   |
|-------|-----|-------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|
| =     | 275 | ft2                                                   | >                                                                                           | 12375                                                                                                    | lbs                   |
| r =   | 0   | ft                                                    | >                                                                                           | 0                                                                                                        | plf                   |
| r =   | 0   | ft                                                    | >                                                                                           | 0                                                                                                        | plf                   |
| r =   | 0   | ft                                                    | >                                                                                           | 0                                                                                                        | plf                   |
| s =   | 0   | ft                                                    | >                                                                                           | 0                                                                                                        | plf                   |
| ) = [ | 21  | ft2                                                   | >                                                                                           | 6300                                                                                                     | lbs                   |
| () =  | 0   | ft                                                    | >                                                                                           | 0                                                                                                        | plf                   |
|       |     |                                                       | ΣDL =                                                                                       | 18675                                                                                                    | plf                   |
|       | f = | r = 275<br>r = 0<br>r = 0<br>r = 0<br>s = 0<br>0 = 21 | r = 275 ft <sup>2</sup> r = 0 ft r = 0 ft r = 0 ft s = 0 ft s = 0 ft ) = 21 ft <sup>2</sup> | = 275 ft <sup>2</sup> > r = 0 ft> r = 0 ft> r = 0 ft> r = 0 ft> s = 0 ft> 0 = 21 ft <sup>2</sup> > 1 ft> | 275   ft <sup>2</sup> |

Live:

Roof (snow) = 0 ft ----> 0 plf

Third Floor = 0 ft ----> 0 plf

Second Floor = 0 ft ----> 0 plf

First Floor = 0 ft ----> 0 plf

\$\int \text{FLL} = 0 plf

No. Piers = 2

Pier Working Loads:

 $\begin{array}{ccc} P_{DL} = & 9338 & \text{lbs} \\ 0.75^*P_{LL} = & 0 & \text{lbs} \\ \text{Working Load, } P_{TL} = & 10000 & \text{lbs} \\ \text{Ultimate Load, } P_{ULT} = & 20000 & \text{lbs} \end{array}$ 

Pier Design:

Pier Type: Push Pier

Bracket: PP21617-34 Bracket Cap = 29340 lbs Therefore ok Reference ICC report (attached)

Shaft Diameter: 2.875"

Installation Pressure, P:

 $\begin{array}{ccc} Q_{uit} = 2 \ (P_{TL}) & Q_{uit} = A_{cyl} \ (P) & \text{where } A_{cyl} = \text{working area of the dual bore} \\ 20000 & \text{lbs} & \text{installation cylinder} \end{array}$ 

 $A_{cyl} = 9.62 \quad in^2$ 

Therefore,  $P_{REO} = Q_{ult} / A_{cyl}$ 2100 psi



FOUND ATION REPAIR PLAN

To:





