

STRUCTURAL FIXTURE ANCHORAGE CALCULATIONS

FOR

Cameron, NC

2800 NC Highway 24-87 Store #6958

PREPARED FOR

CITY OF CAMERON, NC

JBA PROJECT #2431906958

Calculation Index

Page	Description						
1	Seismic Anchorage Design for Importance Factor = 1.0 (Stock Room)						
2	Seismic Anchorage Design for Importance Factor = 1.5 (Sales Floor)						
3	Gondola (Shelving) Anchorage Design - Load Diagrams						
4	Racking Anchorage Design - Frame Load Diagram						
5 - 6	18R Fixture - 18" W x 48" H						
7 - 8	18S Fixture - 18" W x 54" H						
9 - 10	18V Fixture - 18" W x 78" H						
11 - 12	18-3 Fixture - 18" W x 84" H						
13 - 14	18FW Fixture - 18" W x 84" H						
15 - 16	24R Fixture - 24" W x 48" H						
17 - 18	24T Fixture - 24" W x 60" H						
19 - 20	24V Fixture - 24" W x 78" H						
21 - 22	24X Fixture - 24" W x 90" H						
23 - 24	30YZ Fixture - 30" W x 96" H						
25 - 26	36V Fixture - 36" W x 78" H						
27 - 28	2490 EC Fixture - 24" W x 90" H						
29 - 30	3678 EC Fixture - 36" W x 78" H						
31 - 32	9-3RX Fixture - 9" W x 84" H						
33 - 34	18-3RX Fixture - 18" W x 84" H						
35 - 36	36FW Fixture - 36" W x 84" H						
37 - 38	Seismic Rack AWS - 24" D x 96" W x 120" H						
39 - 40	Seismic Rack DD - 24" D x 96" W x 72" H						
41 - 42	Seismic Rack O - 44" D x 96" W x 72" H						
43 - 44	Seismic Rack OGP2 - 22" D x 96" W x 90" H						

