

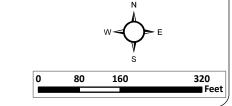
Post Office Box 28022 – Raleigh, NC 27611 O: 919-553-4021 | F: 919-553-2169 | www.afp-nc.com

Fire Flow Test Report

RockSolid Veneers

Test Performed: January 30, 2024

Test Location: 1267 Stewart Road Dunn, NC


FIRE HYDRANT FLOW TEST RESULTS

TEST LOCATION		
Address: 1267 Stewart Road, Ang	gier	
Proposed Tap Location:		
Requested Flow Location: nearest hydrant	to the proposed point of connection	
A DDI LC A NIE		
APPLICANT		
Name: RockSolid Veneers	C 27504	
Address: PO Box 817, Benson, No Contact Person: Monte Ballard		
Contact Ferson. Monice Barrard	_ Filone. 910.739.9393 Fax	
TESTING AGENT		
Firm Name: Associated Fire Protection, In		
Address: PO Box 28022, Raleigh, North		
Phone: (919) 553-4021	Fax: (919) 553-2169	
SYSTEM ANALYSIS		
Main Size: 6 "	Elevation of Test Location: 238 ' +/	· <u> </u>
Nearest Elevated Tank: <u>EC1</u>	Time of Test: 10:50 AM	
Tank Elevation: 455.6'(27.6')		
Theoretical Pressure: 94.2 psi		
Calculated by: <u>Drew King</u>	Witnessed by: <u>David Allen</u>	
RESU	ULTS	
Static Pressure: 86 psi		
Residual Pressure: psi		
Disclaimer: These results are an instantaneous		nended that
the designer allow adequate safety to include		
Comments: Flowed (1) 2-1/2"		otless
Nozzle(s). (2" Pitotless Nozz	zie $C = 1.38$)	
Completed by:Drew King		
Date: _1/30/2024		
Date		

1267 Stewart Road, Dunn

Hydrant Flow Test Report

Test Date 1/30/2024

Test Time 10:50 AM

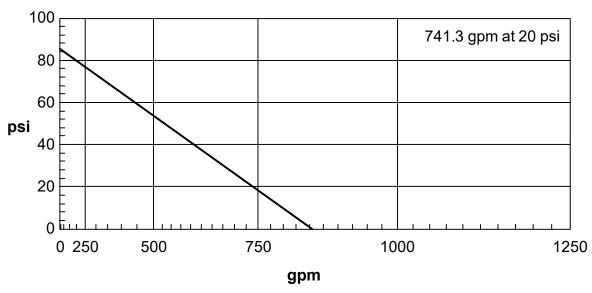
Location

RockSolid Veneers 1267 Stewart Road Dunn, NC

Tested by

Associated Fire Protection P.O. Box 28022 Raleigh, NC 27611 DKing@afp-nc.com 919.906.5236

<u>Notes</u>


Read Hydrant

86 psi static pressure 39 psi residual pressure 238 ft hydrant elevation

Flow Hydrant(s)

