

2725 S. SAUNDERS STREET - RALEIGH, NC 27603 • PHONE 919-828-9346 • FAX 919-839-8164 N.C. STATE FIRE SPRINKLER LICENSE #23634 FS-I • N.C. STATE FIRE ALARM LICENSE #SP.FA/LV.33232 FED. TAX I.D. 56-0842716

DUKE ENERGY DUNN OPERATIONS MOBILE SUBSTATION BUILDING 1269 JONESBORO ROAD DUNN, NC

FIRE SPRINKLER HYDRAULIC CALCULATIONS

> August 23, 2023 REV 01 9/28/24

SALES · DESIGN · INSTALLATION · INSPECTIONS

Hydraulic Calculations by HydraCALC

CRAWFORD SPRINKLER CO. OF RALEIGH, INC. 2725 SOUTH SAUNDERS STREET RALEIGH, NC 27603 919-828-9346

BRIAN THOMAS CRAWFORD NC LIC. #29772 FS-I

Job Name Drawing Location Contract Data File

: Duke Energy Mobile Substation Storage RA1 REV 01 : FP1-2 : 1269 JONESBORO ROAD, DUNN, NC Remote Area : TRUCK BAY : J24-6014

: DUKE ENERGY MOBILE SUBSTATION STORAGE RA1 REV 01 9-28-24.wxt

HYDRAULIC CALCULATIONS for

JOB NAME DUKE ENERGY - DUNN MOBILE SUBSTATION STORAGE Location 1269 JONESBORO ROAD, DUNN, NC Drawing # FP1-2 Contract # J24-6014 Date 9/28/24

DESIGN

Remote area #TRUCK BAYRemote area locationTRUCK BAYOccupancy classificationOH IIDensity0.20 - Gpm/SqFtArea of application1,500 - SqFtCoverage/sprinkler130 - SqFtType of sprinkler calculatedVK2001# Sprinklers calculated14In-rack demand0 - GPMHose streams250 - GPMTotal water required (including hose streams)627.818 - GPMWET GRIDWET GRIDVolume of system (dry or pre-action)NA - Gal

WATER SUPPLY INFORMATION

Test date5/9/24Location1269 JONES ROADSource of infoCRAWFORD SPRINKLER

CONTRACTOR INFO CRAWFORD SPRINKLER CO. Address OF RALEIGH, INC. / 2725 SOUTH SAUNDERS STREET / RALEIGH, NC Phone # 919-828-9346 Name of designer Douglas Johnston II Authority having jurisdiction HARNETT COUNTY FMO NOTES:

text1(35) - invisible

Water Supply Curve

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

Page 2 Date 9/28/24

Flow Diagram

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

Page 3 Date 9/28/24

> 56.5 113 56.**5** ← **202** → 56.5 ← **201** ← **4** 29.7 ← **8** 29.7 $\begin{vmatrix} 147.7 \\ 26.3 \\ 104 \rightarrow 13 \leftarrow 14 \leftarrow 204 \end{vmatrix}$ 3.6 ← 7 3.7 ← **3** $\begin{array}{c|c} & 1 \\ & 48.9 \\ \hline & 49.1 \\ & 49.1 \\ \hline & 49.4 \\ \hline & 22.4 \\ \end{array}$ $\begin{array}{c} 48.9 \\ 48.9 \\ 101 \rightarrow 1 \rightarrow 2 \\ 22.3 \end{array}$ $\begin{array}{c} \uparrow & \uparrow \\ \uparrow \\ 139,1 \\ 139,1 \\ 111 \\ \uparrow \\ 111 \\ \uparrow \\ \uparrow \\ 211 \\ \downarrow \\ 211 \\ 111 \\$ - ≥. 138 239.8 12 ← 212 $\begin{array}{c} \leftarrow \bullet \\ \uparrow \\ 137.5 \\ 137.5 \\ 240.3 \\ 113 \leftarrow 213 \\ \uparrow \end{array}$ 141 236.8 1.9| | 137,4 240.5 | 0 | 114 ← 214 | 137.3 240.5 | 0 | 115 ← 215 137.3 240.5 $110 \leftarrow 210$

Computer Programs by Hydratec Inc. Revision: 50.5520.727

Flow Diagram

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

4	9/28/24
Page	Date

240.5 240.5	240.5	240.5 240.5	240.5	240.6	240.8 241.5	241.5 242.8	245.1 248.6	253.6	260.5
$\begin{array}{c c} 16 \leftarrow 216 \\ 16 \leftarrow 216 \\ 137.3 \\ 0 \\ 17 \rightarrow 217 \\ 1373 \\ 1373 \end{array}$	$\begin{array}{c} 18 \rightarrow 218 \\ 137.3 \\ 19 \rightarrow 219 \\$	137.3 0 20 ← 220 137.3 0	$\begin{array}{c} 27 \leftarrow 22 \\ 137.3 \\ 0.1 \\ 22 \leftarrow 222 \\ 222 \leftarrow 222 \end{array}$	137.3 0.3 23 ← 223	$\begin{array}{c} 137\\ 137\\ 0.7\end{array}$	$\begin{array}{c} 13q.5 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 2.3 \\ 26 \leftarrow 226 \\ 2.2 $	$\begin{array}{c} 132.7\\ 3.51\\ 3.51\\ 27 \leftarrow 227\\ 129.3\\ 5 \end{array}$	$\begin{array}{c} 28\leftarrow228\\\uparrow\\124;2\\6.9\\6.9\\29\leftarrow229\\\bullet\\229\leftarrow229\\22$	⊤ 117.3 9.1 30 ← 230 108.2

Flow Diagram

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

Page 5 Date 9/28/24

91.1 62.3 36.2 12 231 \rightarrow 232 \rightarrow 233 \rightarrow 234 \rightarrow 235 \rightarrow 236 \rightarrow 237 \rightarrow 238 \uparrow 76.7 48.91 108.2 47.8377.8 477.8239 \leftarrow **TOR** \leftarrow **BOR** \leftarrow **UG1** \leftarrow **UG2** 451.4 $16.5 \qquad 627.8 \qquad 627.8 \\ \textbf{UG1} \leftarrow \textbf{HOSE} \quad \textbf{UG2} \leftarrow \textbf{BF1} \leftarrow \textbf{SRC} \leftarrow \textbf{TEST}$ 627.8 166.5

>
F
2
╘
F
1
ភ
0)
σ
Φ
S
\supset
~
5
2
. <u> </u>
Ħ
ίΓ.

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

6 9/28/24 Page Date

Fitting L Abbrev	-egend . Name	7 <u>~</u>	3/4	.	11⁄4	1½	2	21/2	с	3½	4	5 2	9	œ	10	12	14	16	18	20	24
Aty	Alarm Tyco AV-1							14			23		24	23							
В	NFPA 13 Butterfly Valve	0	0	0	0	0	9	7	10	0	12	ი	10	12	19	21	0	0	0	0	0
ш	NFPA 13 90' Standard Elbow	.	2	2	ო	4	5	9	7	œ	10	12	14	18	22	27	35	40	45	50	61
ш	NFPA 13 45' Elbow	-	-	~	-	2	2	ო	ო	ო	4	2	7	6	1	13	17	19	21	24	28
Fsp	Flow Switch Potter VSR	Fittin	g genera	ates a F	ixed Los	s Based	on Flow														
ص	NFPA 13 Gate Valve	0	0	0	0	0	-	.	-	.	2	2	ი	4	5	9	7	ø	10	1	13
⊢	NFPA 13 90' Flow thru Tee	ო	4	S	9	ω	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zig	Wilkins 375DA	Fittin	g gener:	ates a F	ixed Los	s Based	on Flow														

Units Summary

Diameter Units **Pressure Units** Length Units Flow Units

Pounds per Square Inch **US Gallons per Minute** Inches Feet

supplied by manufacturers based on specific pipe diameters and CFactors and they require no Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

			SUPPLY	ANALYSIS		
Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	120.0	42	1270.0	98.814	627.82	82.472

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node		Notes	
101	23.5		16.99				
1	27.0	8	11.05	26.6	0.2	130	
2	27.583	8	10.56	26.0	0.2	130	
3	27.583	8	10.57	26.01	0.2	130	
4	27.0	8	11.23	26.8	0.2	130	
102	23.5		17.06				
5	27.0	8	11.09	26.64	0.2	130	
6	27.583	8	10.6	26.04	0.2	130	
7	27.583	8	10.61	26.05	0.2	130	
8	27.0	8	11.26	26.85	0.2	130	
103	23.5		17.31				
9	27.0	8	11.23	26.81	0.2	130	
10	27.583	8	10.73	26.2	0.2	130	
11	27.583	8	10.73	26.21	0.2	130	
12	27.0	8	11.38	26.99	0.2	130	
104	23.5		17.84				
13	27.583	8	14.35	30.3	0.2	130	
14	27.583	8	14.36	30.31	0.2	130	
105	23.5		18.57				
106	23.5		19.24				
107	23.5		19.89				
108	23.5		20.49				
109	23.5		21.05				
110	23.5		21.6				
111	23.5		22.13				
112	23.5		22.65				
113	23.5		23.17				
114	23.5		23.69				
115	23.5		24.21				
116	23.5		24.72				
117	23.5		25.24				
118	23.5		25.76				
119	23.5		26.28				
120	23.5		26.8				
121	23.5		27.31				
122	23.5		27.83				
123	23.5		28.35				
124	23.5		28.87				
125	23.5		29.38				
126	23.5		29.88				
127	23.5		30.36				
128	23.5		30.83				