	PROJECT NO:			Sheet No:		Of:		
JOHNSTON	24319069	58		•	1	44	1	
DUKKHULDER								
ASSOCIATES	RBC			0,1121	01/0	3/25		
consulting structural engineers	CHECKED BY:			DATE:				
Lateral Seismic Analysis				!				
2018 NORTH CAROLINA BUILDING CODE / I	BC 2015 /	ASCE 7-	10 / 2012 RMI (AN	NSI/MH16.1	-12)			
	Braced	Down Aisle			Store	atituda/Lon	aitudo	
Response Modification Factor R -	4 0	6.0	ASCE-7 Table 15	4-1	Coordin	attes (ner G	oode).	
Overstrength Factor Omega 0 -	-1.0 2 0	0.0	ASCE-7, Table 15.	4-1	N	35° 14' 38"	35 2/30	
Deflection Amplification Factor C =	2.0		ASCE 7 Table 15.			700 041 051	70.0004	
Denection Amplification Factor, $C_d =$	3.0		ASCE-7, Table 15.	4-1 4 4	VV	79* 01: 35"	79.0264	
Detail Reference Section =	15.5.3		ASCE-7, Table 15.	4-1				
Risk (Occupancy) Category =	10		IBC, Table 1604.5	•				
Importance Factor, $I_p =$	1.0		ASCE-7 Sect. 15.5	.3				
0.2 Second Period Accel., $S_s =$	0.206	0.206 g IBC Figs. 1613.3.1(1-5)			-5), ASCE-7 Figs. 22-1 thru 22-14			
1.0 Second Period Accel., $S_1 =$	0.093	g	IBC Figs. 1613.3.1	(1-5), ASCE-	7 Figs. 22-'	1 thru 22-14		
(Soil) Site Class =	D		IBC 1613.3.2 -> AS	SCE-7, Table	20.3-1			
F _a =	1.600		IBC Table 1613.3.3	3(1), ASCE-7	Table 11.4	-1		
F _v =	2.400		IBC Table 1613.3.3	8(2), ASCE-7	Table 11.4	-2		
S _{MS} =	0.330	g	IBC eq. 16-37, ASC	CE-7 eq. 11.4	l-1			
S _{M1} =	0.223	g	IBC eq. 16-38, ASC	CE-7 eq. 11.4	-2			
S _{DS} =	0.220	g	IBC eq. 16-39, ASCE-7 eq. 11.4-3					
S _{D1} =	0.150	g	IBC eq. 16-40, ASC	CE-7 eq. 11.4	-4			
Seismic Design Category								
$based on S_{DS} =$	В		IBC Table 1613.3.5	5(1), ASCE-7	Table 11.6	-1		
$$ based on $S_{D1} =$	С		IBC Table 1613.3.5	5(2). ASCE-7	Table 11.6	-2		
Shelving Fixture	_							
C_s =	0.055		RMI sect. 2.6.3					
C _s , min =	0.010		RMI sect. 2.6.3 and	d ASCE-7 see	ct. 15.5.3			
Base Shear, $V = C_s I_p W =$	0.055	W	RMI sect. 2.6.2					
Rack Fixture	Braced	Down Aisle						
Period, T (H _{rack} ≤ 96") =	0.265	1.249	sec RMI sect. 2.6	6.3 T _S , ($(S_{D1}/S_{DS}) =$	0.682 sec.		
Period, T (96" < H _{rack} ≤ 120") =	0.483	1.182	sec RMI sect. 2.6	6.3	$T_L =$	8 sec.		
Period, T ($H_{rack} > 120"$) =	0.352	1.348	sec RMI sect. 2.6	6.3				
Period, T (H _{rack} = 168" w/Base Isolator) =	NA	NA	sec RMI sect. 2.6	6.3				
$C_s (H_{rack} \le 96") =$	0.055	0.020	> min[S _{DS} /R , S _D	_{o1} /((T)(R))]				
C _s (96" < H _{rack} ≤ 120") =	0.055	0.021	> min[S _{DS} /R , S _D	₀₁ /((T)(R))]				
$C_{s} (H_{rack} > 120") =$	0.055	0.019	> min[S _{DS} /R , S _D	₀₁ /((T)(R))]				
$C_s (H_{rack} = 168" \text{ w/Base Isolator}) =$	NA	NA	> min[S _{DS} /R , S _E	₀₁ /((T)(R))]				
C _s , min =	0.010	0.010	> RMI sect. 2.6.3	and ASCE-7	/ sect. 15.5	.3		
Base Snear:	< 0.0") -	<u> </u>	Braced Down Ais	le	DMI as at	0.0.0		
V (∩e" ∠ H	<u>ck</u> ≤ 90) = < 120") =	$C_s I_p V V_s =$	0.055 0.02	$\frac{20}{10}$ W _s $\frac{1}{10}$	RIVII Sect.	2.6.2		
V (96 < H _{rack}	$(\geq 120) -$	$C_s I_p V V_s =$		$\frac{1}{0}$ W>	RIVII Sect.	2.6.2		
V (H _{rac}	$\frac{(>120)}{(>)} =$	$\frac{C_{s}I_{p}VV_{s}}{CLW} =$	0.055 0.01	9 VV _s >	RIVII Sect.	2.6.2		
Load Combinations for LPED Member D	asc (SU) =	$O_{\rm S}I_{\rm p}VV_{\rm S} =$. INA IN	A W _s >	RIVII SECI.	2.0.2		
for RISA Frame analysis		DI =	Dead Load					
$IC #1 \cdot 1 4DI + 1 2PI$		PI =	Maximum load from	n pallets/prod	luct stored	on racks		
IC #2: 1 2DI + 1 4PI		FI =	Seismic Load - RM	Il section 2.6	7 - Vert Di	stribution		
LC #7a: (0.9-0.2S _{DS})DL + (0.9-0.2S _{DS})PL	_ _{app} + ρ(1.0)	EL < PL	$_{app} = (0.67) PL at ea$	ach shelf leve	el; ρ = 1.3 a	t "Braced" fi	rames	
0.8560 DL 0.8560	PLapp	1.0000	EL					
LC #7b: (0.9-0.2S _{DS})DL + (0.9-0.2S _{DS})PL	_ _{app} + ρ(1.0)	EL < PL	_{-app} = (1.0)PL at top	shelf only; p	= 1.3 at "B	raced" fram	es	
0.8560 DL 0.8560	PL _{app}	1.0000	EL					
LC #5: (1.2+0.2S _{DS})DL + (0.85+0.2S _{DS})	βPL + ρ(1.0)EL < ρ	= 1.3 at "Braced" f	rames, β = 0.	7			
1 2440 DI 0 6258	PI	1 0000	FI					