Outlet	Elev	Size	С	Pitot Pressure	Flow
#1	236	2	1.38	14	617 gpm

Flow Graph

		<u>ixet</u>				cter				ints	ctes	
aci.	\ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	se Monster Open Art	nosphere	/		se Monster de II Open Art	nosphere			Test Points	se Monster de II Open Art	nosphere
10.40 PC	27/2/10	dell Open At		M. 70 PE	23/2/10	delli Open At			KEA LION	27/2/10	delli Open Att	
PSI	GPM	GPM		PSI	GPM	GPM			GPM	PSI	PSI	
10	521	529		41	1055	1071			500	9.5	9.1	
11	547	555		42	1068	1084			562.5	11.7	11.3	
12	571	579		43	1081	1096			750	20.7	20.1	
13	594	603		44	1093	1109			1000	36.8	35.8	
14	617	626		45	1106	1122			1125	46.6	45.3	
15	638	648		46	1118	1134			1500	82.8	80.5	
16	659	669		47	1130	1146		The readings	n this chart are	based on whice	h device the Pit	totless Nozzle
17	679	689		48	1142	1158		The readings on this chart are based on which device the Pitotless Nozzle is connected to. It is the user's responsibility to verify that the correct chart and column is being used. • 2 %" Hose Monster Model II or Flusher with flow splitter (HM2H, HM2HF). Use this column if the Pitotless Nozzle is connected to the 2 %" Hose Monster or Flusher. The built-in pitot or flow splitter must be installed for accuracy. If you do not have the built-in pitot or flow splitter, please contact us. • Open Atmosphere. Use this column when the Pitotless Nozzle is connected directly to a test header or hydrant flowing openly to				
18	699	709		49	1154	1170						
19	718	729		50	1165	1182						
20	737	748		51	1177	1194						
21	755	766		52	1188	1206						
22	773	784		53	1200	1217		atmosp		test fieuder of f	ryarant nowing	openly to
23	790	802		54	1211	1229			M Approved for			
24	807	819		55	1222	1240		the Authority Having Jurisdiction to call us if there are any questions. Additional copies of flow charts are available at: www.hosemonster.com/literature.html				
25	824	836		56	1233	1251						
26	840	853		57	1244	1262				HARYUN		
27	856	869		58	1255	1273					APPRO	OVED
28	872	885		59	1266	1284		ATHOLE				
29	887	900		60	1277	1295						
30	903	916		61	1287	1306			The			
31	918	931		62	1298	1317		The Pitotless Nozzle"				
32	932	946		63	1308	1327			PM Appr	US Patent 6.874,375 Hydro Flow Products, Inc. 2-9987, www.HoseMonster 8 Wed Operating Range 10 - 80	70	
33	947	960		64	1318	1338			1	SN 20-01022		
34	961	975		65	1329	1348						
35	975	989		66	1339	1358				-0		
36	989	1003		67	1349	1369				* The	-	
37	1002	1017		68	1359	1379			1	HO	SE	
38	1016	1031		69	1369	1389			Mo	NST	ER	
39	1029	1044		70	1379	1399			CC	MPA	NY	
40	1042	1057							Divisio	n of Hydro Flow Prod	lucts, Inc.	Updated Jun. 2015

MANUFACTURED BY: Hydro Flow Products, Inc. 888.202.9987 TOLL FREE 847.434.0073 FAX Service@FlowTest.com EMAIL www.HoseMonster.com

Calculating Flow-rates

The flow charts we provide with the Pitotless Nozzle™, Hose Monster® and Nozzle Inserts are correct and should be referred to first. Our flow charts are calculated using K-Factors derived from testing performed at FM Approvals. It is common for third-party software to use the pitot formula to compute flow-rate. The 2½ " Hose Monster uses a pitot to measure velocity pressure. The Pitotless Nozzle and 4" and 4½ " Hose Monsters do not use a pitot, and the pitot formula has to be tricked into calculating correct flow-rates. Entering the coefficients into a program that uses orifice diameter, coefficient and velocity pressure should give relatively accurate flow-rates. Check results against our flow charts.

Here are the equations used for calculating flow-rates and predicting flow-rates. Use the orifice diameter, coefficient or K-factor found on the next page.

K-factor Formula

Computes a flow-rate in GPM given a psi and a K-factor of the flow device.

 $Q = \sqrt{P \times K}$

Q = flow-rate in GPM, P = velocity pressure in psi, K = K-factor of flow device

Pitot Formula

Computes a flow-rate in GPM given a psi and coefficient of the flow device.

 $Q = 29.84 \times \sqrt{P} \times D^2 \times C$

Q = flow-rate in GPM, P = velocity pressure in psi, D = orifice diameter in inches

C = coefficient of flow device

Equation for Determining Rated Capacity

Computes the flow-rate available at a specified residual pressure (a.k.a. Rated Capacity).

The example below enables you to find the predicted flow-rate at 20 psi residual pressure.