Flow Summary - NFPA

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

Node Tag Elevation Node Type Pressure at Node Discharge at Node Notes 129 23.5 31.26 31.26 130 23.5 31.81 31.81 131 23.5 32.01 33.3 133 23.5 32.24 32.35 135 23.5 32.24 33.5 136 23.5 32.41 33.5 137 23.5 32.41 33.5 138 23.5 13.61 32.5 201 23.5 18.61 32.35 203 23.5 18.61 32.35 204 23.5 19.71 35.5 205 23.5 19.71 35.5 206 23.5 21.63 32.17 207 23.5 22.66 32.17 211 23.5 22.65 32.17 212 23.5 22.66 32.17 213 23.5 22.66 32.17 214				NODE ANAI	LYSIS (cont.)	
12923.5 31.26 13023.5 31.59 13123.5 31.6 13223.5 32.14 13423.5 32.26 13523.5 32.34 13623.5 32.34 13723.5 32.44 13823.5 32.44 13823.5 32.44 13823.5 32.44 13823.5 32.44 20123.5 18.67 20223.5 18.67 20323.5 18.72 20423.5 19.31 20623.5 19.31 20623.5 20.63 20923.5 21.63 21023.5 21.63 21123.5 21.63 21223.5 22.65 21323.5 22.65 21423.5 22.65 21723.5 22.65 21823.5 26.26 22923.5 26.8 22123.5 26.8 22123.5 26.8 22123.5 27.83 22323.5 29.39 22423.5 29.39 22523.5 31.61 23323.5 33.61 23423.5 33.61 235 23.5 33.61 23623.5 33.61 23723.5 33.32 23723.5 33.29 23623.5 33.29 23623.5 33.29	Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
13023.531.5913123.531.613223.532.0113323.532.2413423.532.3413523.532.3413623.532.3413723.532.4120123.518.5720223.518.6120323.519.3120423.518.7220523.519.3120623.519.3120723.520.6320823.521.1221023.521.6321123.522.6521223.523.6121323.522.6521423.523.6921523.524.7221623.524.7221723.524.6521823.525.7421823.525.7421823.527.8322423.526.8722523.527.8322623.529.9922723.533.6122823.533.5123923.533.5123223.533.3423423.533.3423533.3423623.533.3423723.533.2923623.533.2923623.533.2923623.533.2923623.533.2923623.533	129	23.5		31.26		
13123.531.813223.532.0113323.532.2413423.532.3413523.532.3413623.532.3413723.532.4413823.532.4120123.518.5720223.518.6120323.518.7220423.519.3120623.520.6320723.520.6320823.521.6320923.521.6321123.522.6521223.523.6721323.524.7221423.523.6721525.224.6321623.524.7221723.524.6821823.525.7621923.525.7621923.526.822023.527.8322323.528.8722423.528.8722523.529.9922623.533.7623923.533.6123123.533.6123223.533.7623423.533.7623533.7423623.533.7423723.533.2923623.533.2923723.533.2923623.533.2923723.533.2923623.533.	130	23.5		31.59		
132 23.5 32.01 133 23.5 32.14 134 23.5 32.26 136 23.5 32.38 137 23.5 32.4 138 23.5 32.4 139 23.5 32.4 201 23.5 32.4 202 23.5 18.57 203 23.5 18.72 204 23.5 19.31 205 23.5 19.31 206 23.5 20.163 209 23.5 21.63 209 23.5 21.63 211 23.5 22.65 212 23.5 23.69 213 23.5 23.69 214 23.5 24.72 216 23.5 24.72 217 23.5 24.72 218 23.5 26.8 220 23.5 26.8 220 23.5 26.8 221 23.5 26.8 222 23.5 26.8 <td>131</td> <td>23.5</td> <td></td> <td>31.8</td> <td></td> <td></td>	131	23.5		31.8		
13323.5 32.14 13423.5 32.26 13523.5 32.38 13723.5 32.41 13823.5 32.41 13823.5 18.67 20223.5 18.67 20323.5 18.72 20423.5 19.71 20623.5 20.63 20723.5 20.63 20823.5 21.12 21023.5 21.63 21123.5 22.665 21323.5 23.5 21423.5 22.665 21323.5 23.69 21423.5 25.246 21523.5 26.29 22023.5 25.76 21823.5 25.76 21923.5 26.29 22023.5 27.83 22123.5 27.83 22223.5 29.92 223 23.5 29.92 22423.5 29.92 225 23.5 33.61 228 23.5 33.76 229 23.5 33.344 235 33.344 236 23.5 33.344 23723.5 33.34 23623.5 33.344 23723.5 33.34 23623.5 33.34 23623.5 33.34 23623.5 33.34 23623.5 33.34 23623.5 33.34 23623.5	132	23.5		32.01		
134 23.5 32.26 135 23.5 32.34 136 23.5 32.4 137 23.5 32.4 138 23.5 32.4 139 23.5 32.4 201 23.5 18.57 202 23.5 18.61 203 23.5 19.31 206 23.5 19.71 207 23.5 20.16 208 23.5 21.63 209 23.5 21.12 210 23.5 21.63 211 23.5 22.65 212 23.5 21.44 212 23.5 23.69 213 23.5 24.72 214 23.5 24.72 215 23.5 24.72 216 23.5 24.72 217 23.5 26.28 221 23.5 26.87 221 23.5 26.87 221 23.5 29.92 226 23.5 31.01	133	23.5		32.14		
13623.532.3413723.532.413823.532.413923.532.420123.518.5720223.518.6120323.518.7220423.519.7120623.520.1620823.521.1221023.521.6321123.522.6521323.523.6921423.523.6921523.524.1221023.521.6321123.523.6921423.523.6921523.524.2121623.525.7621923.525.7621923.525.7622023.523.522123.527.3122223.529.9922623.533.6122823.533.6122923.533.7623023.533.3423123.533.3423223.533.3423323.533.3423423.533.3423523.533.3423623.533.3423723.533.2923623.533.3223623.533.3223623.533.3223623.533.3423723.533.2923623.533.3223623.5<	134	23.5		32.26		
136 23.5 32.38 137 23.5 32.4 138 23.5 32.41 201 23.5 18.67 202 23.5 18.61 203 23.5 18.72 204 23.5 19.31 205 23.5 19.31 206 23.5 19.31 207 23.5 20.63 208 23.5 21.12 210 23.5 21.63 211 23.5 22.65 212 23.5 22.65 213 23.5 23.17 214 23.5 22.65 215 23.5 24.72 216 23.5 24.72 217 23.5 25.76 219 23.5 26.8 221 23.5 26.8 221 23.5 26.8 221 23.5 28.87 224 23.5 28.87 225 23.5 29.99 226 23.5 31.61	135	23.5		32.34		
13723.532.420123.518.5720223.518.6120323.518.7220423.519.3120623.519.7120723.520.6320823.521.1221023.521.6321123.522.6521323.522.6521323.523.521423.523.6921523.524.2121623.523.6921723.525.7621823.525.7621923.526.822023.523.521423.525.7621823.526.822023.526.822123.523.522323.523.522423.528.3522523.528.3522623.533.6422723.530.4522823.533.7623123.533.7623223.533.3423323.533.3423423.533.3423523.533.3423623.533.3423723.533.3423823.533.3423923.533.3423123.533.3423523.533.3423623.533.3423723.533.3423823.5	136	23.5		32.38		
138 235 32.41 201 235 18.57 202 235 18.61 203 235 18.72 204 235 18.86 205 235 19.31 206 235 20.16 208 235 20.63 209 235 21.12 210 235 21.63 211 235 21.63 212 235 21.63 213 235 22.65 214 235 22.14 212 235 23.69 214 235 22.65 215 23.5 22.42 216 23.5 23.69 217 23.5 25.64 218 23.5 25.76 219 23.5 25.62 220 23.5 26.8 221 23.5 28.87 222 23.5 28.35 224 23.5 28.99 226 23.5 33.61 <td>137</td> <td>23.5</td> <td></td> <td>32.4</td> <td></td> <td></td>	137	23.5		32.4		
20123.5 18.57 20223.5 18.72 20423.5 18.96 20523.5 19.71 20623.5 20.16 20823.5 20.63 20923.5 21.63 21023.5 22.46 21123.5 22.46 21223.5 22.46 21323.5 22.46 21423.5 22.46 21523.5 24.21 21623.5 24.21 21723.5 22.62 21823.5 25.76 21923.5 26.28 22023.5 26.88 22123.5 26.88 22123.5 26.35 22323.5 26.35 22423.5 27.31 22523.5 29.39 22623.5 29.39 22623.5 31.61 22923.5 33.44 23023.5 33.34 23123.5 33.34 23223.5 33.34 23323.5 33.34 23423.5 33.34 23523.5 33.34 23623.5 33.34 23723.5 33.34 23823.5 33.34 23923.5 33.34 23623.5 33.34 23623.5 33.34 23623.5 33.34 23623.5 33.24 23623.5 $33.$	138	23.5		32.41		
202 23.5 18.61 203 23.5 18.72 204 23.5 18.96 205 23.5 19.31 206 23.5 20.16 208 23.5 20.63 209 23.5 21.12 210 23.5 22.14 212 23.5 22.65 213 23.5 23.67 214 23.5 23.69 215 23.5 24.21 216 23.5 24.41 218 23.5 25.44 219 23.5 25.44 218 23.5 26.8 220 23.5 26.8 220 23.5 27.31 222 23.5 27.83 223 23.5 28.87 224 23.5 28.87 225 23.5 29.92 227 23.5 30.45 228 23.5 31.58 230 23.5 33.34 231 23.5 33.	201	23.5		18.57		
203 23.5 18.72 204 23.5 18.86 205 23.5 19.31 206 23.5 20.16 208 23.5 20.63 209 23.5 21.12 210 23.5 22.163 211 23.5 22.45 212 23.5 22.65 213 23.5 23.17 214 23.5 23.69 215 23.5 24.69 216 23.5 24.69 217 23.5 22.69 218 23.5 25.76 219 23.5 26.28 220 23.5 26.8 221 23.5 26.8 221 23.5 27.83 222 23.5 28.87 224 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 33.76 231 23.5 33.34 232 23.5 33	202	23.5		18.61		
204 23.5 18.96 205 23.5 19.31 206 23.5 19.71 207 23.5 20.63 208 23.5 20.63 209 23.5 21.12 210 23.5 21.63 211 23.5 22.14 212 23.5 22.14 213 23.5 23.17 214 23.5 23.69 215 23.5 24.21 216 23.5 24.21 217 23.5 25.76 218 23.5 25.76 219 23.5 26.28 220 23.5 26.8 221 23.5 26.8 222 23.5 27.31 222 23.5 28.87 224 23.5 28.87 225 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 31.61 231 23.5 33.	203	23.5		18.72		
205 23.5 19.31 206 23.5 19.71 207 23.5 20.16 208 23.5 21.12 210 23.5 21.63 211 23.5 22.65 213 23.5 22.65 213 23.5 22.65 214 23.5 22.65 215 23.5 24.21 216 23.5 25.24 218 23.5 25.76 219 23.5 26.8 220 23.5 27.31 222 23.5 27.83 223 23.5 28.35 224 23.5 28.35 224 23.5 29.99 226 23.5 29.99 226 23.5 30.45 228 23.5 33.76 231 23.5 33.51 232 23.5 33.34 233 23.5 33.34 234 23.5 33.34 235 23.5 33	204	23.5		18.96		
206 23.5 19.71 207 23.5 20.63 208 23.5 21.12 210 23.5 21.63 211 23.5 22.14 212 23.5 22.65 213 23.5 23.69 214 23.5 23.5 215 23.5 24.72 216 23.5 24.72 217 23.5 24.72 218 23.5 25.76 220 23.5 26.8 221 23.5 26.8 222 23.5 27.83 223 23.5 26.8 224 23.5 28.87 225 23.5 27.83 226 23.5 29.99 226 23.5 31.01 229 23.5 31.61 229 23.5 33.76 231 23.5 33.34 232 23.5 33.34 233 23.5 33.32 234 23.5 33.33	205	23.5		19.31		
207 23.5 20.16 208 23.5 20.35 209 23.5 21.12 210 23.5 21.63 211 23.5 22.65 213 23.5 23.69 214 23.5 23.69 215 23.5 23.69 216 23.5 24.72 217 23.5 25.24 218 23.5 26.8 220 23.5 26.8 221 23.5 26.8 221 23.5 27.31 222 23.5 27.83 223 23.5 28.87 224 23.5 28.87 225 23.5 29.99 226 23.5 29.99 227 23.5 31.01 229 23.5 31.61 230 23.5 33.76 231 23.5 33.39 234 23.5 33.31 235 23.5 33.32 236 23.5 33.3	206	23.5		19.71		
208 23.5 20.63 209 23.5 21.12 210 23.5 21.63 211 23.5 22.65 213 23.5 23.17 214 23.5 23.69 215 23.5 24.21 216 23.5 24.72 217 23.5 25.24 218 23.5 25.76 219 23.5 26.8 220 23.5 26.8 221 23.5 27.31 222 23.5 28.35 223 23.5 28.35 224 23.5 29.92 225 23.5 29.92 226 23.5 31.68 230 23.5 33.76 231 23.5 33.76 232 23.5 33.44 233 23.5 33.32 236 23.5 33.32 236 23.5 33.32 236 23.5 33.32 236 23.5 33.	207	23.5		20.16		
209 23.5 21.12 210 23.5 21.63 211 23.5 22.65 213 23.5 23.69 214 23.5 23.69 215 23.5 24.21 216 23.5 24.21 216 23.5 24.24 217 23.5 25.24 218 23.5 25.76 219 23.5 26.8 220 23.5 26.8 221 23.5 27.31 222 23.5 27.83 223 23.5 28.35 224 23.5 28.35 225 23.5 29.99 226 23.5 31.01 229 23.5 31.01 229 23.5 33.76 230 23.5 33.344 233 23.5 33.32 236 23.5 33.32 236 23.5 33.32 236 23.5 33.32 236 23.5 33	208	23.5		20.63		
210 23.5 21.63 211 23.5 22.65 213 23.5 23.17 214 23.5 23.69 215 23.5 24.21 216 23.5 24.72 217 23.5 25.76 218 23.5 26.28 219 23.5 26.28 220 23.5 26.8 221 23.5 26.8 222 23.5 26.8 221 23.5 26.8 222 23.5 26.8 221 23.5 26.8 222 23.5 26.28 224 23.5 28.87 225 23.5 29.99 226 23.5 30.45 228 23.5 31.01 229 23.5 31.58 230 23.5 33.51 232 23.5 33.34 233 23.5 33.32 234 23.5 33.32 235 23.5 33.32 </td <td>209</td> <td>23.5</td> <td></td> <td>21.12</td> <td></td> <td></td>	209	23.5		21.12		
211 23.5 22.14 212 23.5 22.65 213 23.5 23.69 214 23.5 24.21 216 23.5 24.21 217 23.5 25.24 218 23.5 25.76 219 23.5 26.28 220 23.5 26.8 221 23.5 27.31 222 23.5 27.83 223 23.5 28.87 224 23.5 29.93 225 23.5 29.92 226 23.5 30.45 228 23.5 31.01 229 23.5 31.58 230 23.5 33.76 231 23.5 33.34 232 23.5 33.34 233 23.5 33.32 236 23.5 33.32 236 23.5 33.32 236 23.5 33.32 236 23.5 33.32 237 23.5 33	210	23.5		21.63		
212 23.5 22.65 213 23.5 23.17 214 23.5 23.69 215 23.5 24.21 216 23.5 25.24 218 23.5 25.76 219 23.5 26.8 220 23.5 26.8 221 23.5 27.31 222 23.5 28.35 223 23.5 28.35 224 23.5 29.39 226 23.5 29.92 227 23.5 31.01 228 23.5 31.58 230 23.5 33.76 231 23.5 33.76 232 23.5 33.34 233 23.5 33.34 234 23.5 33.32 236 23.5 33.32 237 23.5 33.32 236 23.5 33.32 237 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.	211	23.5		22.14		
213 23.5 23.17 214 23.5 23.69 215 23.5 24.21 216 23.5 24.21 217 23.5 25.24 218 23.5 25.76 219 23.5 26.28 220 23.5 26.8 221 23.5 27.83 222 23.5 28.87 223 23.5 28.87 224 23.5 29.92 225 23.5 29.92 226 23.5 30.45 228 23.5 31.01 229 23.5 33.76 231 23.5 33.51 232 23.5 33.31 233 23.5 33.34 235 23.5 33.32 236 23.5 33.32 237 23.5 33.32 236 23.5 33.32 237 23.5 33.32 236 23.5 33.32 237 23.5 33	212	23.5		22.65		
214 23.5 23.69 215 23.5 24.21 216 23.5 25.24 217 23.5 25.76 219 23.5 26.28 220 23.5 26.8 221 23.5 27.31 222 23.5 27.83 223 23.5 28.35 224 23.5 29.39 226 23.5 29.39 226 23.5 29.92 227 23.5 31.01 229 23.5 31.58 230 23.5 32.09 239 23.5 33.44 233 23.5 33.34 234 23.5 33.34 235 33.34 236 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 BOR 1.0 53.58	213	23.5		23.17		
215 23.5 24.21 216 23.5 24.22 217 23.5 25.24 218 23.5 26.28 220 23.5 26.8 221 23.5 27.83 222 23.5 28.35 224 23.5 28.35 225 23.5 29.39 226 23.5 29.92 227 23.5 30.45 228 23.5 31.58 230 23.5 32.09 239 23.5 33.76 231 23.5 33.34 232 23.5 33.34 233 23.5 33.34 234 23.5 33.34 235 23.5 33.32 236 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 54.37	214	23.5		23.69		
216 23.5 24.72 217 23.5 25.24 218 23.5 26.8 220 23.5 26.8 221 23.5 27.31 222 23.5 27.83 223 23.5 28.87 224 23.5 29.92 225 23.5 29.92 226 23.5 30.45 228 23.5 31.01 229 23.5 33.76 230 23.5 33.76 231 23.5 33.44 233 23.5 33.34 234 23.5 33.34 235 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58	215	23.5		24.21		
217 23.5 25.24 218 23.5 25.76 219 23.5 26.28 220 23.5 27.31 222 23.5 27.83 223 23.5 28.35 224 23.5 28.87 225 23.5 29.39 226 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 31.58 230 23.5 33.76 231 23.5 33.44 233 23.5 33.39 234 23.5 33.34 235 23.5 33.39 234 23.5 33.32 235 23.5 33.32 236 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 BOR 1.0 53.58 UG1 1.0 54.37	216	23.5		24.72		
218 23.5 25.76 219 23.5 26.28 220 23.5 27.31 222 23.5 27.83 223 23.5 28.87 224 23.5 29.92 227 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 31.58 230 23.5 33.76 231 23.5 33.44 233 23.5 33.34 233 23.5 33.34 235 23.5 33.32 236 23.5 33.32 236 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58	217	23.5		25.24		
219 23.5 26.28 220 23.5 26.8 221 23.5 27.31 222 23.5 27.83 223 23.5 28.35 224 23.5 29.99 225 23.5 29.99 226 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 31.58 230 23.5 33.76 231 23.5 33.31 232 23.5 33.34 233 23.5 33.34 234 23.5 33.32 236 23.5 33.32 236 23.5 33.32 237 23.5 33.29 TOR 23.0 37.56 UG1 1.0 54.37	218	23.5		25.76		
220 23.5 26.8 221 23.5 27.31 222 23.5 27.83 223 23.5 28.35 224 23.5 29.39 226 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 31.01 229 23.5 33.76 231 23.5 33.51 232 23.5 33.44 233 23.5 33.34 235 23.5 33.34 235 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	219	23.5		26.28		
221 23.5 27.31 222 23.5 27.83 223 23.5 28.87 224 23.5 29.99 226 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 31.01 229 23.5 32.09 230 23.5 32.09 231 23.5 33.76 232 23.5 33.44 233 23.5 33.34 235 23.5 33.34 235 23.5 33.34 235 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	220	23.5		26.8		
222 23.5 27.83 223 23.5 28.35 224 23.5 29.39 225 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 31.58 230 23.5 32.09 231 23.5 33.51 232 23.5 33.44 233 23.5 33.34 234 23.5 33.34 235 23.5 33.34 235 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	221	23.5		27.31		
223 23.5 28.35 224 23.5 28.87 225 23.5 29.39 226 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 31.01 230 23.5 32.09 231 23.5 33.76 232 23.5 33.44 233 23.5 33.34 234 23.5 33.34 235 23.5 33.32 236 23.5 33.32 237 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	222	23.5		27.83		
224 23.5 28.87 225 23.5 29.39 226 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 32.09 230 23.5 32.09 231 23.5 33.76 232 23.5 33.44 233 23.5 33.34 235 23.5 33.34 235 23.5 33.32 236 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	223	23.5		28.35		
225 23.5 29.39 226 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 31.58 230 23.5 32.09 231 23.5 33.76 232 23.5 33.44 233 23.5 33.44 233 23.5 33.39 234 23.5 33.34 235 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	224	23.5		28.87		
220 23.5 29.92 227 23.5 30.45 228 23.5 31.01 229 23.5 31.58 230 23.5 32.09 231 23.5 33.76 232 23.5 33.44 233 23.5 33.39 234 23.5 33.34 235 23.5 33.34 236 23.5 33.32 237 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	225	23.5		29.39		
227 23.5 30.43 228 23.5 31.01 229 23.5 31.58 230 23.5 32.09 239 23.5 33.76 231 23.5 33.51 232 23.5 33.44 233 23.5 33.39 234 23.5 33.34 235 23.5 33.32 236 23.5 33.32 237 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	220	23.5		29.92		
220 23.5 31.01 229 23.5 31.58 230 23.5 32.09 239 23.5 33.76 231 23.5 33.51 232 23.5 33.44 233 23.5 33.39 234 23.5 33.34 235 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	227	23.3		30.43		
229 23.5 31.30 230 23.5 32.09 239 23.5 33.76 231 23.5 33.51 232 23.5 33.44 233 23.5 33.39 234 23.5 33.34 235 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	220	23.3		31.01		
230 23.5 32.09 239 23.5 33.76 231 23.5 33.51 232 23.5 33.44 233 23.5 33.39 234 23.5 33.32 236 23.5 33.32 237 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	229	23.0		31.00		
239 23.5 33.70 231 23.5 33.51 232 23.5 33.44 233 23.5 33.39 234 23.5 33.34 235 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	230	23.5		32.09		
231 23.5 33.44 232 23.5 33.39 233 23.5 33.39 234 23.5 33.34 235 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	239	23.5		33.70		
232 23.5 33.39 233 23.5 33.39 234 23.5 33.34 235 23.5 33.32 236 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	231	23.5		33.44		
234 23.5 33.34 235 23.5 33.32 236 23.5 33.3 237 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	232	23.5		33 30		
235 23.5 33.32 236 23.5 33.3 237 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	230	23.5		33.34		
236 23.5 33.3 237 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	234	23.5		22.24		
237 23.5 33.29 TOR 23.0 37.56 100.0 BOR 1.0 53.58 UG1 1.0 54.37	236	23.5		33.3		
TOR 23.0 37.56 100.0 BOR 1.0 53.58 54.37	237	23.5		33.29		
BOR 1.0 53.58 UG1 1.0 54.37	TOR	23.0		37 56	100.0	
UG1 1.0 54.37	BOR	1.0		53.58	100.0	
	UG1	1.0		54.37		

Page Date

8

9/28/24

Flow Summary - NFPA

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

			NODE ANA	LYSIS (cont.)	
Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
HOSE	1.0		54.37	150.0	
UG2	1.0		54.97		
BF1	1.0		61.09		
SRC	1.0		70.87		
TEST	-16.0		82.47		

Page Date

9

9/28/24

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

Duke En	ergy Mob	oile Substa	tion Stora	ge RA1	REV 01					Date 9/28/24
Node1 to Node2	Elev1	K Fact	Qa Ot	Nom Act	Fitting or Egiv	l en	Pipe Ftngs Total	CFact	Pt Pe Pf	****** Notes *****
	21012	1 401	G	7.01	-414	Lon	1 otal	1 1/1 0	••	
101	23.500		-48.90	1.5	E	4.0	40.375	120	16.992	
1	27		-48.9	1.61	I	8.0	12.000 52.375	-0.0845	-1.516 -4.424	Vel = 7.71
1	27	8.00	26.59	1.5			12.000	120	11.052	
to	07 500		00.04	4.04			40.000	0.0400	-0.252	N/ H 0 50
2	27.583	0.00	-22.31	1.61			12.000	-0.0198	-0.238	Vel = 3.52
2 to	27.583	8.00	26.00	1.5			12.000	120	10.562	
3	27.583		3.69	1.61			12.000	0.0007	0.009	Vel = 0.58
3	27.583	8.00	26.01	1.5			12.000	120	10.571	
to 1	27		20.7	1 61			12 000	0.0336	0.252	Vel - 168
4 	27	8 00	29.7	1.01	F	4 0	40.833	120	11 226	vei – 4.00
to	21	0.00	20.01	1.0	T	8.0	12.000	120	1.516	
201	23.500		56.51	1.61			52.833	0.1104	5.831	Vel = 8.91
204			0.0						40.570	K Faster - 42.44
201	23 500		10.00	15	F	10	10 375	120	18.573	K Factor = 13.11
to	23.500		-49.09	1.5	T	4.0 8.0	12.000	120	-1.516	
5	27		-49.09	1.61			52.375	-0.0851	-4.455	Vel = 7.74
5	27	8.00	26.65	1.5			12.000	120	11.090	
to 6	27 583		-22 44	1 61			12 000	-0 0200	-0.252 -0.240	Vel = 3.54
6	27.583	8.00	26.04	1.5			12.000	120	10.598	
to		0.00	_0.0.1						0.0	
7	27.583		3.6	1.61			12.000	0.0007	0.008	Vel = 0.57
7 to	27.583	8.00	26.05	1.5			12.000	120	10.606	
8	27		29.65	1.61			12.000	0.0335	0.232	Vel = 4.67
8	27	8.00	26.85	1.5	Е	4.0	40.833	120	11.260	
to	00 500			4.04	Т	8.0	12.000	0.4400	1.516	V/-I 0.00
202	23.500		56.5	1.61			52.833	0.1103	5.829	Vel = 8.90
202			56.50						18.605	K Factor = 13.10
103	23.500		-49.75	1.5	E	4.0	40.375	120	17.311	
to	07		10 75		Т	8.0	12.000	0 0070	-1.516	
9	27	0.00	-49.75	1.61			52.375	-0.0872	-4.566	Vel = 7.84
9 to	21	8.00	20.81	1.5			12.000	120	-0.252	
10	27.583		-22.94	1.61			12.000	-0.0209	-0.251	Vel = 3.62
10	27.583	8.00	26.20	1.5			12.000	120	10.726	
to 11	27 583		3.26	1 61			12 000	0.0006	0.0	Vel - 0.51
11	27.583	8 00	26.21	1.01			12.000	120	10 733	ver = 0.51
to	21.000	0.00	20.21	1.0			12.000	120	0.252	
12	27		29.47	1.61			12.000	0.0332	0.398	Vel = 4.64
12 to	27	8.00	26.99	1.5	E	4.0	40.833	120	11.383	
203	23.500		56.46	1.61	I	0.0	12.000 52.833	0.1102	5.821	Vel = 8.90

Page

10

CRAWF0	ORD SPF ergy Mob	RINKLER (ile Substa	CO. tion Stora	ge RA1	REV 01					Page 11 Date 9/28/24
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
			0.0							
203	22 500		26.33	15		4.0	52 275	120	18.720	K Factor = 13.05
to	23.500		-20.33	1.5	с Т	4.0 8.0	12.000	120	-1.768	
13	27.583		-26.33	1.61			64.375	-0.0269	-1.729	Vel = 4.15
13	27.583	8.00	30.31	1.5			12.000	120	14.347	
to 14	27.583		3.98	1.61			12,000	0.0008	0.0	Vel = 0.63
14	27.583	8.00	30.31	1.5	Е	4.0	52.833	120	14.357	
to	00 500			4.04	Т	8.0	12.000	0.0400	1.768	
204	23.500		34.29	1.61			64.833	0.0438	2.839	Vel = 5.40
204			0.0 34.29						18.964	K Factor = 7.87
105	23.500		10.89	1.5	2E	8.0	117.208	120	18.567	
to	00 500		40.00	4.04	2T	16.0	24.000	0.0050	0.0	
205	23.500		10.89	1.61			141.208	0.0052	0.740	Vel = 1.72
205			0.0 10.89						19.307	K Factor = 2.48
106	23.500		8.44	1.5	2E	8.0	117.208	120	19.244	
to	00 500		0.44	4.04	2T	16.0	24.000	0.0000	0.0	
206	23.500		8.44	1.61			141.208	0.0033	0.462	Vel = 1.33
206			0.0 8.44						19.706	K Factor = 1.90
107	23.500		6.27	1.5	2E	8.0	117.208	120	19.890	
to	00 500		0.07	4.04	2T	16.0	24.000	0.0040	0.0	
207	23.500		6.27	1.61			141.208	0.0019	0.267	Vel = 0.99
207			0.0 6.27						20.157	K Factor = 1.40
108	23.500		4.47	1.5	2E	8.0	117.208	120	20.488	
to	00 500		4 47	4.04	2T	16.0	24.000	0.0040	0.0	\/_L 0.70
208	23.500		4.47	1.61			141.208	0.0010	0.143	vei = 0.70
208			0.0 4.47						20.631	K Factor = 0.98
109	23.500		3.02	1.5	2E	8.0	117.208	120	21.054	
to	22 500		2 02	1 61	2T	16.0	24.000	0.0005	0.0	$V_{0} = 0.49$
209	23.500		3.02	1.01			141.200	0.0005	0.069	vei = 0.46
209			3.02						21.123	K Factor = 0.66
110	23.500		1.89	1.5	2E	8.0	117.208	120	21.598	
to	00 500		4 00	1.04	2T	16.0	24.000	0.0000	0.0	$V_{\rm el} = 0.20$
210	23.500		1.89	1.61			141.208	0.0002	0.029	vei = 0.30
210			1.89						21.627	K Factor = 0.41
111	23.500		1.06	1.5	2E	8.0	117.208	120	22.128	
to	22 500		1.06	1 61	2T	16.0	24.000	0.0001	0.0	$V_{0} = 0.17$
211	23.000		0.0	1.01			141.200	0.0001	0.010	