_	PROJECT NO:				Of:		
JOHNSTON	243190695	8		2	44		
BURKHOLDER	FR #6958 - Cameron, NC						
Associates	MADE BY: RBC	DATE: 01/03/25					
consulting structural engineers	CHECKED BY:		DATE:				
Lateral Seismic Analysis							
2018 NORTH CAROLINA BUILDING CODE / IBC 2015 / ASCE 7-10 / 2012 RMI (ANSI/MH16.1-12)							
	Braced D)own Aisle		, Storo I	atituda/Long	aitudo	
Response Modification Factor, R =	4.0	6.0 ASCE-7. Table 15.4-	1	Coordir	attes (per G	oale):	
Overstrength Factor, Omega, $\Omega_{0} =$	2.0	ASCE-7, Table 15.4-	1	N	35° 14' 38"	35.2439	
Deflection Amplification Factor, $C_d =$	3.5	ASCE-7, Table 15.4-	1	w	79° 01' 35"	79.0264	
Detail Reference Section =	15.5.3	ASCE-7, Table 15.4-	1	L			
Occupancy Category =	П	IBC, Table 1604.5					
Importance Factor, $I_p =$	1.5	ASCE-7 Sect. 15.5.3					
0.2 Second Period Accel., $S_s =$	0.206 g	IBC Figs. 1613.3.1(1-	-5), ASCE-7	7 Figs. 22-	1 thru 22-14		
1.0 Second Period Accel., $S_1 =$	0.093 g	IBC Figs. 1613.3.1(1-	-5), ASCE-7	7 Figs. 22-	1 thru 22-14		
(Soil) Site Class =	D	IBC 1613.3.2 -> ASC	IBC 1613.3.2 -> ASCE-7, Table 20.3-1				
F _a =	1.60	IBC Table 1613.3.3(1	IBC Table 1613.3.3(1), ASCE-7 Table 11.4-1				
F _v =	2.40	IBC Table 1613.3.3(2	IBC Table 1613.3.3(2), ASCE-7 Table 11.4-2				
S _{MS} =	0.330 g	IBC eq. 16-37, ASCE	IBC eq. 16-37, ASCE-7 eq. 11.4-1				
S _{M1} =	0.223 g	23 g IBC eq. 16-38, ASCE-7 eq. 11.4-2					
S _{DS} =	0.220 g	g IBC eq. 16-39, ASCE-7 eq. 11.4-3					
S _{D1} =	0.150 g	IBC eq. 16-40, ASCE	IBC eq. 16-40, ASCE-7 eq. 11.4-4				
Seismic Design Category							
based on S _{DS} =	B IBC Table 1613.3.5(1), ASCE-7 Ta			Table 11.6	i-1		
based on S _{D1} =	С	IBC Table 1613.3.5(2	IBC Table 1613.3.5(2), ASCE-7 Table 11.6-2				
Shelving Fixture							
C _s =	0.055	RMI sect. 2.6.3					
C _s , min =	0.010	RMI sect. 2.6.3 and A	ASCE-7 sec	ct. 15.5.3			
Base Shear, $V = C_s I_p W =$	0.083 W	/ RMI sect. 2.6.2					
Rack Fixture	Braced D	Jown Aisle					
Period. T ($H_{rock} \le 96"$) =	0.265	1.249 sec RMI sect. 2.6.3	3				
Period, T (96" < $H_{rack} \le 120"$) =	0.483	1.182 sec RMI sect. 2.6.3	}				
Period, T ($H_{rack} > 120"$) =	0.352	1.348 sec RMI sect. 2.6.3	3				
Period, T (H _{rack} = 168" w/Base Isolator) =	NA	NA sec RMI sect. 2.6.3	3				

 $C_s (H_{rack} \le 96") =$

 $C_{s} (H_{rack} > 120") =$

 C_s , min =

 C_{s} (96" < $H_{rack} \le 120$ ") =

 C_s (H_{rack} = 168" w/Base Isolator) =

Base Shear:

0.055

0.055

0.055

0.010

 $V (H_{rack} \le 96") = C_s I_p W_s =$

 $V (H_{rack} > 120") = C_s I_p W_s =$

 $V (96" < H_{rack} \le 120") = C_s I_p W_s =$

V (H_{rack} =168"w/Base Iso) = $C_s I_p W_s$ =

NA

0.020 --> min[S_{DS}/R , $S_{D1}/((T)(R))$]

 $0.021 \quad \text{-->} \min[S_{DS}/R , S_{D1}/((T)(R))]$

0.019 --> min[S_{DS}/R , $S_{D1}/((T)(R))$]

Braced

0.083

0.083

0.083

NA

NA --> min[S_{DS}/R , $S_{D1}/((T)(R))$]

0.010 --> RMI sect. 2.6.3 and ASCE-7 sect. 15.5.3

W_s --> RMI sect. 2.6.2

Down Aisle

0.030

0.032

0.028

NA

	NT	PROJECT NO: 2431906	958			Sheet No: 4	Of:	44
JOHNSTO	PROJECT NAME:							
BURKHO	#6958 - Cameron, NC							
ASSOCIA	MADE BY: RBC				DATE: 01/03/25			
consulting structural eng	CHECKED BY:				DATE:			
Racking Anchorage Design - Frame	Load Diag	ram						
2018 NORTH CAROLINA BUILDIN	G CODE / I	BC 2015 /	ASCE 7-	0 / 2012 F	RMI (ANS	I/MH16.1-12))	
Base Shear. RMI. sect. 2.6.2:								
FRAME	$V = (C_s)(I_p)$)(W _s)	C _s I _p , C _s ba	sed on fran	ne height a	and $I_p = 1.0$ or	1.5 with Public	Access
PZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ			$W_{s} = (0.67)$	(PL _{RF})(PL)) + DL			
			PL _{RF} =	1.0	for Cross	-Aisle and Dow	vn-Aisle frames	
			PL =	(0.67)PL	for RMI, s	ect. 2.6.9(1), A	SCE 7, 15.5.3.3	3.2(a)
				(1.0)PL	for RMI, s	ect. 2.6.9(2), A	ASCE 7, 15.5.3.3	3.2(b)
	Overturni	ng Stabilit	y:					
	Center of	Mass (CM)	of Product	Load (PL) i	s typically	20" above the	shelf or (1/2)(Sh	helf height, H _i)
F3 _ ±	when shel	f height is <	< 40" (which	i is the assu	umed palle	t height).		
SHELF	F _{x = 1} , is :	set at a Ser	rvice Load I	evel using \	V= (0.7)[C _s	[pWs]		
		44.	(/0/2) DL at .	a ala ala alƙ I ar				
TTTTTTTTTTTTTT	Load Case	<u>#1:</u>	((2/3)PL at ((0.7V)	each sheif lev	Ovrturn'a	ct. 2.6.9(1), ASCI Resist'a	E 7, 15.5.3.3.2(a))	1
	(0.67)PL	$h_x = y_i$	(ω _x)(h _x)	Σω _x h _x	Mom,M _{OT}	Mom, M _{RST}		
	ω_4	y ₄	(ω ₄)(y ₄)	F _{x4}	(F _{x4})(y ₄)	ω ₄ (D/2)		
I \$ <u> </u>	ω_3	У 3	(ω ₃)(y ₃)	F _{x3}	(F _{x3})(y ₃)	ω ₃ (D/2)		
	ω ₂	y ₂	$(\omega_2)(y_2)$	F _{x2}	$(F_{x2})(y_2)$	$\omega_2(D/2)$		
		y ₁	$(\omega_1)(y_1)$	F _{x1}	$(F_{x1})(y_1)$	$\omega_1(D/2)$		
	w _u =DL _{frame}	y _u =110/2	(W _u)(y _u) Σ (ω _v)(h _v)	Γ _{xu} Σ(F _{vi} +F _{vi})=0.7V	$\frac{(\Gamma_{xu})(y_u)}{M_{\alpha\tau}=\Sigma(F)(y)}$	$M_{P,CT} = \Sigma(\omega)(D/2)$		
			21.000	2 (XU X) -	01 20 00	NGI EC // · /		
-	Load Case	<u>#2:</u>	((1.0)PL at t	op shelf leve	l only, RMI,	sect. 2.6.9(2), AS	SCE 7, 15.5.3.3.2	(b))
