Department of Environment, Health and Natural Resources Division of Environmental Health On-Site Wastewater Section

Sheet: Property ID: Lot #: File #: Code:

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

Owner: App	olicant: Thomas Date	s Sander	5		
Address:	Date	Evaluated: 211	8/2020		
Proposed Facility: U.L.	VILL - MILL I Decid	on Flow (1040).	240GPD	Property Size:	
rocation of site: 4208	010103421 Prope	erty Recorded:			
Water Supply: Evaluation Method:⊠	Public In Auger Boring	ndividual ⊅ ☐ Pit	▼ Well	☐ Spring	Other
Type of Wastewater:	X Sewage	☐ Industri	ial Process	☐ Mixed	

P R O F	R O F			DRPHOLOGY 1941					
E #	Position/ Slope %	Depth (In.)	.1941 Structure/ Texture	.1941 Consistence Mineralogy	.1942 Soil Wetness/ Color	.1943 Soil Depth (IN.)	.1956 Sapro Class	.1944 Restr Horiz	Profile Class & LTAR
1	L 151.	0-36	GR SL	VIFR SEX	nsnp				
		30-48	BK SCL	F 500	5550	48"			0.4
2	L 25%	0-30	GR SL	VFR SEX	nsnp				
		30-48	BX SCL	Fi SEXP.	SISSIP	48"			0.4
3	L 25%.	0-25	GR LS	VFR Stxp	N5/ND				P
		25-48	BK SCL	F: Stxp	565p	48"			PS.4

System Site Classification (1948):	visionally suitable
Available Space (.1945)	tuny Adams
System Type(s) CONV CONV Others Present:	imig reim is
Site LTAR	*

COMMENTS: ____

LANDSCAPE POSITIONS	GROUP	<u>TEXTURES</u>	. <u>1955 LTAR</u>	CONSISTENCE MOIST	WET
R-RIDGE S-SHOULDER SLOPE L-LINEAR SLOPE	1	S-SAND LS-LOAMY SAND	1.2 - 0.8	VFR-VERY FRIABLE FR-FRIABLE	NS-NON-STICKY SS-SLIGHTY STICKY
FS-FOOT SLOPE N-NOSE SLOPE H-HEAD SLOPE	II	I SL-SANDY LOAM L-LOAM	0.8 - 0.6	FI-FIRM VFI-VERY FIRM EFI-EXTREMELY FIRM	S-STICKY VS-VERY STICKY NP-NON-PLASTIC
CC-CONCLAVE SLOPE CV-CONVEX SLOPE T-TERRACE FP-FLOOD PLAN	CLAVE SLOPE III SI-SILT VEX SLOPE SIL-SILT LOAM CCE CL-CLAY LOAM	0.6 - 0.3		SP-SLIGHTLY STICKY P-PLASTIC VP-VERY PLASTIC	

0.4 - 0.1

STRUCTURE
SG-SINGLE GRAIN
M- MASSIVE
CR-CRUMB
GR-GRANULAR
SBK-SUBANGULAR BLOCKY
ABK-ANGULAR BLOCKY

MINERALOGY SLIGHTLY EXPANSIVE

SIC-SILTY CLAY C-CLAY

SC-SANDY CLAY

IV

EXPANSIVE

-PRISMATIC	Show profile	locations and	d other site	features (di	mensions	, referen	ces or be	enchmark	, and No	th)		
			3									
			3)		+-+	-				+		+ +
												+
			(2)									
			\square		-		+	-		++	-	+-+
												\perp
		Priv	all									
	++(+)+	104	my /				1					
		150	m				-			+	_	 -
		40	175									
	100	10										
			-		-	701	+					
				r			1					 -
		(-	Fi	tu	2						
			8	3	1	me						
				+	[1]	1 100		-			_	+ +
						1						
		8				,		112				
			+++			-						
						1			-		_	+
					NO) (
						(
		1	-	+		1						
		1										