Κ

Node1 Elev1

to

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

Qa

Nom Fitting

or

Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
211			1.06						22.138	K Factor = 0.23
112	23.500		0.49	1.5	2E	8.0	117.208	120	22.650	
to 212	23 500		0 / 0	1 61	2T	16.0	24.000	0	0.0	Vel = 0.08
	23.500		0.49	1.01			141.200	0	0.003	vei – 0.00
212			0.49						22.653	K Factor = 0.10
113	23.500		0.16	1.5	2E	8.0	117.208	120	23.170	
to 213	23 500		0 16	1 61	2T	16.0	24.000	0	0.0	Vel = 0.03
215	20.000		0.10	1.01			141.200	0	0.0	Ver = 0.03
213			0.16						23.170	K Factor = 0.03
114	23.500		0.03	1.5	2E	8.0	117.208	120	23.688	
to	22 500		0.03	1 61	2T	16.0	24.000	0	0.0	$V_{ol} = 0$
214	23.500		0.03	1.01			141.200	0	0.0	ver – u
214			0.03						23.688	K Factor = 0.01
115	23.500		0.0	1.5	2E	8.0	117.208	120	24.206	
to	00 500		0.0	4.04	2T	16.0	24.000	•	0.0	
215	23.500		0.0	1.61			141.208	0	0.0	Vel = 0
215			0.0						24.206	K Factor = 0
116	23.500		0.0	1.5	2E	8.0	117.208	120	24.724	
to	~~ ~~~				2T	16.0	24.000		0.0	
216	23.500		0.0	1.61			141.208	0	0.0	Vel = 0
216			0.0						24.724	K Factor = 0
117	23.500		0.0	1.5	2E	8.0	117.208	120	25.242	
to					2T	16.0	24.000		0.0	
_217	23.500		0.0	1.61			141.208	0	0.0	Vel = 0
217			0.0						25 242	K Factor = 0
118	23,500		0.0	1.5	2E	8.0	117.208	120	25.760	
to				-	2T	16.0	24.000	-	0.0	
218	23.500		0.0	1.61			141.208	0	0.0	Vel = 0
218			0.0						25 760	K Factor = 0
119	23.500		0.0	1.5	2E	8.0	117.208	120	26.278	
to					2T	16.0	24.000		0.0	
219	23.500		0.0	1.61			141.208	0	0.0	Vel = 0
210			0.0						26 278	K Factor = 0
120	23 500		0.0	15	2F	8.0	117 208	120	26.270	
to	20.000		0.0	1.0	2T	16.0	24.000	120	0.0	
220	23.500		0.0	1.61			141.208	0	0.0	Vel = 0
220			0.0						26 706	K Factor = 0
121	23 500		0.0	15	2F	8.0	117 208	120	27 314	
to	20.000		0.0	1.0	2T	16.0	24.000	120	0.0	
221	23.500		0.0	1.61			141.208	0	0.0	Vel = 0

Pipe

Ftngs

CFact

Pt Pe Page Date

12

Notes

9/28/24

CRAWFORD SPRINKLER CO

CRAWF Duke En	ORD SPF ergy Mob	RINKLER	CO. ation Storaç	ge RA1	REV 01					Page 13 Date 9/28/24
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	******* Notes ******
221			0.0 0.0						27.314	K Factor = 0
122 to	23.500		0.06	1.5	2E 2T	8.0	117.208	120	27.832	
222	23.500		0.06	1.61	21	10.0	141.208	0	0.0	Vel = 0.01
222			0.0 0.06						27.832	K Factor = 0.01
123	23.500		0.26	1.5	2E	8.0	117.208	120	28.349	
223	23.500		0.26	1.61	21	16.0	24.000 141.208	0	0.0 0.001	Vel = 0.04
223			0.0						28 350	K Eactor = 0.05
124	23.500		0.67	1.5	2E	8.0	117.208	120	28.865	
to	22 500		0.67	1 6 1	2T	16.0	24.000	0	0.0	$V_{0} = 0.11$
224	23.300		0.07	1.01			141.200	0	0.004	Ver = 0.11
224			0.67						28.869	K Factor = 0.12
125 to	23.500		1.33	1.5	2E 2T	8.0 16.0	117.208 24.000	120	29.376 0.0	
225	23.500		1.33	1.61	21	10.0	141.208	0.0001	0.015	Vel = 0.21
225			0.0 1.33						29.391	K Factor = 0.25
126	23.500		2.26	1.5	2E	8.0	117.208	120	29.878	
to 226	23.500		2.26	1.61	2T	16.0	24.000 141.208	0.0003	0.0 0.040	Vel = 0.36
			0.0							
226	00 500		2.26	4 5	05		447.000	100	29.918	K Factor = 0.41
127 to	23.500		3.49	1.5	2E 2T	8.0 16.0	117.208 24.000	120	30.364 0.0	
227	23.500		3.49	1.61			141.208	0.0006	0.091	Vel = 0.55
227			0.0 3.49						30.455	K Factor = 0.63
128	23.500		5.04	1.5	2E	8.0	117.208	120	30.828	
to 228	23 500		5 04	1 61	2T	16.0	24.000 141 208	0 0013	0.0 0 178	Vel = 0.79
220	20.000		0.0				111.200	0.0010	21.006	
129	23,500		6.91	1.5	2E	8.0	117,208	120	31.258	K Factor - 0.91
to			0.04		2T	16.0	24.000		0.0	
229	23.500		6.91	1.61			141.208	0.0023	0.319	vel = 1.09
229			6.91						31.577	K Factor = 1.23
130	23.500		9.09	1.5	2E	8.0	117.208	120	31.587	
230	23.500		9.09	1.61	I	ð.U	133.208	0.0038	0.0 0.500	Vel = 1.43
230			0.0 9.09						32.087	K Factor = 1.60

Node1 Elev1

Node2 Elev2

to

131

231 132

232 133

233

233 134

234 135

235 136

236 137

237 138

238 101

102

103

103

104

to 102

to

to

23.500

23.500

23.500

23.500

49.09

97.99

49.75

147.74

2.5

2.5

2.635

2.635

to 238

to 237

to 232

to

to 234

to 235

to 236

to 231

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

Elev1	К	Qa	Nom	Fitting	1	Pipe	CFact	Pt	*****	N 1 <i>i</i>	*****
Elev2	Fact	Qt	Act	or Eaiv	Len	Ftngs Total	Pf/Ft	Pe Pf		Notes	
		~-	,	- 4							
23.500		17.07	1.5	2E	8.0	117.208	120	31.803			
				2T	16.0	24.000		0.0		_	
23.500		17.07	1.61			141.208	0.0121	1.702	Vel = 2.6	9	
		0.0 17.07						33.505	K Factor =	2.95	
23.500		14.47	1.5	6E 2T	24.0 16.0	120.738 40.000	120	32.010 0.0			
23.500		14.47	1.61			160.738	0.0089	1.426	Vel = 2.2	В	
		0.0									
		14.47						33.436	K Factor =	2.50	
23.500		14.41	1.5	2E	8.0	117.208	120	32.142			
00 500			4.04	2T	16.0	24.000	0.0000	0.0		7	
23.500		14.41	1.61			141.208	0.0088	1.244	Vel = 2.2	(
		0.0						22.206	K Fastar -	2.40	
22 500		14.41	4 5	25	0.0	447.000	100	33.300	K Factor -	2.49	
23.500		13.37	1.5	∠⊏ 2T	0.0 16.0	24 000	120	32.262 0.0			
23.500		13.37	1.61	21	10.0	141.208	0.0077	1.082	Vel = 2.1	1	
		0.0									
		13.37						33.344	K Factor =	2.32	
23.500		12.66	1.5	2E	8.0	117.208	120	32.338			
				2T	16.0	24.000		0.0		-	
23.500		12.66	1.61			141.208	0.0069	0.979	Vel = 2.0	0	
		0.0 12.66						33.317	K Factor =	2.19	
23.500		12.23	1.5	2E	8.0	117.208	120	32.382			
				2T	16.0	24.000		0.0			
23.500		12.23	1.61			141.208	0.0065	0.919	Vel = 1.9	3	
		0.0						00.004		0.40	
00 500		12.23		05			400	33.301	K Factor =	2.12	
23.500		12.03	1.5	2E 2T	8.0 16.0	117.208	120	32.403			
23.500		12.03	1.61	21	10.0	141.208	0.0063	0.891	Vel = 1.9	0	
		0.0								-	
		12.03						33.294	K Factor =	2.08	
23.500		11.97	1.5	2E	8.0	117.208	120	32.409			
				2T	16.0	24.000		10.178			
0		11.97	1.61			141.208	0.0063	0.883	Vel = 1.8	9	
		0.0						40.470		4.00	
00 500		11.9/	0.5			0.000	400	43.470	K Factor =	1.82	
23.500		48.90	2.5			9.000	120	16.992 0.0			
23.500		48.9	2.635			9.000	0.0077	0.069	Vel = 2.8	8	

Page

Date

14 9/28/24

9.000

9.000

9.000

9.000

120

120

0.0278

0.0592

17.061

0.0

0.250

17.311

0.0

0.533

Vel = 5.77

Vel = 8.69

CRAWFORD SPRINKLER CO.

CRAWF Duke En	ORD SPF ergy Mob	RINKLER	R CO. tation Stora	ge RA1	REV 01					Page Date	e 15 9/28/2	24
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt			
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	*****	Notes	*****
104 to	23.500		26.32	2.5			9.000	120	17.844 0.0			
105	23.500		174.06	2.635			9.000	0.0803	0.723	Vel = 10.2	24	
105 to	23.500		-10.88	2.5			9.500	120	18.567 0.0			
106	23.500		163.18	2.635			9.500	0.0713	0.677	Vel = 9.6	0	
106 to	23.500		-8.44	2.5			10.000	120	19.244 0.0			
107	23.500		154.74	2.635			10.000	0.0646	0.646	Vel = 9.1	0	
107	23.500		-6.27	2.5			10.000	120	19.890			
108	23.500		148.47	2.635			10.000	0.0598	0.0 0.598	Vel = 8.7	'4	
108	23.500		-4.48	2.5			10.000	120	20.488			
to 100	23 500		1/13 00	2 635			10 000	0.0566	0.0	\/el = 8/	7	
109	23.500		-3.02	2.000			10.000	120	21.054	Vei - 0.4		
to									0.0		-	
110	23.500		140.97	2.635			10.000	0.0544	0.544	Vel = 8.2	29	
to	23.500		-1.90	2.5			10.000	120	21.598			
111	23.500		139.07	2.635			10.000	0.0530	0.530	Vel = 8.1	8	
111 to	23.500		-1.06	2.5			10.000	120	22.128			
112	23.500		138.01	2.635			10.000	0.0522	0.0	Vel = 8.1	2	
112	23.500		-0.49	2.5			10.000	120	22.650			
to 113	23 500		137 52	2 635			10 000	0 0520	0.0 0.520	Vel = 80	a	
113	23.500		-0.16	2.5			10.000	120	23.170	VCI - 0.0		
to									0.0		-	
114	23.500		137.36	2.635			10.000	0.0518	0.518	Vel = 8.0	8	
to	23.500		-0.03	2.5			10.000	120	23.000 0.0			
115	23.500		137.33	2.635			10.000	0.0518	0.518	Vel = 8.0	8	
115 to	23.500		0.0	2.5			10.000	120	24.206			
116	23.500		137.33	2.635			10.000	0.0518	0.518	Vel = 8.0	8	
116	23.500		0.0	2.5			10.000	120	24.724			
to 117	23 500		137 33	2 635			10 000	0.0518	0.0 0.518	\/el = 80	18	
117	23.500		0.0	2.000			10.000	120	25 242	vei - 0.0	.0	
to	20.000		0.0	2.0			10.000	120	0.0			
118	23.500		137.33	2.635			10.000	0.0518	0.518	Vel = 8.0	8	
118 to	23.500		0.0	2.5			10.000	120	25.760 0.0			
119	23.500		137.33	2.635			10.000	0.0518	0.518	Vel = 8.0	8	
119	23.500		0.0	2.5			10.000	120	26.278			
το 120	23.500		137.33	2.635			10.000	0.0518	0.0 0.518	Vel = 8.0	8	

CRAWFORD SPRINKLER CO.

CRAWF Duke En	ORD SPF ergy Mob	RINKLER	R CO. tation Stora	ge RA1	REV 01					Pag Date	e 16 e 9/28/	/24
Node1	Elev1	К	Qa	Nom	Fitting		Pipe Etnas	CFact	Pt Po	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		NOLES	
120	23 500		0.0	25			10.000	120	26 796			
to	00.500		407.00	2.0			10.000	0.0540	0.0		00	
121	23.500		137.33	2.635			10.000	0.0518	07.044	Vei = 8.	08	
121 to	23.500		-0.01	2.5			10.000	120	27.314 0.0			
122	23.500		137.32	2.635			10.000	0.0518	0.518	Vel = 8.	08	
122 to	23.500		-0.05	2.5			10.000	120	27.832 0.0			
123	23.500		137.27	2.635			10.000	0.0517	0.517	Vel = 8.	08	
123	23.500		-0.26	2.5			10.000	120	28.349			
124	23.500		137.01	2.635			10.000	0.0516	0.0 0.516	Vel = 8.	06	
124 to	23.500		-0.67	2.5			10.000	120	28.865 0.0			
125	23.500		136.34	2.635			10.000	0.0511	0.511	Vel = 8.	02	
125 to	23.500		-1.33	2.5			10.000	120	29.376 0.0			
126	23.500		135.01	2.635			10.000	0.0502	0.502	Vel = 7.	94	
126 to	23.500		-2.26	2.5			10.000	120	29.878 0 0			
127	23.500		132.75	2.635			10.000	0.0486	0.486	Vel = 7.	81	
127 to	23.500		-3.50	2.5			10.000	120	30.364 0.0			
128	23.500		129.25	2.635			10.000	0.0464	0.464	Vel = 7.	60	
128 to	23.500		-5.03	2.5			10.000	120	30.828 0.0			
129	23.500		124.22	2.635			10.000	0.0430	0.430	Vel = 7.	31	
129 to	23.500		-6.91	2.5			8.500	120	31.258 0.0			
130	23.500		117.31	2.635			8.500	0.0387	0.329	Vel = 6.	90	
130 to	23.500		-9.09	2.5			6.500	120	31.587 0.0			
131	23.500		108.22	2.635			6.500	0.0332	0.216	Vel = 6.	37	
131 to	23.500		-17.08	2.5			8.500	120	31.803 0.0			
132	23.500		91.14	2.635			8.500	0.0244	0.207	Vel = 5.	36	
132 to	23.500		-14.47	2.5			7.500	120	32.010 0.0			
133	23.500		76.67	2.635			7.500	0.0176	0.132	Vel = 4.	51	
133 to	23.500		-14.41	2.5			10.000	120	32.142 0.0			
134	23.500		62.26	2.635			10.000	0.0120	0.120	Vel = 3.	66	
134 to	23.500		-13.37	2.5			10.000	120	32.262 0.0			
135	23.500		48.89	2.635			10.000	0.0076	0.076	Vel = 2.	88	
135 to	23.500		-12.65	2.5			10.000	120	32.338 0.0			
136	23.500		36.24	2.635			10.000	0.0044	0.044	Vel = 2.	13	