	$\omega_x =$	$h_x = y_i$	(0.7V)	$(\omega_x)(h_x)$	Ovrturn'g	Resist'g		
	(1.0)PL		$(\omega_x)(h_x)$	Σω _x h _x		(1) (D/2)		
PEPTH (D)	$\omega_4 = DL_{frame}$	y ₄ v=Ht/2	$(\omega_4)(y_4)$ $(\omega_1)(y_1)$	F _{x4} F _{x1}	(F _{x4})(y ₄) (F _{x11})(y ₁₁)	$\omega_4(D/2)$ $\omega_4(D/2)$		
<u>SIDE VIEW</u>		u	Σ (ω _x)(h _x)	Σ(F _{xu} +F _{x4})=0.7V	$M_{OT}=\Sigma(F)(y)$	$M_{RST} = \Sigma(\omega)(D/2)$		
	Factor Of	Safety agai	inst Overtur	ning at Loa	d Case #1	& #2, FOS _{OT} =	= M _{RST} /M _{OT} :	
		FOS _{OT} < 1.0	0; Anchor Bo	ts required for	or both Shea	ar & Tension		
		FOS _{OT} >= 1	.0; Anchor B	olts required	for Shear or	nly, no net uplift te	ension at base co	nnection
		FOS _{OT} >= 1	.5; Anchor B	olts required	for Shear or	nly for frames 96'	" tall and taller at s	sales
			floor area a	nd for all fram	nes taller tha	an 48" in storage	areas (non sales	floor).
Anchorage Connection Design Load	Anchorage Connection Design Load Combinations: (RMI, section 2.2 - Strength Design)							
RMI LC #6: (0.9-0.2S _{DS})DL + (0.9-	0.2S _{DS})(0.67)F	'L - Ω _o (EL), fe	or Load Case	#1	Shear, R _{uh} =	= (Ω _o)V/2		
$(0.9-0.2S_{DS})DL + (0.9-0.2S_{DS})PL - \Omega_{o}(EL)$, for Load Case #2 Tension, $R_{uv} = [(\Omega_{o}M_{OT}/0.7)-(0.9-0.2S_{DS})M_{RST}]/(FrameDepth)$								
Rack Frame Member Design Load Combinations: (RML section 22 - Strength Design)								
BMUC#1: 14DI + 1.2PI			Redundanc	/ factor. o =	1.0	<- SDC "A"/"F	B"/"C". RMI. sec	:t. 2.6.2.1
RMI C #2: 1.2DL + 1.4PL			neuunune	, ideter) p =	1.3	<- SDC "D"/"F	E"/"F", RMI, sec	t. 2.6.2.1
PMILC #5: (1 2+0.2S)DI + (0.8	5+0.25)(0.65		for Load Cas	o #1	1.0	6 - 0 7 R	M = 21	. 2.0.2.1
$\beta = 0.7 \text{ KIVII, Sect. 2.1}$ (1.2+0.2S _{DS})DL + (0.85+0.2S _{DS})(0.07)BPL + pEL, for Load Case #1 $\beta = 0.7 \text{ KIVII, Sect. 2.1}$								
$RMI LC #7: (0.9-0.2S_{pc})DL + (0.9-0.2S_{pc})(0.67)PI - oFL for Load Case #1$								
$(0.9-0.2S_{DS})DL + (0.9-0.2S_{DS})DL + (0.9$	0.2S _{DS})PL - ρΕ	L, for Load C	Case #2					
Rack Framing Member Design: (RMI, section 6.3)								
Per RMI/ANSI/MH16.1, effective le Order Analysis, Section C2.2a is us	Order Analysis, Section C2.2a is used. Notional loads are applied to gravity load cases and K=1.0 is used since the ratio of second-order							
drift to first-order drift (P- δ) / (P- Δ)	< 1.1.	sado alo app		, 1000 00000				

18-3 - Half T-Frame

9-3RX - Half T-Frame