 $Q_R = Q_E \times (H_R^{0.54}/H_E^{0.54})$

Q_o = Flow-rate predicted at the desired residual pressure in GPM

 Q_F = Total test flow-rate measured during test in GPM (GPM measured from Hose Monster or Pitotless Nozzle)

H_R = Pressure drop from static pressure to desired residual pressure (Static – 20 psi [if 20 psi is the desired residual pressure])

H_c = Actual pressure drop measured during the test (Static – Actual Residual)

(Source: NFPA 291, 2010)

Conversion Factors

Here are some conversion factors for switching between US and metric units:

Flow-rate:

US Gallons per Minute x 3.785 = Liters per Minute Liters per Minute x 0.264 = US Gallons per Minute

US Gallons per Minute x 0.1337 = Cubic Feet per Minute Cubic Feet per Minute x 7.481 = US Gallons per Minute

Volume:

US Gallons x 3.785 = LitersLiters x 0.264 = US Gallons

US Gallons x 0.8327 = Imperial Gallons Imperial Gallons x 1.201 = US Gallons

Cubic Feet x 7.48051945 = US Gallons US Gallons x 0.1337 = Cubic Feet

Pressure:

 $psi \times 0.0689 = Bars$ Bars x 14.5038 = psi

psi x 6894.757 = PascalsPascals x 0.000145 = psi

Bars x 100,000 = Pascals Pascals x 0.00001 = Bars

Weight of Water:

US Gallons of Water x 8.3454 = Pounds Cubic Feet of Water x 62.42796 = Pounds

Length:

Meters x 3.2808 = FeetFeet x 0.3048 = Meters

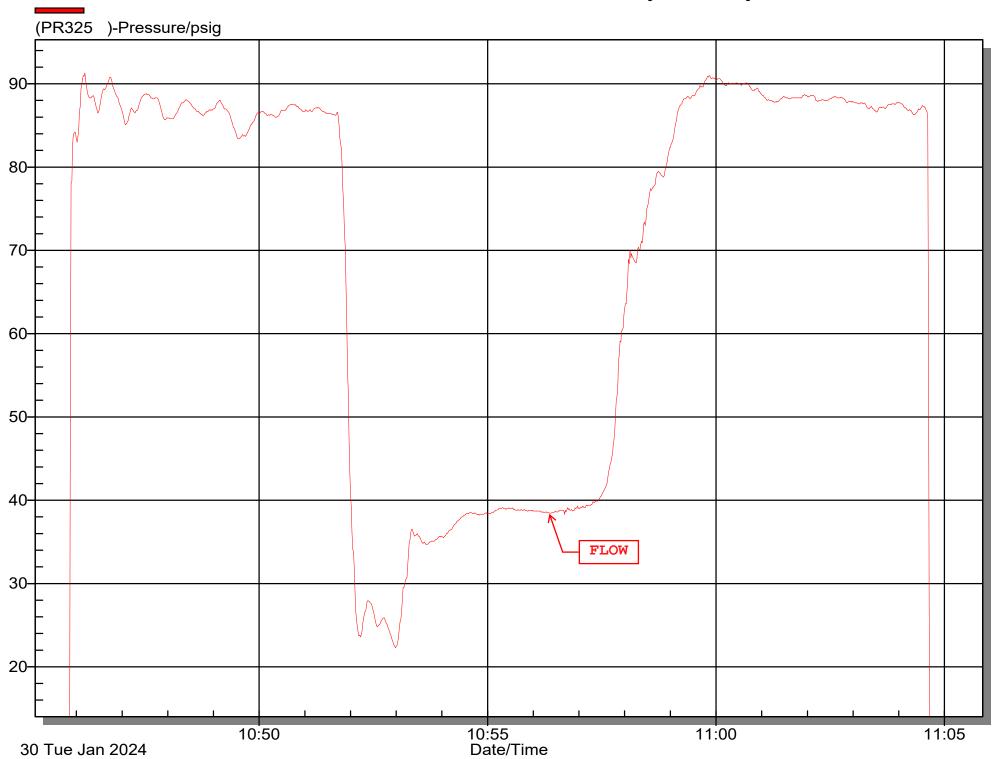
last update: 2/14/2012

Coefficient and K-Factor Table for Various Flow Devices

					last apaate. 271-77201
Pitotless Nozzle [™]					
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)
2" Pitotless Nozzle + Little Hose Monster™	156.0	1.31	2"	10–70	490–1300
2" Pitotless Nozzle + 2½" Hose Monster Steel	164.8	1.38	2"	10-80	520-1380
2" Pitotless Nozzle + Open Atmosphere	167.2	1.40	2"	10–70	530-1400
1¾" Pitotless Nozzle + Little Hose Monster	104.7	1.15	1.75"	10–90	330-1000
1¾" Pitotless Nozzle + 2½" Hose Monster Steel	106.6	1.17	1.75"	10–90	340-1010
1¾" Pitotless Nozzle + Open Atmosphere	109.7	1.20	1.75"	10–90	350-1040
11/8" Pitotless Nozzle + Little Hose Monster	37.2	0.98	1.125"	5–90	80-350
11/8" Pitotless Nozzle + 21/2" Hose Monster Steel	37.4	0.99	1.125"	5–90	80-350
11/8" Pitotless Nozzle + Open Atmosphere	37.0	0.98	1.125"	5–90	80-350
1" Pitotless Nozzle + Little Hose Monster	27.2	0.91	1 "	3–90	50-260
1" Pitotless Nozzle + 2½" Hose Monster Steel	27.6	0.93	1 "	3–90	50–260
1" Pitotless Nozzle + Open Atmosphere	27.7	0.93	1 "	3–90	50-260
In-Line Pitotless Nozzle™					
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)
2" In-line Pitotless Nozzle	165.3	1.38	2"	10–75	530–1430
1¾" In-line Pitotless Nozzle	109.9	1.20	1.75"	5–80	250-980
11/8" In-line Pitotless Nozzle	38.4	1.02	1.125"	5–70	90-320
BigBoy Hose Monster™					
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)
4 to 10 psi (BigBoy Hose Monster)	382.9	1.38	3.05"	4–10	766–1211
11 to 36 psi (BigBoy Hose Monster)	376.0	1.35	3.05"	11–36	1247–2256
37 to 53 psi (BigBoy Hose Monster)	372.0	1.34	3.05"	37–53	2263-2708
Note: Due to the shape and size of the BigBoy Pitotles.	s Nozzle, the BigBo	y Hose Monster	uses three different k	c-factors over its op	erating range.

2½" Hose Monster®					
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)
2½" Hose Monster	168.67	0.906	2.5"	10–75	530-1460
1¾" Nozzle Insert	89.04	0.975	1.75"	10–75	280-770
11/8" Nozzle Insert	37.36	0.99	1.125"	10–75	120–320
4" and 41/2" Hose Monster®					
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)
4½" Hose Monster	331.07	0.548	4.5"	10–75	1050–2870
4" Hose Monster	339.65	0.712	4"	10–75	1070–2940

Using Software


Use the table below if you are using software that requires the coefficient input to be less than '1.0'. Notice that the orifice diameter must be changed from its true diameter in order to accommodate the lower coefficient. This is necessary only for the 2" Pitotless Nozzle and the ¾" Pitotless Nozzle.

Device	Coefficient	Orifice Diameter
2" Pitotless Nozzle + Little Hose Monster	0.99	2.30"
2" Pitotless Nozzle + 21/2" Hose Monster Steel	0.99	2.36"
2" Pitotless Nozzle + Open Atmosphere	0.99	2.38"
1¾" Pitotless Nozzle + Little Hose Monster	0.99	1.88"
1¾" Pitotless Nozzle + 2½" Hose Monster Steel	0.99	1.90"
1¾" Pitotless Nozzle + Open Atmosphere	0.99	1.93"

Note: If your software uses the Theoretical Discharge Formula, found in NFPA 291, 4.7.3, the coefficient of discharge can be used to produce flow rates that will match our flow charts.

A hand-held pitot directly at a hydrant outlet		Classifying and Marking of Hydrants			
Outlet Type	Coefficient	Rated Capacity at 20 psi	Class	Marking Color of Hydrant Tops and Nozzles	
Outlet smooth and rounded	0.9	≥1500 GPM	AA	Light Blue	
Outlet square and sharp	0.8	1000-1499 GPM	Α	Green	
Outlet square and projecting into barrel	0.7	500-999 GPM	В	Orange	
If a stream straightener is used	0.95	≤499 GPM	С	Red	

The above are the NFPA hydrant classifications and color markings for various rated capacities. Source: NFPA 291, 5.1, 2010.