CRAWFORD SPRINKLER CO.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CRAWF0	ORD SPF ergy Mob	RINKLEF	R CO. tation Stora	ge RA1	REV 01					Pa <u>ç</u> Dat	ge 17 :e 9/28/	/24
Node2 Elev2 Fact Qt Act Eqv Len Total Pt/Ft Pt Pt 136 23.500 -12.23 2.5 10.000 120 32.382 0.0 137 23.500 24.01 2.635 10.000 0.0021 0.021 Vel = 1.41 137 23.500 -12.04 2.65 10.000 0.006 Vel = 0.70 138 23.500 56.51 3.26 9.000 120 18.573 201 23.500 56.51 3.26 9.000 0.032 Vel = 2.17 202 23.500 56.45 3 9.000 120 18.605 16 23 23.500 56.46 3 9.000 120 18.944 204 23.500 14.9.47 3.26 9.000 0.031 0.343 204 23.500 20.4.29 3 9.000 120 18.964 16 0 0 0 0	Node1	Elev1	К	Qa	Nom	Fitting		Pipe Etnas	CFact	Pt Pe	******	Notes	*****
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		Notes	
130 23.50 12.3 10.000 1.00 1.00 1.00 1.00 137 23.500 -12.04 2.5 10.000 0.0021 0.021 Vel = 1.41 137 23.500 -12.04 2.5 10.000 0.0006 Vel = 0.70 138 23.500 11.97 2.635 10.000 0.0006 Vel = 0.70 201 23.500 56.51 3 9.000 120 18.573 100 0.0 0.0 0.0 0.0 0.0 0.0 202 23.500 56.51 3.26 9.000 0.032 Vel = 2.17 202 23.500 56.56.46 3 9.000 120 18.720 10 0.0 0.0 0.0 0.0 0.0 0.0 204 23.500 169.47 3.26 9.000 0.0381 0.343 Vel = 7.83 205 23.500 10.84 3 9.000 120 18.864 0.0 10 0 0.0 0.0 0.0 0.0 0.0 0.	136	23 500		12.23	2.5			10.000	120	30 380			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	to	23.300		-12.25	2.5			10.000	120	0.0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	137	23.500		24.01	2.635			10.000	0.0021	0.021	Vel = 1	.41	
138 23.500 11.97 2.635 10.000 0.006 0.006 Vel = 0.70 138 11.97 32.409 K Factor = 2.10 K Factor = 2.10 201 23.500 56.51 3 9.000 120 18.573 202 23.500 56.51 3.26 9.000 0.0036 0.032 Vel = 2.17 202 23.500 56.50 3 9.000 120 18.605 203 23.500 56.46 3 9.000 120 18.720 204 23.500 169.47 3.26 9.000 0.0244 Vel = 6.51 204 23.500 10.84 3 9.000 120 18.964 10 0.0 0.0 0.0 0.0 0.0 0.0 205 23.500 20.376 3.26 9.000 0.0420 0.399 Vel = 8.25 206 23.500 24.44 3 10.000 120 19.706 207 23	137 to	23.500		-12.04	2.5			10.000	120	32.403			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	138	23.500		11.97	2.635			10.000	0.0006	0.006	Vel = 0	.70	
138 11.97 32.401 23.500 K Factor = 2.10 201 23.500 56.51 3 9.000 120 18.573 202 23.500 56.51 3.26 9.000 0.036 0.032 Vel = 2.17 202 23.500 56.50 3 9.000 120 18.673 203 23.500 113.01 3.26 9.000 0.0126 0.115 Vel = 4.34 203 23.500 169.47 3.26 9.000 0.0271 0.244 Vel = 6.51 204 23.500 169.47 3.26 9.000 0.0381 0.343 Vel = 7.83 205 23.500 203.76 3.26 9.000 0.0381 0.343 Vel = 7.83 205 23.500 214.64 3.26 9.500 120 19.307 0.0 206 23.500 214.64 3.26 10.000 0.0420 0.399 Vel = 8.57 206 23.500 23.50 22.3	400			0.0						00.400		0.40	
201 23.500 56.51 3.26 9.000 0.0036 0.032 Vel = 2.17 202 23.500 56.50 3 9.000 120 18.605 203 23.500 113.01 3.26 9.000 0.0128 0.115 Vel = 2.17 203 23.500 166.46 3 9.000 0.0128 0.115 Vel = 4.34 203 23.500 169.47 3.26 9.000 0.0211 8.865 0.0 204 23.500 169.47 3.26 9.000 0.0381 0.34 Vel = 6.51 204 23.500 10.88 3 9.500 120 18.964 0 0.0 0.0381 0.343 Vel = 7.83 0.00 0.0420 0.399 Vel = 8.25 206 23.500 24.44 3.26 9.500 0.0420 0.399 Vel = 8.57 207 23.500 23.68 3.26 10.000 120 20.451 Vel = 8.57 207 23.500 23.23 3.26 10.000 0.0474 0.474 Vel =	138	22 500		11.97 56.51	2			0.000	120	32.409	K Factor	= 2.10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to	23.500		30.31	3			9.000	120	0.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	202	23.500		56.51	3.26			9.000	0.0036	0.032	Vel = 2	.17	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	202	23.500		56.50	3			9.000	120	18.605			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	203	23.500		113.01	3.26			9.000	0.0128	0.0	Vel = 4	.34	
to 0.0 204 23.500 169.47 3.26 9.000 0.0271 0.244 Vel = 6.51 204 23.500 34.29 3 9.000 120 18.964 105 23.500 10.88 3 9.500 10.343 Vel = 7.83 205 23.500 10.88 3 9.500 10.9307 0.0 206 23.500 241.64 3.26 9.500 0.420 0.399 Vel = 8.25 206 23.500 8.44 3 10.000 120 19.706 0.0 207 23.500 6.27 3 10.000 120 20.157 co 0.0 0.00 0.0474 0.474 Vel = 8.82 208 23.500 4.47 3 10.000 120 20.631 to 0.0 0.0492 0.492 Vel = 8.99 209 23.500 23.82 3.26 10.000 0.0504 0.504 1.01 1.02	203	23.500		56.46	3			9.000	120	18.720			
204 23.500 34.29 3 9.000 120 18.964 205 23.500 203.76 3.26 9.000 0.381 0.343 $Vel = 7.83$ 205 23.500 10.88 3 9.500 120 19.307 to 0.0 0.221 19.307 0.0 0.0 206 23.500 214.64 3.26 9.500 0.0420 0.399 $Vel = 8.25$ 206 23.500 24.464 3.26 10.000 0.0451 0.451 $Vel = 8.57$ 207 23.500 6.27 3 10.000 120 20.517 to 0.0 0.0 0.0744 0.474 $Vel = 8.82$ 208 23.500 23.32 3.26 10.000 0.0474 0.474 $Vel = 8.82$ 209 23.500 23.32 3.26 10.000 0.0492 0.492 $Vel = 8.99$ 209 23.500 23.82 3.26 10.000 0.504 $Vel = 9.1$	to 204	23 500		160 47	3 26			0.000	0 0271	0.0	Vel - 6	51	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	204	23.500		34 29	3.20			9.000	120	18 964	vei – o	.51	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	to	20.000		01.20	U			0.000	120	0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	205	23.500		203.76	3.26			9.000	0.0381	0.343	Vel = 7	.83	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	205 to	23.500		10.88	3			9.500	120	19.307 0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	206	23.500		214.64	3.26			9.500	0.0420	0.399	Vel = 8	.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	206	23.500		8.44	3			10.000	120	19.706			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to 207	23.500		223.08	3.26			10.000	0.0451	0.0 0.451	Vel = 8	.57	
to 0.0 0.0 208 23.500 229.35 3.26 10.000 0.0474 0.474 Vel = 8.82 208 23.500 4.47 3 10.000 120 20.631 209 23.500 23.82 3.26 10.000 0.0492 0.492 Vel = 8.99 209 23.500 3.03 3 10.000 120 21.123 0.0 210 23.500 236.85 3.26 10.000 0.0504 0.504 Vel = 9.10 210 23.500 1.89 3 10.000 120 21.627 0.0 210 23.500 1.89 3 10.000 0.0511 0.511 Vel = 9.18 211 23.500 239.8 3.26 10.000 0.0515 0.515 Vel = 9.22 212 23.500 239.8 3.26 10.000 0.0517 0.517 Vel = 9.24 213 23.500 240.3 3.26 10.000 0.0517 0.517 Vel = 9.24 213 23.500 240.46 3.26	207	23.500		6.27	3			10.000	120	20.157		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to	00 500		000.05	0.00			40.000	0.0474	0.0		00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	208	23.500		229.35	3.20			10.000	120	0.474	vei = 8	.82	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to	23.300		4.47	5			10.000	120	0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	209	23.500		233.82	3.26			10.000	0.0492	0.492	Vel = 8	.99	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	209 to	23.500		3.03	3			10.000	120	21.123			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210	23.500		236.85	3.26			10.000	0.0504	0.504	Vel = 9	.10	
to 0.0 21123.500238.743.2610.000 0.0511 0.511 $Vel = 9.18$ 21123.5001.06310.00012022.138to 0.0 0.0515 0.515 $Vel = 9.22$ 21223.500 0.50 310.000 120 22.653to 0.0 0.0 0.0 0.0 0.0 21323.500 240.3 3.26 10.000 0.0517 0.517 $Vel = 9.24$ 21323.500 0.16 3 10.000 120 23.170 0.0 to 0.0 0.0518 0.518 $Vel = 9.24$ 214 23.500 240.46 3.26 10.000 0.0518 0.518 $Vel = 9.24$ 214 23.500 0.03 3 10.000 120 23.688 0.0 to 0.0 0.03 3 10.000 120 23.688 0.0 to 0.0 0.0518 0.518 $Vel = 9.24$	210	23.500		1.89	3			10.000	120	21.627			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to 211	23 500		238 74	3 26			10 000	0 0511	0.0 0.511	Vel = 9	18	
to0.021223.500239.83.2610.0000.05150.515Vel = 9.2221223.5000.50310.00012022.653to0.00.05170.517Vel = 9.2421323.5000.16310.00012023.170to0.00.00.05180.518Vel = 9.2421423.500240.463.2610.0000.05180.51821423.5000.03310.00012023.688to0.00.0310.00012023.688to0.00.05180.518Vel = 9.24	211	23.500		1.06	3			10.000	120	22.138			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to									0.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	212	23.500		239.8	3.26			10.000	0.0515	0.515	Vel = 9	.22	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to	23.500		0.50	3			10.000	120	22.653 0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	213	23.500		240.3	3.26			10.000	0.0517	0.517	Vel = 9	.24	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	213 to	23.500		0.16	3			10.000	120	23.170			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	214	23.500		240.46	3.26			10.000	0.0518	0.0 0.518	Vel = 9	.24	
to 0.0 215 23 500 240 49 3 26 10 000 0 0518 0 518 V/el = 9 24	214	23.500		0.03	3			10.000	120	23.688			
	to 215	23 500		240 40	3 26			10 000	በ	0.0 0.518	\/el = 0	24	

CRAWFORD SPRINKLER CO.

CRAWF0	ORD SPF ergy Mob	RINKLER	R CO. tation Stora	ge RA1	REV 01					Page Date	18 9/28/2	4
Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt			
to Node2	Elev2	Fact	Ot	Act	or Eaiv	len	Ftngs Total	Df/Ft	Pe Pf	****** N	otes	*****
	LICVZ	1 401	Q	Act		Len	Total	1 //1 (
215	23.500		0.0	3			10.000	120	24.206			
to 216	23.500		240.49	3.26			10.000	0.0518	0.0 0.518	Vel = 9.24		
216	23.500		0.0	3			10.000	120	24.724			
to 217	23.500		240.49	3.26			10.000	0.0518	0.0 0.518	Vel = 9.24		
217 to	23.500		0.0	3			10.000	120	25.242 0.0			
218	23.500		240.49	3.26			10.000	0.0518	0.518	Vel = 9.24		
218 to	23.500		0.0	3			10.000	120	25.760 0.0			
219	23.500		240.49	3.26			10.000	0.0518	0.518	Vel = 9.24		
219 to	23.500		0.0	3			10.000	120	26.278 0.0			
220	23.500		240.49	3.20			10.000	0.0518	0.518	Vel = 9.24		
220 to	23.500		0.0	3			10.000	120	20.790 0.0	\/al = 0.24		
221	23.500		240.49	3.20			10.000	120	0.518	vei = 9.24		
to	23.500		0.0	5			10.000	120	0.0			
222	23.500		240.49	3.26			10.000	0.0518	0.518	Vel = 9.24		
222 to	23.500		0.06	3			10.000	120	27.832 0.0			
223	23.500		240.55	3.26			10.000	0.0518	0.518	Vel = 9.25		
223 to	23.500		0.26	3			10.000	120	28.350 0.0			
224	23.500		240.81	3.26			10.000	0.0519	0.519	Vel = 9.26		
224 to	23.500		0.67	3			10.000	120	28.869 0.0			
225	23.500		241.48	3.26			10.000	0.0522	0.522	Vel = 9.28		
225 to	23.500		1.33	3			10.000	120	29.391			
226	23.500		242.81	3.26			10.000	0.0527	0.527	Vel = 9.33		
226 to	23.500		2.26	3			10.000	120	29.918 0.0			
227	23.500		245.07	3.26			10.000	0.0537	0.537	Vel = 9.42		
227 to	23.500		3.49	3			10.000	120	30.455 0.0			
228	23.500		248.56	3.26			10.000	0.0551	0.551	Vel = 9.55		
228 to	23.500		5.04	3			10.000	120	31.006 0.0			
229	23.500		253.6	3.26			10.000	0.0571	0.571	Vel = 9.75		
229 to	23.500		6.91	3			8.500	120	31.577 0.0			
230	23.500		260.51	3.26	–	00.450	8.500	0.0600	0.510	Vel = 10.01		
to	23.500		9.09	3	I	20.159	6.000 20.159	120	32.087 0.0			
239	23.500		269.6	3.26			26.159	0.0640	1.674	Vel = 10.36		

CRAWFORD SPRINKLER CO C

CRAWF0	ORD SPF ergy Mob	RINKLER ile Substa	CO. ation Stora	ge RA1	REV 0 [.]	1				Page 19 Date 9/28/24
Node1	Elev1	К	Qa	Nom	Fitting]	Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	******* Notes ******
239 to	23.500		-377.82	3	Т	20.159	1.500 20 159	120	33.761 0.0	
231	23.500		-108.22	3.26			21.659	-0.0118	-0.256	Vel = 4.16
231 to	23.500		17.08	3			8.000	120	33.505 0.0	
232	23.500		-91.14	3.26			8.000	-0.0086	-0.069	Vel = 3.50
232	23.500		14.47	3			8.000	120	33.436	
233	23.500		-76.67	3.26			8.000	-0.0062	-0.050	Vel = 2.95
233	23.500		14.41	3			10.000	120	33.386	
234	23.500		-62.26	3.26			10.000	-0.0042	-0.042	Vel = 2.39
234	23.500		13.37	3			10.000	120	33.344	
235	23.500		-48.89	3.26			10.000	-0.0027	-0.027	Vel = 1.88
235	23.500		12.65	3			10.000	120	33.317	
236	23,500		-36.24	3.26			10.000	-0.0016	0.0 -0.016	Vel = 1.39
236	23.500		12.23	3			10.000	120	33.301	
237	23.500		-24.01	3.26			10.000	-0.0007	-0.007	Vel = 0.92
237	23.500		12.04	3			10.000	120	33.294	
238	0		-11.97	3.26			10.000	-0.0002	-0.002	Vel = 0.46
			0.0							
238			-11.97						43.470	K Factor = -1.82
239 to	23.500		377.82	3	2E	18.815	11.167 18.815	120	33.761 0.217	
TOR	23		377.82	3.26			29.982	0.1195	3.582	Vel = 14.52
TOR to	23	H100	100.00	4	Aty B	30.284 15.8	23.500 46.084	120	37.560 12.528	* * Fixed Loss = 3
BOR	1		477.82	4.26	Fsp	0.0	69.584	0.0501	3.488	Vel = 10.76
BOR to	1		0.0	6	2F G	20.084 4.304	60.000 67.425	140	53.576 0.0	
UG1	1		477.82	6.16	Т	43.037	127.425	0.0063	0.797	Vel = 5.14
UG1 to	1		-16.46	6	4F T	40.168 43.037	14.000 87.509	140	54.373 0.0	
UG2	1		461.36	6.16	G	4.304	101.509	0.0059	0.595	Vel = 4.97
LIG2			0.0 461 36						54 968	K Eactor = 62.23
UG1	1		16.46	6			65.000	140	54.373	
to H∩SE	1		16 /6	6 16			65 000	0	0.0	$V_{0} = 0.18$
HOSE	1	H150	150.00	6	2F	20 084	390 000	140	54 374	
to	•	11100	100.00	J	6T	258.224	278.308		0.0	
UG2	1		166.46	6.16			668.308	0.0009	0.594	Vel = 1.79
UG2 to	1		461.36	6	3F 2E	30.126 40.168	520.000 70.294	140	54.968 0.0	
BF1	1		627.82	6.16			590.294	0.0104	6.118	Vel = 6.76

CRAWFORD SPRINKLER CO.		
Duke Energy Mobile Substation Storage RA1	REV	01

CRAWF0 Duke En	RAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01										Page 20 Date 9/28/24		
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftnas	CFact	Pt Pe	*****	Notes *****		
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf				
BF1 to	1		0.0	6	2E T	40.168 43.037	25.000 91.812	140	61.086 8.576	* * Fixed I	_oss = 8.576		
SRC	1		627.82	6.16	2G Zig	8.607 0.0	116.812	0.0104	1.210	Vel = 6.7	76		
SRC	1		0.0	6	2G	8.607	360.000	140	70.872				
TEST	-16		627.82	6.16	ZE	40.168	48.775 408.775	0.0104	7.363 4.237	Vel = 6.7	76		
			0.0										
TEST			627.82						82.472	K Factor :	= 69.13		

AutoPeaking Summary

CRAWFORD SPRINKLER CO. Duke Energy Mobile Substation Storage RA1 REV 01

Auto Peaking Summary - List of Pipes for Area Calculated

	Left			Righ	t		
	Side			Side			
From	То	Length	From	То	Length		
101	1	28.375	4	201	52.833		
102	5	28.375	8	202	52.833		
103	9	28.375	12	203	52.833		
104	13	40.375	14	204	64.833		
101	1	40.375	4	201	40.833		
102	5	40.375	8	202	40.833		
103	9	40.375	12	203	40.833		
104	13	52.375	14	204	52.833		

			Flow	Safety	Pressure
		I	Required	Margin	Differential
Left	24.000	1	627.622	16.398	-0.148
Left	12.000		627.761	16.250	0.000
Area Calculated			627.818	16.342	-0.092
Right	12.000	I	627.775	16.685	-0.435
Typical Distance Betw	een Heads		= 12.000		
Split Point Used in Wo	orst Area Pe	aked	= 2		
Split Point Used in Are	ea Calculate	d	= 2		
	Comp	outer F	Programs by Hydratec Inc.	Revision: 50.5520.	727

Page 21 Date 9/28/24

2725 S. SAUNDERS STREET - RALEIGH, NC 27603 • PO BOX 26207 - RALEIGH, NC 27611 PHONE 919-828-9346 • FAX 919-839-8164

N.C. STATE LICENSE # 23634, FS-I • FED. TAX I.D. 56-0842716

Fire Hydrant Flow Test Report

Test Location

Address 1269 JONESBORO RO	DAD	
Proposed Tap LocationJONESBO	ORO ROAD	
Requested Flow Location		
(Please attach a sketch)		
Job Name Name DUKE ENERGY MOBL	IE SUBSTATION STORAGE	
Address		
Contract WithSWINERTON CON	ISTRUCTION	
Phone	Fax	
System Analysis		
Main Size6"	Elevation of Test Location 215'	
Results Static Pressure <u>120 p</u>	si Flowing Pressure 11	ps
Residual Pressure 42 p	si Outlet Size 4.5"	
Volume1,270 GPMgpn	n Hydrant Coefficient <u>1.34</u>	
Comments		
Completed by: PHILIP B. & J/	ASON C Date: 5/9/24	

Hydrant Flow Test Report

Test Date 5/9/2024

Test Time 9:15 AM

Location

1269 JONESBORO ROAD DUNN, NC

Tested by

CRAWFORD SPRINKLER CO. 2725 S. SAUNDERS STREET RALEIGH, NC 27603

<u>Notes</u>

TEST WAS PERFORMED BY PHILIP B. & JASON C. OF CRAWFORD SPRINKLER CO.

120 psi **static pressure** 42 psi **residual pressure** 215 ft **hydrant elevation**

Read Hydrant

Created with the free hydrant flow test program from www.igneusinc.com

J Feet 340

0

May 13, 2024

Harnett County GIS

PSI	GPM
5	856
6	938
7	1013
8	1083
9	1149
10	1211
11	1270
12	1303
13	1356
14	1407
15	1456
16	1504
17	1550
18	1595
19	1639
20	1682
21	1723
22	1764
23	1803
24	1842
25	1880
26	1917
27	1954
28	1990
29	2025
30	2059

PSI GPM	l
31 2093	
32 2127	
33 2160	
34 2192	1
35 2224	
36 2256	1
37 2287	
38 2318	
39 2323	1
40 2353	1
41 2382	1
42 2411	1
43 2439	1
44 2468	
45 2495	
46 2523	
47 2550	1
48 2577	1
49 2604	1
50 2630	1
51 2657	1
52 2683	1
53 2708	1
54 2734	1
	1

This device is FM Approved

The pressure vs. flow rate data developed within this flow chart is based on the average K-factor measured during laboratory testing. This data has been determined to be within the acceptable limitations for accuracy.

Additional copies of flow charts are available at: www.hosemonster.com

MANUFACTURED BY: The Hose Monster Company (888) 202-9987 Toll Free (847) 434-0073 Fax Service@FlowTest.com www.HoseMonster.com FOR REFERENCE ONLY - TO BE INSTALLED BY SITE UTILITY CONTRACTOR

Model 375DA

Reduced Pressure Detector Assembly

Application

Designed for installation on water lines in fire protection systems to protect against both backsiphonage and backpressure of contaminated water into the potable water supply. The Model 375DA shall provide protection where a potential health hazard exists. Incorporates metered by-pass to detect leaks and unauthorized water use.

Standards Compliance

(Unless otherwise noted, applies to sizes 2 1/2" thru 10")

- ASSE® Listed 1047
- UL® Classified
- AWWA Compliant C550
- CSA® Certified B64.4 (4" & 6")
- C-UL® Classified
- FM® Approved
- NYC MEA 218-01-M VOL 3
- · Approved by the Foundation for Cross Connection Control and Hydraulic Research at the University of Southern California
- Meets the requirements of NSF/ANSI/CAN 61*
- *(0.25% MAX. WEIGHTED AVERAGE LEAD CONTENT)

By-Pass Backflow Assembly 3/4" Model 975XLD

Materials

Main valve body	Ductile Iron ASTM A 536
Access covers	Ductile Iron ASTM A 536
Coatings	NSF Approved fusion epoxy finish
Internals	Stainless steel, 300 Series
121	NORYL™
Fasteners	Stainless Steel, 300 Series
Elastomers	EPDM (FDA approved)
	Buna Nitrile (FDA approved)
Polymers	NORYL™
Springs	Stainless steel, 300 series
Sensing line	Stainless steel, braided hose

Features

Sizes: 21/2", 3", 4", 6", 8", 10" Maximum working water pressure Maximum working water temperature Hydrostatic test pressure End connections (Grooved for steel pipe) (Flanged bolt pattern)

175 PSI 140°F 350 PSI **AWWA C606 ASME B16.42** Class 150

Options (Suffixes can be combined)

- with OS & Y gate valves (standard)
- less shut-off valves (flanged body connections)
- less water meter
 - with gpm meter (standard)
- CFM with cu ft/min meter
- G with groove end gate valves
- □ FG with flanged inlet gate connection and grooved outlet gate connection
- with Post Indicator Gate Valve
- □ GF with flanged inlet connection and grooved outlet connection
- with grooved end butterfly valves with integral □ BG monitor switches (2 1/2" - 10")

Accessories

- Air gap (Model AG)
- □ Repair kit (rubber only)
- □ Thermal expansion tank (Model XT)
- □ OS & Y Gate valve tamper switch (OSY-40)
- QT-SET Quick Test Fitting Set

Attention: Model 375DA (flance body) and	Relief Valve discharge
Model 375ADA (grooved body) have different lay lengths.	port: 2 1/2" - 6" - 2.75 sq. in 8" - 10" - 3.69 sg. in

Model 375DAG SHOWN BELOW

Dimensions & Weights (do not include pkg.)

r			DIMENSION (approximate)								WEIGHT																		
MO 375 SI	DEL DA ZE	A		A Wit BUTTE VAL	ih RFLY /Es	B LES GAT VALV	is Te Tes	c	;	D		OS OPI	RY En	E OSA CLOS	LY SED	e With Butter Valvi	H XFLY ES	F		G		LES SHI OF VAL	SS UT- F VES	OS GA VAL FLAN	&Y TE VES GED	OS G/ VAL GRO	&Y TE VES OVED	BUTTI VAL GROO	FRFLY VES DVED
in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mт	in.	mm	in.	mm	lbs.	kg	lbs.	kg	lbs.	kg	lbs.	kg
2 1/2	65	31	787	28	711	15 7/8	403	7 1/4	184	9	229	17 3/4	451	15 3/8	391	13 3/4	349	9 1/2	241	8 3/8	213	75	34	185	84	167	76	147	67
3	80	32	813	28 1/2	724	15 7/8	403	7 1/4	184	9	229	20 1/4	514	17	432	13 3/4	349	9 1/2	241	8 3/8	213	78	35	208	94	160	73	130	59
4	100	37 5/8	956	32 8/9	835	19 1/2	495	8	203	9	229	22 1/2	572	18 1/4	464	17	432	11	279	9 1/4	235	116	53	306	139	292	132	200	91
6	150	44 5/8	1133	37 5/8	956	23 1/2	597	10	254	10 1/2	267	30 1/2	775	24 1/4	616	17 1/2	445	12 3/8	314	9 1/4	235	194	88	494	224	468	212	312	142
8	200	60 7/8	1546	53 7/8	1369	37 3/4	959	11	279	15 1/2	394	37	940	28 1/2	724	16 15/16	430	15 3/8	391	16 3/4	426	382	173	858	389	810	367	556	252
10	250	63 7/8	1622	57 7/8	1470	37 3/4	959	11	279	15 1/2	394	45 5/8	1159	34 3/4	883	16 15/16	430	15 3/8	391	16 3/4	426	412	187	1230	558	1164	528	800	363

Zurn Industries, LLC | Wilkins 1747 Commerce Way, Paso Robles, CA U.S.A. 93446 Ph. 855-663-9876, Fax 805-238-5766 In Canada | Zurn Industries Limited 7900 Goreway Drive, Unit 10, Brampton, Ontario L6T 5W6, 877-892-5216 www.zurn.com

Rev. P Date: 08/20 Document No. BF-375DA Product No. Model 375DA Patent zurn.com/patents

in. in.

1. PRODUCT IDENTIFICATION

This document covers the following product, hereafter referred to as "sprinkler":

VK2001: Standard Response, Standard Coverage, Upright, K8.0 (115) Sprinkler.

2. INTENDED USE

The sprinkler is intended to be used in automatic fire sprinkler systems as allowed by applicable approval authorities. The sprinkler must be used in accordance with:

- 1. the sprinkler's Listings, Approvals, and associated design requirements.
- 2. the recognized design and installations standards issued, for example NFPA, FM, EN, VdS, or LPCB.
- 3. the latest revisions of all applicable manufacturer's documentation.

Governmental codes, ordinances, and standards may apply and may differ from one another.

WARNING

Cancer and Reproductive Harm www.P65Warnings.ca.gov

3. LISTING AND APPROVALS

Refer to section 5 for details and requirements that must be followed.

cULus Listed

FM Approved

LPCB Approved

VdS Approved

UKCA Approved

MED Approved

China Approved

4. TECHNICAL SPECIFICATIONS

4.1 Definitions

Standard Upright Sprinkler: A sprinkler intended to be oriented with the deflector above the frame so water flows upward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. These sprinklers are marked "SSU" (Standard Spray Upright) or "UPRIGHT" on the deflector.

Corrosion Resistant Sprinkler: A special service sprinkler with non-corrosive protective coatings, or that is fabricated from non-corrosive material, for use in atmospheres that would normally corrode sprinklers. Sprinklers can be ordered as corrosion resistant sprinklers and can be used with escutcheons when allowed by the approval body.

4.2 Ratings and Physical Characteristics

Parameter	Value
Minimum operating pressure	7 psi (0.5 bar)
Maximum rated pressure	175 psi (12 bar)
Factory tested pressure	500 psi (35 bar)
Thread size	3/4" NPT or 20 mm BSPT
Nominal K–factor	8.0 U.S. (115)
Minimum temperature rating (glass bulb)	–65 °F (–55 °C)

4.3 Markings and Dimensions

Figure – 1: Markings

Figure – 2: Dimensions

Ref	Description	Value					
Α	Response type	SR: Standard Response					
В	Listings and Approvals	See sections 3 and 5					
С	Sprinkler type	SSU: Standard Spray Upright					
D	Manufacture date (year)	See marking					
E	Nominal temperature rating	See marking					
F	Manufacturers Sprinkler Identification Number (SIN)	VK2001					
G	Nominal pipe engagement	7/16" (11 mm)					
Н	Height	2" (51 mm)					

4.4 Materials of Construction

NOTICE: Do not disassemble the sprinkler.

Ref	Description	Material
1	Compression screw	Brass CW612N, CW508L, UNS–C36000 or UNS–C26000
2	Deflector	Stainless steel UNS S30400
3	Sprinkler body	CW602N, UNS–C84400 or QM brass
4	Pip cap seal	Polytetrafluoroethylene (PTFE)
5	Pip cap shell	Stainless steel UNS-S44400
6	Belleville spring	Nickel alloy
7	Pip cap disc	Stainless steel UNS-S30100
8	Bulb	Glass, nominal 0.20" (5 mm) diameter

5. LISTING AND APPROVAL DESIGN REQUIREMENTS

5.1 Listing and Approval Specifications

Sprinkler	Thre	ad Size				Appro	oval Bo	dy			
Number ¹	NPT BSPT		cULus	FM	CE	LPCB	VdS	UKCA	MED	China	
Maximum WW	P PSI (bar) \rightarrow				17	75 (12)		•		
23875	3/4"	—	A1	A1	A1	A1	A1	A1	A1	—	
23887	_	20 mm	A1	A1	A1	A1	A1	A1	A1		
26757	_	20 mm	B2	B2	_	—	_	—	_	B2	
A = 135 °F (57 °C B = 155 °F (68 °C	C), 155 °F C), 200 °F	Apr 68 °C), 17 (93 °C) an	oroval Spec 75 °F (79 °C), d 286 °F (14	i ficatio r 200 °F (1 °C)	1 (Temp 93 °C) ar	erature Ra d 286 °F (14	tings) K 41 °C)	ley:			
1 = Brass, chror 2 = Chrome	Approval Specification (Finishes) Key: 1 = Brass, chrome, white polyester ^{2,3} , black polyester ^{2,3} , and ENT ^{3,4} 2 = Chrome										
1 For complete part number, refer to Viking's current price list.											
2 For white polyester and black polyester, other colors are available upon request and will carry the same Listings and Approvals as the standard colors.											
3 cULus Listed as corrosion-resistant.											
4 FM Approved as co	4 FM Approved as corrosion-resistant.										

5.2 cULus Listing Requirements and Details

The sprinkler is cULus Listed as indicated in Table 5.1 for installation in accordance with the latest edition of NFPA 13 for standard spray sprinklers. This sprinkler is designed for use in light, ordinary, and extra hazard occupancies.

5.3 FM Approval Requirements and Details

The sprinkler is FM Approved as standard response Non–Storage upright sprinkler as indicated in the FM Approval Guide. The sprinkler is also approved for use in FM Approved vacuum dry sprinkler systems with a maximum supervisory vacuum pressure of –3 psi (–207 mbar). FM Global Loss Prevention Data Sheets contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling. For specific application and installation requirements, refer to the latest applicable FM Loss Prevention Data Sheets (including Data Sheet 2–0).

5.4 Additional Approval Requirements and Details

Refer to Table 5.1 for approved configurations allowed by each of the following approvals.

- CE CPR: Standard EN 12259-1:1999 +A3:2006; Declaration of Performance DOP_VK2001.
- LPCB: Standard EN 12259-1:1999 +A3:2006; Certificate Number 096m.
- VdS: Standard EN 12259-1:1999 +A3:2006; Certificate Number G 422011.
- UKCA: Standard EN12259-1:1999 +A3:2006; Declaration of Conformity UKCA DOC_S5048.
- MED: Standard EN 12259-1:1999 +A3:2006; Declaration of Conformity DOC_MED_XT1.
- China Approval: Approved according to China GB standard.

For specific application and installation requirements, refer to the latest applicable governmental codes, ordinances, and standards for the installation location.

5.5 Corrosion-Resistant Coatings

IKING

The corrosion resistant coatings have passed the standard corrosion tests required by the approving agencies and are listed and approved as indicated in Table 5.1. These tests do not represent all possible corrosive environments. The Electro-less Nickel PTFE (ENT) finish passed the UL 199 thirty day corrosion test and is cULus listed and FM Approved as corrosion resistant. For automatic sprinklers, the ENT coating is applied to all exposed exterior surfaces, including the waterway.

Prior to installation, verify that the coatings are compatible with, or suitable for, the proposed environment. The ENT finish has not been evaluated for environments containing chlorine, such as indoor swimming pools. It is not recommended for these applications.

5.6 Sprinkler Guards and Water Shields

The sprinkler is approved for use with the Model XG Sprinkler Guard and the Model XWU upright water shield. Refer to the Guards and Water Shields for XT1 Sprinklers technical data sheet for more information.

5.7 Available Temperature Ratings

Viking sprinklers are available in several temperature ratings that relate to a specific temperature classification. Applicable installation rules mandate the use and limitations of each temperature classification. In selecting the appropriate temperature classification, the maximum expected ceiling temperature must be known. When there is doubt as to the maximum temperature at the sprinkler location, a maximum-reading thermometer should be used to determine the temperature under conditions that would show the highest readings to be expected. In addition, recognized installation rules may require a higher temperature classification, depending upon sprinkler location, occupancy classification, commodity classification, storage height, and other hazards. In all cases, the maximum expected ceiling temperature classification. Sprinklers located immediately adjacent to a heat source may require a higher temperature rating.

6. ORDERING PROCEDURE

6.1 Sprinkler

- 1. Choose a sprinkler base part number with the required thread size and listing or approval (refer to section 5):
- 2. Add the suffix for the desired finish.
- 3. Add the suffix for the desired temperature rating.

NOTE: For Polyester, insert the desired temperature rating suffix where the dash (–) is shown.

EXAMPLE: 23875MB/W = VK2001 with white polyester finish and 155 °F (68 °C) nominal temperature rating. This sprinkler is to be installed into an area with a maximum ambient temperature of 100 °F (38 °C).

NOTE: When ordering sprinklers that will be installed into InstaSeal® IS-W2 fittings, refer to Form No. F_021123 for installation instructions. Use the InstaSeal® alignment tool and NOT the sprinkler wrench for InstaSeal® sprinkler installations.

1. Sprinkler Base Part Number		2. Finist	1		;	3. Tempera	ature Rating	
See	e Section 5	Description	Suffix		Nominal Temperature Rating	Bulb Color	Maximum Ambient Ceiling Temperature	Suffix
23875	3/4" NPT	Brass	A		135 °F (57 °C)	Orange	100 °F (38 °C)	A
23887	20 mm BSPT	Chrome	F		155 °F (68 °C)	Red	100 °F (38 °C)	В
26757*	20 mm BSPT	White Polyester	M–/W		175 °F (79 °C)	Yellow	150 °F (65 °C)	D
*Only for	China	Black Polyester	M–/B		200 °F (93 °C)	Green	150 °F (65 °C)	E
		ENT	JN		286 °F (141 °C)	Blue	225 °F (107 °C)	G
					OPEN	_	_	Z

6.2 Sprinkler Accessories

Figure – 4: Sprinkler Accessories

Image Reference	Part Number	Description
1	23559MB	Straight wrench: required for proper installation
2	01724A	Sprinkler cabinet: holds up to 6 sprinklers
3	01725A	Sprinkler cabinet: holds up to 12 sprinklers (not shown)
4	26676	InstaSeal® alignment tool

7. CONTACT

The sprinkler and accessories are available through Viking distributors only. Contact your local Viking sales office which can be found on our website:

Americas and Asia: www.vikinggroupinc.com/locations OR Europe, Middle East, Africa (EMEA): www.viking-emea.com/contact

Manufacturer:

The Viking Corporation 5150 Beltway SE Caledonia, MI 49316 Tel.: (800) 968–9501 Fax: 269–818–1680 Technical Services: 1–877–384–5464 techsvcs@vikingcorp.com

Importer EU:

Viking S.A. 21, Z.I, Haneboesch L–4562 Differdange / Niederkorn Tel.: +352 58 37 37 – 1 Fax: +352 58 37 36 vikinglux@viking–emea.com

Asia Pacific (APAC) Main Office:

The Viking Corporation (Far East) Pte. Ltd. 69 Tuas View Square Westlink Techpark, Singapore 637621 Tel: (+65) 6 278 4061 Fax: (+65) 6 278 4609 vikingAPAC@vikingcorp.com

Model XT-1 Upright Sprinklers

bg	Инсталирайте и пуснете продукта в експлоатация само ако следната инструкция е ясно разбрана.	h	v	Produkta iemontēšanu un ekspluatācijas sākšanau veikt tikai tad, ja dotā instrukcija ir pilnībā saprasta.
cs	Namontujte a spusťte do provozu produkt pouze tehdy, když jste jasně pochopili tento návod.	lt	t	Produktą montuokite ir pradėkite eksploatuoti tik tuomet, jei aiškiai suprantate šią instrukciją.
de	Du må kun montere og idriftsætte produktet, hvis du har forstået følgende vejledning til fulde.	n	nt	Installa u ħaddem il-prodott biss jekk l-istruzzjonijiet li ġejjin jinftiehmu b'mod ċar.
de	Produkt nur einbauen und in Betrieb nehmen, wenn die nachfolgende Anleitung klar verstanden wird.	n	nl	Product alleen installeren en in gebruik nemen, als de volgende instructies begrepen zijn.
el	Η εγκατάσταση και θέση σε λειτουργία του προϊόντος επιτρέπονται μόνο εάν οι ακόλουθες οδηγίες έχουν γίνει κατανοητές.	n	10	lkke installer og ta i bruk produktet uten at følgende anvisninger er tydelig forstått.
en	Do not install and commission the product unless you have clearly understood the instructions below.	p	bl	Produkt należy montować i uruchamiać tylko wtedy, gdy poniższe instrukcje są w pełni zrozumiałe.
es	Instalar el producto y ponerlo en funcionamiento solo cuando se hayan comprendido claramente las siguientes instrucciones.	p	ot	Instalar e colocar o produto em funcionamento somente se as instruções a seguir forem claramente compreendidas.
et	Paigaldage toode ja kasutage seda ainult siis, kui saate alljärgnevast juhendist selgelt aru.	r	0	Montați produsul și puneți-l în funcțiune numai dacă instrucțiunea următoare este înțeleasă clar.
fi	Tuotteen saa asentaa ja ottaa käyttöön vain, jos jäljempänä oleva ohje ymmärretään selvästi.	r	u	Не устанавливайте и не принимайте оборудование в эксплуатацию, если вы четко не поняли инструкции ниже
fr	N'installer et ne mettre en service le produit que si les instructions suivantes ont été clairement comprises.	s	k	Namontujte a spustite do prevádzky výrobok iba vtedy, pokiaľ ste jasne pochopili tento návod.
ga	Ná déan an táirge a shuiteail agus a choimisiunu mura dtuigeann tu na treoracha thios go soileir.	s	sl.	Izdelek vgradite in zaženite samo, če ste dobro razumeli navodila v nadaljevanju.
hr	Ne instalirajte i ne puštajte proizvod u rad ako niste jasno razumjeli donje upute.	s	r	Не инсталирајте и не пуштајте производ у рад ако нисте јасно разумели упутства у наставку.
hu	Csak akkor építse be a terméket és helyezze üzembe, ha a következő útmutatót egyértelműen megértette.	s	SV	Montera och driftsätt produkten endast om du förstår den efterföljande instruktionen.
ls	Settu ekki upp eða taktu vöruna í notkun nema þú hafir skilið greinilega leiðbeiningarnar hér að neðan.	tı	r	Aşağıdaki talimatları açıkça anlamadan ürünü kurmayın ve devreye almayın.
it	Montare il prodotto e metterlo in funzione solo se si sono comprese appieno le seguenti istruzioni.			
	bg cs de de de el en es fi fr ga hr ls it	bg Инсталирайте и пуснете продукта в експлоатация само ако спедната инструкция е ясно разбрана. cs Namontujte a spustte do provozu produkt pouze tehdy, když jste jasně pochopili tento návod. de Du må kun montere og idriftsætte produktet, hvis du har forstået følgende vejledning til fulde. de Produkt nur einbauen und in Betrieb nehmen, wenn die nachfolgende Anleitung klar verstanden wird. el H εγκατάσταση και θέση σε λειτουργία του προϊόντος επιτρέπονται μόνο εάν οι ακόλουθες οδηγίες έχουν γίνει κατανοητές. en Do not install and commission the product unless you have clearly understood the instructions below. es Instalar el producto y ponerlo en funcionamiento solo cuando se hayan comprendido claramente las siguientes instrucciones. et Paigaldage toode ja kasutage seda ainult siis, kui saate alljärgnevast juhendist selgelt aru. fi Tuotteen saa asentaa ja ottaa käyttöön vain, jos jäljempänä oleva ohje ymmärretään selvästi. fr Ninstaller et ne mettre en service le produit que si les instructions suivantes ont été clairement comprises. ga Ná déan an táirge a shuiteail agus a choimisiunu mura dtuigeann tu na treoracha thios go soileir. hr Ne instalirajte i ne puštajte proizvod u rad ako niste jasno razumjeli donje upute. Ls Settu ekki upp eða taktu vöruna í notkun nema þú hafir skilið greinilega leiðbeiningarnar hér að neðan.	bg Μнсталирайте и пуснете продукта в експлоатация само ако спедната инструкция е ясно разбрана. h cs Namontujte a spustte do provozu produkt pouze tehdy, když jste jasně pochopili tento návod. h de Du mà kun montere og idriftsætte produktet, hvis du har forstået følgende vejledning til fulde. n de Produkt nur einbauen und in Betrieb nehmen, wenn die nachfolgende Anleitung klar verstanden wird. n el H εγκατάσταση και θέση σε λειτουργία του προϊόντος επιτρέπονται μόνο εάν οι ακόλουθες οδηγίες έχουν γίνει κατανοητές. n en Do not install and commission the product unless you have clearly understood the instructions below. n instalar el producto y ponerlo en funcionamiento solo cuando se hayan comprendido claramente las siguientes instrucciones. n et Paigaldage toode ja kasutage seda ainult siis, kui saate alijärgnevast juhendist selgelt aru. n fi Tuotteen saa asentaa ja ottaa käyttöön vain, jos jäljempänä oleva ohje ymmärretään selvästi. n fr N'installer et ne mettre en service le produit que si les instructions suivantes ont été clairement comprises. s ga Ná déan an täirge a shuiteail agus a choimisiun mura dtuigeann tu na treoracha thios go soileir. s hr Ne instalirajte i ne puštajte proizvod u rad ako niste jasno razumjeli donje upute. s ls </th <th>bg Μнсталирайте и пуснете продукта в експлоатация само ако следната инструкция е ясно разбрана. Iv cs Namontujte a spustte do provozu produkt pouze tehdy, když jste jasně pochopili tento návod. It de Du må kun montere og idriftsætte produktet, hvis du har forstået følgende vejledning til fulde. mt de Produkt nur einbauen und in Betrieb nehmen, wenn die nachfolgende Anleitung klar verstanden wird. nl el H εγκατάσταση και θέση σε λειτουργία του προϊόντος επιτρέπονται μόνο εάν οι ακόλουθες οδηγίες έχουν γίνει κατανοητές. pl en Do not install and commission the product unless you have clearly understood the instructions below. pl et Paigaldage toode ja kasutage seda ainult siis, kui saate alijärgnevast juhendist selgelt aru. ro fi Tuotteen saa asentaa ja ottaa käyttöön vain, jos jäljempänä oleva ohje ymmärretään selvästi. sk ga Ná déan an táirge a shuiteail agus a choimisiunu mura dtuigeann tu na treoracha thios go soileir. sl hr Ne instalirajte i ne puštajte proizvod u rad ako niste jasno razumjeli donje upute. sv Losak akkor építse be a terméket és helyezze územbe, ha a következő útmutatót egyértelműen megértette. sv fi Settu ekki upp eða taktu vöruna í notkun nema þú hafir skillö greinilega leiðbeiningarnar hér að neðan. tr</th>	bg Μнсталирайте и пуснете продукта в експлоатация само ако следната инструкция е ясно разбрана. Iv cs Namontujte a spustte do provozu produkt pouze tehdy, když jste jasně pochopili tento návod. It de Du må kun montere og idriftsætte produktet, hvis du har forstået følgende vejledning til fulde. mt de Produkt nur einbauen und in Betrieb nehmen, wenn die nachfolgende Anleitung klar verstanden wird. nl el H εγκατάσταση και θέση σε λειτουργία του προϊόντος επιτρέπονται μόνο εάν οι ακόλουθες οδηγίες έχουν γίνει κατανοητές. pl en Do not install and commission the product unless you have clearly understood the instructions below. pl et Paigaldage toode ja kasutage seda ainult siis, kui saate alijärgnevast juhendist selgelt aru. ro fi Tuotteen saa asentaa ja ottaa käyttöön vain, jos jäljempänä oleva ohje ymmärretään selvästi. sk ga Ná déan an táirge a shuiteail agus a choimisiunu mura dtuigeann tu na treoracha thios go soileir. sl hr Ne instalirajte i ne puštajte proizvod u rad ako niste jasno razumjeli donje upute. sv Losak akkor építse be a terméket és helyezze územbe, ha a következő útmutatót egyértelműen megértette. sv fi Settu ekki upp eða taktu vöruna í notkun nema þú hafir skillö greinilega leiðbeiningarnar hér að neðan. tr

1. PRODUCT IDENTIFICATION

This document covers the following products, hereafter referred to as "sprinkler":

- VK1001 Standard Response Upright Sprinkler K5.6 (80.6)
- VK2001 Standard Response Upright Sprinkler K8.0 (115)
- VK2002 Standard Response Upright Sprinkler K8.0 (115)
- VK3001 Quick Response Upright Sprinkler K5.6 (80.6)
- VK3501 Quick Response Upright Sprinkler K8.0 (115)
- VK3502 Quick Response Upright Sprinkler K8.0 (115)
- OTHER APPLICABLE DOCUMENTS

OTHER APPLICABLE DOCUMENTS 2.

For intended use and relevant conditions for the safe use of the specific sprinkler refer to the appropriate Technical Data Sheet.

3. TRANSPORT AND HANDLING

WARNING

A damaged or compromised sprinkler poses the risk of fatal consequences.

Damaged or compromised sprinklers will not operate properly which could lead to loss of life.

- NEVER use a sprinkler that has been exposed to temperatures exceeding the maximum allowed ambient temperature.
- NEVER use a sprinkler with a loss of liquid from the glass bulb or damage to the fusible element. A small bubble should be visible within the glass bulb; rotate the sprinkler to a horizontal position while observing the bubb to see the bubble.
- NEVER use a sprinkler that has been dropped or damaged.
- ALWAYS Protect the sprinkler from mechanical damage during storage, transport, and handling.
- NEVER use sprinklers that have been painted by anyone other than the manufacturer.
- ALWAYS protect sprinklers from being painted during installation or replacement in accordance with the installation standards.
- NEVER clean sprinklers with anything other than 7 psi or lower compressed air.
- NEVER apply soap, water, ammonia, adhesives, solvents or any other fluids on sprinklers.
- Destroy every damaged or compromised sprinkler.

NOTICE

Protect sprinklers during transport and handling.

- ALWAYS handle the sprinkler with care.
- ALWAYS keep the protective cap on the sprinkler during transport and handling.
- NEVER remove the protective cap until the fire sprinkler system is placed in service and the potential for mechanical damage no longer exists.
- ALWAYS protect the sprinkler from direct sunlight during transport and handling.
- ALWAYS store sprinkler in a cool, dry, protected area.
- ALWAYS use original manufacturer's shipping containers.
- NEVER store a sprinkler loose in a box, bin, bucket, or other type of container.
- ALWAYS keep the sprinkler separated from other sprinklers.
- NEVER allow metal parts to contact the sprinkler operating elements.

NOTE: If the glass bulb included on the sprinkler has been exposed to ultraviolet light, the color inside the bulb may fade. This color change does not affect the operation of the sprinkler.

CORRECT (Bulb intact, bubble visible)

(bulb cracked, fluid missing)

CORRECT (Protective caps in place)

INCORRECT (Protective caps not in place)

INCORRECT (Stored loose in a box)

Model XT-1 Upright Sprinklers

4. INSTALLATION

Installation by insufficiently qualified personnel poses the risk of fatal consequences.

 This sprinkler must be installed properly by qualified personnel familiar with safe practices and applicable and recognized design and installation standards issued, for example, by NFPA, FM, VdS, or LPCB, and trained how to properly perform the installation procedures.

Cutting Hazard.

Sprinklers, accessories, cabinets, and packaging can have sharp edges that can cause cuts.

• Wear appropriate personal protective equipment (gloves) while handling product.

NOTICE

If the sprinkler will be installed into an IS-W2 InstaSeal™ fitting, refer to F_021123 or F_032219 (CPVC InstaSeal™ adapter) for the proper installation instructions.

Optional Guards, Shields, and Escutcheons: If the sprinkler shall be installed together with a guard, shield, or escutcheon refer to the applicable documents for the products used.

- 1. Install all required piping in the intended installation location.
- 2. Verify that the sprinkler model/style, K-factor, temperature rating, and response characteristics are appropriate for the intended installation location. See Table 1 and Figure 4.
- Inspect the sprinkler for damage. Destroy every damaged or compromised sprinkler. The following are examples in which sprinklers are considered damaged or compromised. Replace the sprinkler in the following cases:
 - Sprinkler with a loss of fluid from the glass bulb or damage to the fusible element.
 - Sprinklers that have been field painted, caulked, or mechanically damaged.
 - Sprinklers showing signs of corrosion.
- 4. Verify that the sprinkler is protected with the protective cap or clip.
- 5. Apply a small amount of pipe-joint compound or tape to the external threads of the sprinkler only. Do not allow a build-up of compound inside the sprinkler inlet (Figure 1).

Figure – 1

6. NOTICE: Do not use the deflector to start threading the sprinkler into a fitting. Use ONLY the approved wrench to install the sprinkler. Refer to the sprinkler's *Technical Data Sheet*.

Carefully slide the proper wrench onto the wrench flats (Figure 2).

Figure – 2

7. NOTICE: Over-tightening the sprinkler can cause permanent damage. For 1/2" NPT (or 15 mm BSPT) sprinkler, tighten up to a maximum torque of 14 ft-lbs (19 Nm). For 3/4" NPT (or 20 mm BSPT) sprinkler, tighten up to a maximum of 20 ft-lbs (27,1 Nm).

Tighten the sprinkler as necessary (Figure 3). If applicable, install a sprinkler guard and water shield.

Figure – 3

8. NOTICE: Sprinkler protective caps/clips must be removed from the sprinkler before placing the system in service. Test the entire sprinkler system.

Refer to the applicable system documentation, regulations, and standards to ensure compliance.

	Table 1: Sprinkler Ma	arkings
Ref	Parameter	
A	Response type	EXAMPLE
В	Listings and approvals	Α
С	Sprinkler type	USS SR VICTORY
D	Manufacture date	B E
E	Nominal temperature rating	
F	Manufacturer's Sprinkler Identification Number (SIN)	nss c
		EXAMPLE Figure – 4

5. CONTACT

The sprinkler and accessories are available through Viking distributors only. Contact your local Viking sales office which can be found on our website:

Americas and Asia: www.vikinggroupinc.com/locations OR Europe, Middle East, Africa (EMEA): www.viking-emea.com/contact

Manufacturer:

Importer EU:

The Viking Corporation 5150 Beltway SE Caledonia, MI 49316 Tel.: (800) 968–9501 Fax: 269–818–1680 Technical Services: 1–877–384–5464 techsvcs@vikingcorp.com

Viking S.A. 21, Z.I, Haneboesch L–4562 Differdange / Niederkorn Tel.: +352 58 37 37 – 1 Fax: +352 58 37 36 vikinglux@viking–emea.com

Asia Pacific (APAC) Main Office:

The Viking Corporation (Far East) Pte. Ltd. 69 Tuas View Square Westlink Techpark, Singapore 637621 Tel: (+65) 6 278 4061 Fax: (+65) 6 278 4609 vikingAPAC@vikingcorp.com

Operation and Maintenance Instructions

Model XT-1 Sprinklers

1. PRODUCT IDENTIFICATION

This document covers the following product, hereafter referred to as "sprinkler" (SR=Standard Response, QR=Quick Response):

- VK1001 SR Upright Sprinkler K5.6 (80.6)
- VK2001 SR Upright Sprinkler K8.0 (115)
- VK2002 SR Upright Sprinkler K8.0 (115)
- VK3001 QR Upright Sprinkler K5.6 (80.6)
- VK3501 QR Upright Sprinkler K8.0 (115)
- VK3502 QR Upright Sprinkler K8.0 (115)
- VK1021 SR Pendent Sprinkler K5.6 (80.6)
- VK2021 SR Pendent Sprinkler K8.0 (115)
- VK2022 SR Pendent Sprinkler K8.0 (115)

- VK3021 QR Pendent Sprinkler K5.6 (80.6)
- VK3521 QR Pendent Sprinkler K8.0 (115)
- VK3522 QR Pendent Sprinkler K8.0 (115)
- VK1181 SR Conventional Sprinkler K5.6 (80.6)
- VK1201 SR Conventional Sprinkler K8.0 (115)
- VK1202 SR Conventional Sprinkler K8.0 (115)
- VK3101 QR Conventional Sprinkler K5.6 (80.6)
- VK3541 QR Conventional Sprinkler K8.0 (115)
- VK3542 QR Conventional Sprinkler K8.0 (115)

A WARNING

Cancer and Reproductive Harm www.P65Warning.ca.gov

2. OTHER APPLICABLE DOCUMENTS

For intended use and relevant conditions for the safe use of the specific sprinkler, refer to the appropriate Technical Data Sheet. In case an installed sprinkler needs to be replaced, refer to the appropriate Handling and Installation Instructions for the installation of the new sprinkler.

3. MAINTAINING OPERATIONAL READINESS

Functionality

During fire conditions, the operating element fuses or shatters (depending on the type of sprinkler), releasing the pip cap and sealing assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to control or extinguish the fire.

WARNING

This section contains important safety information. Read and follow all information.

Damaged or Compromised Sprinklers

Damaged or compromised sprinklers will not operate properly which could lead to loss of life.

- NEVER clean, paint, or caulk sprinklers.
- NEVER apply soap, water, ammonia, adhesives, solvents or any other fluids on sprinklers.
- NEVER expose sprinklers to temperatures exceeding the maximum allowed ambient ceiling temperature. See the Technical Data Sheet.
- ALWAYS replace a compromised or damaged sprinkler.

- NEVER attempt to repair or reassemble a sprinkler.
- ALWAYS replace operated sprinklers and cover assemblies and sprinklers exposed to corrosive products of combustion.
- Replacement of sprinklers must only be performed following the instructions in section 4.

The following are examples in which sprinklers are considered damaged or compromised. Replace the sprinkler in the following cases:

- Sprinkler with a loss of fluid from the glass bulb or damage to the fusible element.
- Sprinklers or cover plate assemblies that have been field painted, caulked, or mechanically damaged.
- Sprinklers showing signs of extraordinary corrosion.

Obstructions and obstacles

Obstructions and obstacles may compromise sprinkler discharge patterns which are critical for proper fire protection.

- NEVER attach items to sprinklers or hang items from the ceiling in an area protected with sprinklers.
- NEVER install walls in areas protected with sprinklers without having a specialized company verifying the design of the sprinkler system.

Sprinkler systems that have been subjected to a fire

Sprinkler systems that have been subjected to a fire must be returned to service as soon as possible.

- After an event of fire, the entire sprinkler system must be inspected for damage and repaired as necessary.
- Refer to the minimum requirements of the Authority Having Jurisdiction for replacement of sprinklers.

ALWAYS remove obstructions and obstacles to

sprinkler spray patterns.

• Consider the employment of a fire patrol as long as the sprinkler system is out of service.

Inspections and testing

The owner is responsible for having the sprinklers inspected and tested according to standards of the applicable approval body and to the requirements of the Authority Having Jurisdiction to maintain proper operating condition of the system.

• Sprinklers must be inspected on a regular basis for corrosion, mechanical damage, obstructions, paint, etc. Frequency of inspections may vary due to

corrosive atmospheres, water supplies, and activity around the sprinkler.

The applicable approval body or Authority Having Jurisdiction may require sprinklers to be replaced after a specified term of service.

 Refer to the standards of the applicable approval body, such as NFPA, FM, VdS, or LPCB, and the requirements of the Authority Having Jurisdiction for detailed inspection, testing and replacements requirements.

Sprinklers removed from the system for testing or for any other purpose must be replaced according to section 4.

4. REMOVAL AND REPLACEMENT

WARNING

Removal and replacement of sprinklers by insufficiently qualified personnel poses the risk of fatal consequences in case of fire.

 Removal or replacement of sprinklers must be performed by qualified personnel familiar with safe practices and applicable and recognized design and installation standards issued, for example, by NFPA, FM, VdS, or LPCB, and trained how to properly perform the installation procedures.

A WARNING

Removal and replacement of sprinklers will temporarily eliminate the fire protection capabilities of the sprinkler system.

- Consider the employment of a fire patrol in the affected area.
- Prior to proceeding, notify all Authorities Having Jurisdiction.

Model XT-1 Sprinklers

A WARNING

Re-installation of a removed sprinkler may compromise the operational safety of the sprinkler system.

NEVER reinstall a removed sprinkler.

- ALWAYS use new sprinklers for replacement.
- 1. Select new sprinklers with identical performance characteristics as well as respective accessories such as escutcheons, cover plates, and protective caps. A stocked spare sprinkler cabinet may be provided for this purpose on site.
- 2. According to appropriate system description and/or valve instructions, remove the system from service, drain all water, and relieve all pressure on the piping.
- 3. Only for flush and concealed style sprinklers: Remove the ceiling ring or cover plate assembly of the old sprinkler by gently unthreading or pulling it off the sprinkler body (depends on the sprinkler model used).
- 4. Use the proper sprinkler wrench for the old sprinkler according to its Technical Data Sheet.
- 5. Only for flush and concealed style sprinklers, but not for domed concealed sprinklers: Replace the plastic protective cap over the old sprinkler and fit the wrench over the cap.
- 6. Use the wrench to remove the old sprinkler by turning it counterclockwise to unthread it from the piping.
- 7. Install the new sprinkler by following its Handling and Installation Instructions.
- 8. Place the system back in service and secure all valves.
- 9. Check for and repair all leaks.

5. DISPOSAL

At end of use the product described here should be disposed of via the national recycling system.

6. CONTACT

The sprinkler and accessories are available through Viking distributors only. Contact your local Viking sales office which can be found on our website:

Americas and Asia: www.vikinggroupinc.com/locations OR Europe, Middle East, Africa (EMEA): www.viking-emea.com/contact

Manufacturer:	Importer EU:	Asia Pacific (APAC) Main Office:
The Viking Corporation 5150 Beltway SE Caledonia, MI 49316 Tel.: (800) 968–9501 Fax: 269–818–1680 Technical Services: 1–877–384–5464 techsvcs@vikingcorp.com	Viking S.A. 21, Z.I, Haneboesch L–4562 Differdange / Niederkorn Tel.: +352 58 37 37 – 1 Fax: +352 58 37 36 vikinglux@viking–emea.com	The Viking Corporation (Far East) Pte. Ltd. 69 Tuas View Square Westlink Techpark, Singapore 637621 Tel: (+65) 6 278 4061 Fax: (+65) 6 278 4609 vikingAPAC@vikingcorp.com

NIKING®

TECHNICAL DATA

STANDARD AND QUICK RESPONSE CONCEALED PENDENT SPRINKLER VK4621 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Viking Standard and Quick Response Concealed Pendent Sprinkler VK4621 is a small thermosensitive, glass-bulb sprinkler designed for installation on concealed pipe systems where the appearance of a smooth ceiling is desired. The low-profile cover assemblies provide up to $1/2^{"}$ (13 mm) of vertical adjustment.

Features:

- K5.6 (80.6 metric).
- Quick response glass bulb operating element.
- Integral threaded adapter cup accepts push-on or thread-on cover plates.
- Low-profile, small diameter, removeable cover plates offer almost flush appearance upon installation and allow ease of maintenance.
- Protective cap prevents damage during installation and finishing and keeps errant overspray from coating internal parts.
- Various finishes available to meet design requirements.
- Optional Electroless Nickel PTFE (ENT) coating provides corrosion resistance (see Approval Chart).

2. LISTINGS AND APPROVALS

cULus Listed: Category VNIV

FM Approved: Class 2015

Also approved for use in FM Approved vacuum dry sprinkler systems with a maximum supervisory vacuum pressure of -3 psi (-207mbar)

VdS Approved: Standard EN 12259-1:199 + A3:2006; Certificate Number G 422002

LPCB Approved: Standard EN 12259-1:199 + A3:2006; Certificate Number 096e

CE: Standard EN 12259-1:1999 + A3:2006, Sprinkler, DOP_VK4621, 2831, 2023

MED Approved: Standard EN 12259-1:1999 + A3:2006, DOC_MED_VK4621, 2831.

UKCA Approved: Standard EN 12259-1:1999 + A3:2006, DOC_UKCA_VK4621, 0832, 2023.

China Approval: Approved according to China GB standard.

Refer to the Approval Charts and Design Criteria on for cULus Listing requirements that must be followed.

3. TECHNICAL DATA

Specifications: Minimum Operating Pressure: 7 psi (0.5 bar) Maximum Working Pressure: FM - 175 psi (12 bar). UL - 250 psi (17.2 bar) Factory tested hydrostatically to 500 psi (34.5 bar). Thread size: 1/2" NPT or 15 mm BSPT Nominal K-Factor: 5.6 U.S. (80.6 metric*) Glass-bulb fluid temperature rated to -65 °F (-55 °C)

* Metric K-factor measurement shown is in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

WARNING: Cancer and Reproductive Harmwww.P65Warnings.ca.gov

STANDARD AND QUICK RESPONSE CONCEALED PENDENT SPRINKLER VK4621 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

Material Standards:

Sprinkler body: QM Brass or DZR Brass Deflector: Phosphor Bronze UNS-C51000 Deflector pins: Stainless steel UNS-S43000 Pip cap: Copper UNS-C11000 Pip cap insert: stainless steel UNS-S30400 Pip cap T-hinge ring: Stainless steel UNS-S31600 Compression screw: UNS-C36000 Belleville spring sealing assembly: Nickel alloy, coated on both sides with PTFE tape Cover adapter: Cold rolled steel JIS G3141 and carbon steel UNS-G10100 (per JIS G3141) Shipping cap: High density polyethylene **Cover Plate Materials:** Cover plate assembly: Copper UNS-C11000 and brass UNS-C26800 or stainless steel UNS-S30400 Spring: Bendlium nickel

Spring: Beryllium nickel Solder: Eutectic

Ordering Information: Refer to Tables 1 and 2.

4. INSTALLATION

Refer to appropriate NFPA Installation Standards and installation instructions in this document.

5. OPERATION

During fire conditions, when the temperature around the sprinkler approaches its operating temperature, the cover plate detaches, releasing the deflector. Continued heating of the exposed sprinkler causes the heat-sensitive liquid in the glass bulb to expand, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the deflector, forming a uniform spray pattern over a specific area of coverage determined by the water supply pressure at the sprinkler to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

Viking Sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

STANDARD AND QUICK RESPONSE CONCEALED PENDENT SPRINKLER VK4621 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

Ordering Instructions - Sprinkler Base

- 1. Choose a sprinkler base part number with the required thread size and listing or approval (refer to the approval chart).
- 2. Add the suffix for the desired finish.
- 3. Add the suffix for the desired temperature rating.
- 4. Order a cover plate (refer to Ordering Instructions Cover Plate).

EXAMPLE: **24682AB** = VK4621 with brass finish and 155 °F (68 °C) nominal temperature rating. This sprinkler is to be installed into an area with a maximum ambient temperature of 100 °F (38 °C).

1. Sprinkle Part Nur	r Base nbers	2. Availab Finishe	le s	3. Temperat	ure Ratings			
Part Number	Thread Size	Description	Suffix	Sprinkler Temperature Classification	r ture Temperature ation Rating		Maximum Ambient Ceiling Temperature ¹	Suffix
24682	1/2" NPT	Brass	A	Ordinary	155 °F (68 °C)	Red	100 °F (38 °C)	B
22962	15 mm BSPT	ENT ^{2,3,5}	JN	Intermediate	175 °F (79 °C)	Yellow	150 °F (66 °C)	D
26548 ⁷	15 mm BSPT			Intermediate	200 °F (93 °C)	Green	150 °F (66 °C)	E

Accessories								
Part Number	Description							
23143	Installation wrench ^{4,6}							
14412	Concealed cover plate installer tool, for use with push-on cover plates only (available since 2007)							
14867	Large concealed cover plate installer tool, for use with push-on cover plates only (available since 2007)							
01731A	Sprinkler cabinet; holds up to 6 sprinklers (available since 1971)							

FOOTNOTES

1. Based on NFPA 13, NFPA 13R, and NFPA 13D. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

2. UL Listed as corrosion resistant.

- 3. The corrosion resistant coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Chart. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the ENT coating is applied to all exposed exterior surfaces, including the waterway.
- 4. Requires a 1/2" ratchet which is not available from Viking.

5. FM Approved as a decorative finish.

6. The installation wrench is intended to be used for a maximum of 500 sprinkler installations at a maximum torque of 14 ft-lbs (19 Nm).

7. See Approval Chart for approval information.

STANDARD AND QUICK RESPONSE CONCEALED PENDENT SPRINKLER VK4621 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

Ordering Instructions - Cover Plate

- 1. Choose a cover plate base part number with the desired shape and style (refer to the approval chart).
- 2. Add the suffix for the desired finish.
- 3. Add the suffix for the required temperature rating.

Note: for stainless steel versions, skip steps 2 and 3 (finishes and paint are not available).

Example:

23190MC/W = Thread-On style, 165 °F (74 °C) Temperature Rated, 2³/₄" (70 mm) diameter Round Cover Plate with a Painted White finish.

1. Cover Plate Base Part Numbers ^{3, 6}										
Style	Base Part Number⁵	Size Inches (mm)	Shape (type)							
	23190	2 ¾ (70) diameter	Round							
	23174	3 ⁵⁄₁₀ (84) diameter	Round							
	23179	3 5⁄16 (84)	Square							
Thread On Style	23174-/CR	3 ⁵⁄₁₅ (84) diameter	Round (clean room)							
Inread-On Style	▼Stainless Steel material ⁴									
	23193 2 ¾ (70) diameter		Round							
	23183	3 ⁵⁄₁₀ (84) diameter	Round							
	23183-/CR	3 ⁵⁄₁₅ (84) diameter	Round (clean room)							
	23447	2 ¾ (70) diameter	Round							
	23463	3 ⁵⁄₁₀ (84) diameter	Round							
	23482	3 5⁄16 (84)	Square							
Duch On Style	23463-/CR	3 ⁵⁄₁₀ (84) diameter	Round (clean room)							
Push-On Style	▼ Stainless	Steel material ⁴								
	23455	2 ¾ (70) diameter	Round							
	23473	3 ⁵⁄₁₀ (84) diameter	Round							
	23473-/CR	3 ⁵⁄₁₀ (84) diameter	Round (clean room)							

2. Available Finishes⁵								
Description	Suffix							
Polished Chrome	F							
Brushed Chrome	F_/B							
Bright Brass	В							
Antique Brass	B_/A							
Brushed Brass	B_/A							
Brushed Copper	B_/A							
Painted White	M_/W							
Painted Ivory	M_/I							
Painted Black	M_/B							

3. Temperature Rating Matrix

IMPORTANT: The required cover plate temperature rating is determinted by the sprinkler's temperature rating.

Sprinkler Temperature Classification ¹	Required Cover Plate Temperature Rating	Corresponding Sprinkler Nominal Temperature Rating	Maximum Ambient Ceiling Temperature ²	Suffix
Ordinary	139 °F (59 °C)	155 °F (68 °C)	100 °F (38 °C)	A
Intermediate	165 °F (74 °C)	200 °F (93 °C)	150 °F (66 °C)	С

FOOTNOTES

1. The sprinkler temperature rating is stamped on the deflector.

2. Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

3. Part number shown is the base part number. For complete part number, refer to current Viking price list schedule.

4. Stainless Steel versions are not available with any finishes or paint.

5. Where a dash (-) is shown in the Finish suffix designation, insert the desired Temperature Rating suffix. See example above.

6. For use with gasketed cover plates has been evaluated as part of the UL Listing.

STANDARD AND QUICK RESPONSE CONCEALED PENDENT SPRINKLER VK4621 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

Approval Chart Concealed Pendent Sprinkler VK4621 1/2" NPT or 15 mm BSPT, Nominal K-factor 5.6 U.S. (80.6 metric ²)										
Listings and Approvals ³ (Refer also to Design Criteria)										
	cULus ^{4, 9}	China Approval	FM	VdS	LPCB	LPCB CE				
Sprinkler Base Part No. ¹										
Standard Response Applications										
			AV1 BX1 AS2 BT2 BW1				1			
24682A			CX1, CT2, CX1	AV1, CX1	AV1, CX1	AV1, CX1	AV1, CX1	AV1, CX1		
24682JN ^{7,8}			AV1, BX1, AS2, BT2, BW1, CX1, CT2, CX1							
22962A			AV1, BX1, AS2, BT2, BW1, CX1, CT2, CX1	AV1, CX1	AV1, CX1	AV1, CX1	AV1, CX1	AV1, CX1		
22962JN ^{7,8}			AV1, BX1, AS2, BT2, BW1, CX1, CT2, CX1							
			Quick Response Applica	ations						
24682A	AV1, BX1, AS2, BT2, CX1, CT2									
24682JN ^{7,8}	AV1, BX1, AS2, BT2, CX1, CT2									
22962A	AV1, BX1, AS2, BT2, CX1, CT2									
22962JN ^{7,8}	AV1, BX1, AS2, BT2, CX1, CT2									
26548	AV1, BX1, AS2, BT2, CX1, CT2	AV1, CX1, AS2, CT2								
Approve Temperatu	d Sprinkler re Rating Key	Арр	roved Cover Plate Asser	nbly Finish	nes Key⁵	Appr	oved Cove Finishes K	er Plate Iey		
Imperature Rating KeyFinishes KeyA = 155 °F (68 °C)S = 139 °F (59 °C) Stainless steel covers (23193, 23455, 23183, and 23473)1 = Polished Chrome, Brushed Chrome, Bright Brass, Antique Brass, Brushed Brass, V = 139 °F (59 °C) covers (23190, 23447, 23174, 23463, 23179, and 23482)1 = Polished Chrome, Brushed Chrome, Brushed Chrome, Brushed Chrome, Brass, Brushed Brass, Brushed Chrome, Brass, Brushed Brass, Brushed Chrome, Brass, Brushed Brass, Brushed Copper, Painted ⁶ White, Painted ⁶ Black 2 = Stainless Steel										
			Footnotes							
 Part number shown is the base part number. For complete part number, refer to current Viking price list schedule. Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0. This chart shows the listings and approvals available at the time of printing. Other approvals may be in process. Check with the manufacturer for any additional approvals. Listed by Underwriter's Laboratories for use in the U.S. and Canada. The 139 °F (59 °C) covers have an orange label. The 165 °F (74 °C) covers have a white label. Other paint colors are available on request with the same listings as the standard paint colors. Listings and approvals apply for any paint manufacturer. Contact Viking 										
7. cULus Listed as	corrosion-resistant.									

9. Refer to the Cleanroom Sprinkler Cover Assembly technical data sheet for Viking's UL Listed cover plates with built-in gaskets.

NOTE: Custom colors are indicated on a label inside the cover assembly. Refer to Figure 2.

STANDARD AND QUICK RESPONSE CONCEALED PENDENT SPRINKLER VK4621 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

DESIGN CRITERIA - UL (Also refer to Approval Chart)

cULus Listing Requirements:

Concealed Pendent Sprinkler VK4621 is cULus Listed as quick response for installation in accordance with the latest edition of NFPA 13 for standard coverage pendent spray sprinklers as indicated below.

- For hazard occupancies up to and including Ordinary Hazard, Group II.
- Protection areas and maximum spacing shall be in accordance with the tables provided in NFPA 13. Maximum spacing allowed is 15 ft. (4.6 m).
- Minimum spacing allowed is 6 ft. (1.8 m) unless baffles are installed in accordance with NFPA 13.
- Minimum distance from walls is 4 in. (102 mm).
- Maximum distance from walls shall be no more than one-half of the allowable distance between sprinklers. The distance shall be measured perpendicular to the wall.
- The sprinkler obstruction rules contained in NFPA 13 for standard coverage pendent spray sprinklers must be followed.

NOTE: Concealed sprinklers must be installed in neutral or negative pressure plenums only.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

DESIGN CRITERIA - FM

(Also refer to Approval Chart)

FM Approval Requirements:

Viking Concealed Pendent Sprinkler VK4621 is FM Approved as a standard response **Non-Storage** concealed pendent sprinkler as indicated in the FM Approval Guide. For specific application and installation requirements, reference the latest applicable FM Loss Prevention Data Sheets (including Data Sheet 2-0). FM Global Loss Prevention Data Sheets contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.

NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

STANDARD AND QUICK RESPONSE CONCEALED PENDENT SPRINKLER VK4621 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

Figure 1: Installation Wrench

STANDARD AND QUICK RESPONSE CONCEALED PENDENT SPRINKLER VK4621 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

STANDARD AND QUICK RESPONSE CONCEALED PENDENT SPRINKLER VK4621 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

NOTICE: USE ONLY the designated sprinkler wrenches shown in this document. Permanent damage to the sprinkler assembly can occur if the proper wrench is not used. Other sprinkler wrenches available from Viking may fit into the sprinkler adapter cup; however, only the wrenches shown here are designed to properly install this sprinkler.

Step 1: Remove the protective cap.

Form No. F 092121

Step 2: Insert the wrench into the sprinkler adapter.

Step 3: Rotate the wrench slightly in either direction until the tines on the wrench (A) line up with the vent openings (B) on the adapter cup and lock into place. NOTE: A leak tight seal must be achieved. Turn the sprinkler clockwise 1 to 1-1/2 turns past finger-tight.

NOTE: Image is representative only. Actual product may vary. Figure 6: Using the Sprinkler Wrench

ULTRA SPRINKFLEX®

HB1 Series Hose Components
C. F. F.
- +, +, +, +, -]
REDUCING DROPS HOSES
WELDED INLET 💽 ELBOW 🔚 THREADED INLET 📰 GROOVED INLET
Standard Hose come assembled with 1" NPT threaded inlet and 7" reducing drop. Optional component sold separately in box of 20.

Hose lengths 28", 40", 48", 59", & 71" Hose Inlet Connections o Standard: 1" NPT threaded inlet o Optional: 1" cut groove Inlet 1" weld out for 1 - 1 ¹/₄" - 5" branch size. Hose Reducing Drops o Standard: Tall 7" reducing drop, ¹/₂" or ³/₄" o Optional: Short 4" reducing drop, ¹/₂" or ³/₄"

Elbow - Optional

Ultra SprinkFLEX[®] is an economical, versatile 1" hose solution for fire sprinkler system engineers, designers, and installers.

The three piece design is available with interchangeable components to create a flexible fire sprinkler hose solutions for all obstacles encountered in the field. Ultra SprinkFLEX hoses are available in 28", 40", 48", 59", and 71".

The 71" hose is designed to accept up to 12 bends for the longest length, eliminating the need to count or measure bends, leading to faster installs and inspections that lead to quicker occupancy.

Ultra SprinkFLEX® Feature and Benefits

- Fully braided three piece hose design
- Interchangeable components
- UL listed for tight 2-inch Bend Radius
- 71" hose designed to accept up to 12 bends
- High temperature silicone gasket design rated at 250° UL, 174° FM
- Threaded, groove, and weld inlet components for branch connection
- Accommodates pendant, semi-recessed, and concealed sprinkler heads
- SprinkFLEX[®] name provides unmatched quality and value

SprinkFLEX^{*} Flexible Sprinkler Connections

ULTRA SPRINKFLEX®

ULTRA	SPRIN	(FLEX - 1	' INTERNA	L DIAMETER	R (I.D.)	HB1 H	OSE	SERIES	& CC	OMPONENTS	6 (UL/FN	/1)	
MODEL	INLET SIZE	OUTLET ORIFICE SIZE	ASSEMBLY	BRAIDED HOSE	MINIMU Rai	MINIMUM BEND RADIUS		MAX NUMBER OF 90 BENDS		ALENT LENGTH OF 1in. AETER SCHEDULE 40 PIPE FT (m)	MAX RATED WORKING PRESSURE		
NUMBER	CM	(INCHES) CM	LENGTH [L1] INCHES (mm)	(L2)	FM in. (mm)	UL in.(mm)	UL	FM	(UL)	(FM)	UL PSI (KPA)	FM PSI (KPA)	
				1″ INTERNAL I	DIAMETER (I.D)	HOSE SERIES		_					
HB1-28-H			27 (700)	19.15 (486)		4 1 15 14.5 (4.4)							
HB1-40-H			40 (1000)	30.15 (766)			5	2	21	20.8 (6.3)			
HB1-48-H	1	¹ / ₂ (1.27)	48 (1200)	38.15 (969)	7 (203)	(50.8)	8	3	29	22.4 (6.8)	175 (1205)	175 (1205)	
HB1-59-H	_		59 (1500)	50.15 (1274)		(50.0)	10	3	45	31.4 (9.5)			
HB1-71-H ¹	_		71 (1800)	62.15 (1325)			12	4	57	36.3 (11.0)			
HB1-28-T			27 (700)	19.15 (486)			4	1	15	14.(4.3)			
HB1-40-T	-		40 (1000)	30.15 (766)	-		5	2	21	20.7 (6.3)			
HB1-48-T	1	³ /4 (1.90)	48 (1200)	38.15 (969)	7 (203)	² (50.8)	8	3	29	22.3 (6.7)	175 (1205)	175 (1205)	
HB1-59-T			59 (1500)	50.15 (1274)			10	3	45	31.3 (9.5)			
HB1-71-T1			71 (1800)	62.15 (1325)			12	4	57	36.2 (11.0)			
				1" INTERNAL DIAMET	er (I.d) hose	SERIES COMPO							
HB1-28			19 (486)				4	1	9	4.3 (1.3)			
HB1-40			30 (766)				5	2	15	10.4 (3.1)			
HB1-48	1	N/A	38 (969)		7 (203)	2 (50.8)	8	3	23	12.2 (3.7)	175 (1205)	175 (1205)	
HB1-59			50 (1274)				10	3	40	21.2 (6.4)			
HB1-71			62 (1579)				12	4	57	26.1 (7.9)			
HB1C-ELB1		1 (25.4)	3.15 (80)	-					2	4 (1.2)			
HB1C-SHDRP-H		¹ / ₂ (1.27)	4.3 (110)						5	8.4 (2.5)			
HB1C-SHDRP-T	_	³ / ₄ (1.90)	4.3 (110)	N/A					5	8.2 (2.4)			
HB1C-LDRP-H		¹ / ₂ (1.27)	7.25 (184)	-					6	9.2 (2.8)			
HB1C-LDRP-T]″	³ / ₄ (1.90)	7.25 (184)	-	N/A	N/A	N/A	N/A	6	9.1 (2.7)	175 (1205)	175 (1205)	
HB1C-XLDRP-H		1/2 (1.27)	13 (330)	-					6	11.4 (3.4)		175 (1265)	
HB1C-XLDRP-T ¹	4	3/4(1.90)	13 (330)	-					6	11.2 (3.4)			
HB1C-WELD INLT	_	1 (25.4)	3 (106)							0	0 (0)		
HB1C-NIPPLE INLT	_	1 (25.4)	3 (106)	-					0	1 (0.3)			
HB1C-GR INLT		1 (25.4)	3 (106)							1 (0.3)			

¹ NOT EVALUATED BY UL.

Our SprinkFLEX flexible sprinkler hose fitting are UL approved for limited flexibility and intended to use for direct connection to fire sprinkler in wet / dry systems in accordance with NFPA 13, 13D and 13R. Our SprinkFLEX flexible sprinkler hose fitting can be installed for use in ceilings with grids which meets ASTM C635 and ASTM C636 referenced by IBC, and is approved for use in standard intermediate and heavy duty structural classification.

Determine the place where the sprinkler head will be located. The standard bracket IPT24BKT1 is 24 inches (600mm) long and shall be mounted on the 24 inch (600mm) ceiling grid. The long bracket IPT48BKT1 is 48 inches long (1200mm) long and shall be mounted on the 48 inch (1200mm) ceiling grid. The sprinkler should be located as close as possible to the center of the distance between ceiling grids (if necessary).

2 Locate the center of the ceiling tile. Screw 1" offset from the center for the true center of the title installation. Insert one bracket leg at a time, applying a downward pressure on the bracket leg and T-bar. Secure selfdrilling screw using a phillips head drive. Place the second screw leg on the T-bar and repeat the process. See Fig 1.

Separate inlet component (if necessary) from the flexible hose and attach the inlet component onto the branch line. Make sure that the arrow is in the appropriate direction of flow to the sprinkler. For threaded connections use pipe sealant and/or Teflon tape the connection to the branch line. For groove coupling installation please refer to the manufacturing installation instructions See Fig. 2. Attach one end of the flexible hose on to the inlet component and tighten the slip nut to hand tight plus ¹/₂ turn (equivalent to 15 ft-LBS.) Do not twist the flexible hose. See Fig. 3.

A Manoeuver the flexible sprinkler drop from branch to the IPT bracket. Maneuver the flexible sprinkler drop from branch to the IPT bracket. Review that the hose length, number of bends, and bend radius are applicable for installation per UL, FM, & NFPA guidelines. (See corresponding hose technical data sheet). The tube arc should not be twisted and arc should be as large and smooth as possible. FLEXIBLE HOSES ARE NOT TO BE INSTALLED STRAIGHT (NO BENDS).

Note: The $7/s^{\circ}$ HB & HN series hose should not be bent within 2 $1/s^{\circ}$ inches (64 mm) of the connection nut at both ends.

The IPT bracket has an open hub for ease of installation. Open the hinge apparatus by turning the locking shaft ¼ turn. Slide the flexible hose drop into the hub.Ensure the drop is vertical and has is not applying a substantial moment on the bracket causing sprinkler head misalignment. See Fig. 4.

6 Latch the hinge door closed and adjust the sprinkler drop for desired ceiling height. Tighten the set screw to 130in-lbs (hand tight plus ³/₄ turn. See Fig 5.

Ceiling tile Installation- The flexible sprinkler drop system with IPT bracket is able to be installed prior to the ceiling tile installation, preventing the need for sprinkler contractor tile adjustment. For ease of tile installation, cut the largest sprinkler hole recommended by sprinkler head manufacturer. The largest hole that is still covered by the sprinkler escutcheon allows for an easier install. Angle the tile at a 45 degree and push the tile through the hole and up above the ceiling T-bar, maneuver the tile and allow it to drop in the proper location. (Fig. 6)

Install desired Sprinkler head, per the Sprinkler head manufacturers installation instructions.

🛆 WARNING

- Read and understand all instructions before attempting to install any SprinkFLEX[®] products.
- Wear safety glasses, hardhat, and foot protection during installation.
- These installation instructions are intended for an experienced, trained installer.
- The user must understand the purpose of these products, common industry standards for safety, and the potential consequences of improper product installation.
- De-pressurize the system before performing maintenance on the flexible hose assembly.
- Failure to follow these installation instructions could cause improper sprinkler operation, resulting in serious personal injury and/or property damage. Installation for ASTM C635 metal ceiling suspension systems installed in accordance with ASTM C636 standards.

7/8" ID SPRINKFLEX HOSE (UL & FM) FRICTION LOSS DATA & SPECIFICATIONS												
MODEL	INLET SIZE	OUTLET ORIFICE	HOSE ASSEMBLY	MINIMI RA	JM BEND DIUS	MAX NU 90° E	MBER OF BENDS	EQUIVALE SCI	NT LENGTH OF 1 in HEDULE 40 PIPE F	n. DIAMETER T (m)	MAX RATED WO	RKING PRESSURE
NUMBER	CM	(INCHES) CM	INCHES (mm)	FM in. (mm)	UL in. (mm)	UL	FM	(UL)	(FM) 5.6 k-factor	(FM) 8.0 k-factor	UL PSI (KPA)	FM PSI (KPA)
				1" INTERNAL	. DIAMETER (I.C)) HOSE SER	IES					
HB28H-7			27 (700)			2	1	28	18.6 (5.7)	-		
HB40H-7			40 (1000)			3	1	52	24.6 (7.5)	-		
HB48H-7	1	1/2 (1.27)	48 (1200)	(203)	3 (76.2)	3	3	64	28.5 (8.6)	-	200 (1379)	175 (1205)
HB59H-7]		59 (1500)			3	3	72	34.4 (10.4)	-		
HB71H-7			71 (1800)			3	4	94	40.4 (12.3)	-		
HB28T-7			27 (700)			2	1	28	-	18.8 (5.7)		
HB40T-7	1		40 (1000)			3	1	52	-	24.8 (7.6)		
HB48T-7	1	3/4 (1.90)	48 (1200)	8 (203)	3 (76.2)	3	3	64	-	28.7 (8.7)	200 (1379)	175 (1205)
HB59T-7	1		59 (1500)	1		3	3	72	-	34.6 (10.5)		
HB71T-7			71 (1800)			3	4	94	-	40.6 (12.4)		
HN28H-7			27 (700)			2	-	28	-	-		
HN40H-7	1		40 (1000)	1		3	-	52	-	-		
HN48H-7	1	1/2 (1.27)	48 (1200)	.	3 (3	-	64	-	-	200 (1379)	
HN59H-7]		59 (1500)]	, 0.2,	3	-	72	-	-		
HN71H-7			71 (1800)			3	-	94	-	-		
HN28T-7			27 (700)			2	-	28	-	-		
HN40T-7	1		40 (1000)			3	-	52	-	-		
HN48T-7	1	3/4 (1.90)	48 (1200)	-	3 (76.2)	3	-	64	-	-	200 (1379)	-
HN59T-7]		59 (1500)		(70.2)	3	-	72	-	-		
HN71T-7			71 (1800)			3	-	94	-	-		
HBE28H-6 & HBE28H-7			27 (700)			2	1	33	20.6 (6.3)	-		
HBE40H-6 & HBE40H-7]		40 (1000)]		3	1	56	26.6 (8.1)	-		
HBE48H-6 & HBE48H-7	1	1/2 (1.27)	48 (1200)	8 (203)	3 (76.2)	3	3	67	30.5 (9.3)	-	-	175 (1205)
HBE59H-6 & HBE59H-7			59 (1500)			3	3	76	36.4 (11.1)	-		
HBE71H-6 & HBE71H-7			71 (1800)			3	4	97	42.4 (12.9)	-		
HBE28T-6 & HBE28T-7			27 (700)			2	1	33	-	20.8 (6.3)		
HBE40T-6 & HBE40T-7			40 (1000)			3	1	56	-	26.8 (8.2)		
HBE48T-6 & HBE48T-7	1	3/4 (1.90)	48 (1200)	8 (203)	3 (76.2)	3	3	67	-	30.7 (9.4)		175 (1205)
HBE59T-6 & HBE59T-7			59 (1500)	_		3	3	76	-	36.6 (11.2)		
HBE71T-6 & HBE71T-7			71 (1800)			3	4	97	-	42.6 (13.0)		
HNE28H-6 & HNE28H-7			27 (700)			2	-	33	-	-		
HNE40H-6 & HNE40H-7			40 (1000)			3	-	56	-	-		
HNE48H-6 & HNE48H-7	1	1/2 (1.27)	48 (1200)	-	3 (76.2)	3	-	67	-	-		175 (1205)
HNE59H-6 & HNE59H-7	-		59 (1500)	-		3	-	76	-	-		
HNE71H-6 & HNE71H-7			71 (1800)			3	-	97	-	-		
HNE28T-6 & HNE28T-7			27 (700)			2	-	33	-	-		
HNE40T-6 & HNE40T-7			40 (1000)			3	-	56	-	-		
HNE48T-6 & HNE48T-7	1	3/4 (1.90)	48 (1200)	-	3 (76.2)	3	-	67	-	-	-	175 (1205)
HNE59T-6 & HNE59T-7			59 (1500)			3	-	76	-	-		
HNE71T-6 & HNE71T-7			71 (1800)			3	-	97	-			

NOTES:

NOTES. * MODEL NUMBERS: THE FIRST TWO LETTERS "HN" DESIGNATES SPRINKFLEX UNBRAIDED HOSE SERIES. THE FIRST TWO LETTERS "HB" DESIGNATES SPRINKFLEX BRAIDED HOSE SERIES, THE "E" DESIGNATES ELBOW. THE "H" DESIGNATES 1/4" OUTLET HOSE SERIES. THE "T" DESIGNATES 1/4" OUTLET HOSE SERIES, THE "E" DESIGNATES ALE ROUCER. * MAX AMBIENT TEMPERATURE RATING ON ALL MODEL NUMBERS ARE 300"F (1 48"C). * EQUIVALENT LENGTHS ARE SHOWN WITH MAXIMUM NUMBER OF 90 DEGREE BENDS AT THE MINIMUM BEND-RADIUS PER AGENCY. 2- 45 DEGREE OR 3-30 DEGREE BENDS EQUAL 1-90 DEGREE BEND.

DIFFERENT VALUES WERE OBTAINED BY FM AND UL DUE TO THE DIFFERENCE IN MINIMUM BEND RADIUS, TESTING PROTOCOL AND CALCULATION METHODS.

PLEASE SEE INDIVIDUAL STANDARDS FOR MORE INFORMATION RELATIVE TO FRICTION LOSS (EQUIVALENT LENGTH OF PIPE). * FM EQUIVALENT LENGTH CALCULATION INCLUDES SPRINKLER HEAD FRICTION LOSS.

* SEE LISTING(S) APPROVAL AGENCY FOR THE LATEST APPROVAL DETAILS.

ULTRA SPRINKFLEX®

-	HB1 FRICTION LOSS TABLE (FM)									
HOSE ASSEMBLIES	INLET SIZE (INCHES)	OUTLET ORIFICE SIZE (INCHES)	HOSE ASSEMBLY LENGTH IN. (mm)	MINIMUM BEND RADIUS IN. (mm)	NUMBER OF 90° Bends	EQUIVALENT LENGTH OF 1 IN. Schedule 40 Pipe, FT. (m)	RATED WORKING PRESSURE PSI (KPA)			
HB1-28H			28 (700)	7 (180)	1	14.5 (4.4)				
HB1-40H			40 (1000)	7 (180)	2	20.8 (6.3)				
HB1-48H	1	1/2	48 (1200)	7 (180)	3	22.4 (6.8)	175			
HB1-59H			59 (1500)	7 (180)	3	31.4 (9.5)	(1200)			
HB1-71H			71 (1800)	7 (180)	4	36.3 (11.0)				
HB1-28T			28 (700)	7 (180)	1	14.4 (4.3)				
HB1-40T			40 (1000)	7 (180)	2	20.7 (6.3)				
HB1-48T	1	3/4	48 (1200)	7 (180)	3	22.3 (6.7)	175			
HB1-59T			59 (1500)	7 (180)	3	31.3 (9.5)				
HB1-71T			71 (1800)	7 (180)	4	36.2 (11.0)				
HOSE COMPONENTS	INLET SIZE (INCHES)	OUTLET ORIFICE SIZE (INCHES)	DESCRIPTION	MINIMUM BEND RADIUS IN. (mm)	NUMBER OF 90° Bends	EQUIVALENT LENGTH OF 1 IN. Schedule 40 pipe, FT. (m)	RATED WORKING PRESSURE PSI (KPA)			
HB1-28			28" HOSE BODY	7 (180)	1	4.3 (1.3)				
HB1-40			40" HOSE BODY	7 (180)	2	10.4 (3.1)				
HB1-48	N/A	N/A	48" HOSE BODY	7 (180)	3	12.2 (3.7)	175 (1205)			
HB1-59]			59" HOSE BODY	7 (180)	3	21.2 (6.4)]		
HB1-71			71" HOSE BODY	7 (180)	4	26.1 (7.9)				
HB1C-ELB		N/A	90 REDUCER			4 (1.2)				
HB1C-SHDRP-H		1/2	SHORT REDUCER 1/2"			8.4 (2.5)				
HB1C-SHDRP-T		3/4	SHORT REDUCER 34"			8.2 (2.4)				
HB1C-LDRP-H	N/A	1/2	STANDARD REDUCER ½"			9.2 (2.8)	175			
HB1C-LDRP-T		3/4	STANDARD REDUCER 3/4"			9.1 (2.7)	(1200)			
HB1C-XLDRP-H	1	1/2	LONG REDUCER 1/2"			11.4 (3.4)				
HB1C-XLDRP-T	1	3/4	LONG REDUCER 34"			11.2 (3.4)				
HB1C-HANGER		N/A	HANGER CONNECTION			1 (0.3)				
HB1C-WELD INLT	NI ZA	N/A	WELD INLET			0 (0)	175			
HB1C-NIPPLE INLT	N/A	N/A	THREAD INLET			1 (0.3)	(1205)			
HB1C-GR INLT		N/A	1" CUT GROOVE INLET			1 (0.3)]			

HB1 is a1 in. nominal dia. flexible metal sprinkler hose for providing a connection to automatic sprinklers in commercial ceilings. These flexible sprinkler hose models are available as a three piece style. The three piece style, the reducer and Inlet is threaded to the flexible hose body. Above is listed with standard flexible hose assembly and component level. Approval of the flexible sprinkler hose models listed above are limited for use in commercial suspended ceilings with ceilings manufactured by Anvil International, LLC.

- All fricton loss testing was conducted with no sprinkler head, K-factor
- All components were fricton loss tested seperately
- All components such as reducers, hose body and outlets can be combined to provide a total equivalent length value.

ULTRA SPRINKFLEX®

		HB1	FRICTION I	LOSS TABL	E (UL)	
HOSE ASSEMBLIES	INLET BY OUTLET (INCHES)	HOSE ASSEMBLY LENGTH IN. (mm)	MINIMUM BEND RADIUS IN. (mm)	MAX NUMBER Of 90° Bends	EQUIVALENT LENGTH OF 1 IN. SCHEDULE 40 PIPE FT. (m)	MAX RATED WORKING PRESSURE PSI (KPA)
HB1-28-SHDRP-H & HB1-GR-28-SHDRP-H	1x½	26.5	2 (51)	4	16	
HB1-40-SHDRP-H & HB1-GR-40-SHDRP-H	1x½	37.5	2 (51)	5	21	1
HB1-48-SHDRP-H & HB1-GR-48-SHDRP-H	1x½	45.5	2 (51)	8	34	175
HB1-59-SHDRP-H & HB1-GR-59-SHDRP-H	1x½	57.5	2 (51)	10	45	(1205)
HB1-71-SHDRP-H & HB1-GR-71-SHDRP-H	1x½	69.5	2 (51)	12	55	
HB1-28-SHDRP-T & HB1-GR-28-SHDRP-T	1 x 3⁄4	26.5	2 (51)	4	15	
HB1-40-SHDRP-T & HB1-GR-40-SHDRP-T	1 x 3⁄4	37.5	2 (51)	5	23	
HB1-48-SHDRP-T & HB1-GR-48-SHDRP-T	1x¾	45.5	2 (51)	8	34	175
HB1-59-SHDRP-T & HB1-GR-59-SHDRP-T	1 x 3⁄4	57.5	2 (51)	10	48]
HB1-71-SHDRP-T & HB1-GR-71-SHDRP-T	1 x 3⁄4	69.5	2 (51)	12	55	
HB1-28-LDRP-H & HB1-GR-28-LDRP-H	1x½	29.5	2 (51)	4	16	
HB1-40-LDRP-H & HB1-GR-40-LDRP-H	1x½	40.5	2 (51)	5	20	
HB1-48-LDRP-H & HB1-GR-48-LDRP-H	1x½	48.5	2 (51)	8	34	175 (1205)
HB1-59-LDRP-H & HB1-GR-59-LDRP-H	1x½	60.5	2 (51)	10	44	
HB1-71-LDRP-H & HB1-GR-71-LDRP-H	1x½	72.5	2 (51)	12	56	
HB1-28-LDRP-T & HB1-GR-28-LDRP-T	1x¾	29.5	2 (51)	4	15	
HB1-40-LDRP-T & HB1-GR-40-LDRP-T	1 x ¾	40.5	2 (51)	5	23	
HB1-48-LDRP-T & HB1-GR-48-LDRP-T	1 x ¾	48.5	2 (51)	8	34	175
HB1-59-LDRP-T & HB1-GR-59-LDRP-T	1 x 3⁄4	60.5	2 (51)	10	48]
HB1-71-LDRP-T & HB1-GR-71-LDRP-T	1 x ¾	72.5	2 (51)	12	56	
HB1-28-XLDRP-H & HB1-GR-28-XLDRP-H	1x½	35.2	2 (51)	4	16	
HB1-40-XLDRP-H & HB1-GR-40-XLDRP-H	1x½	46.2	2 (51)	5	23	175
HB1-48-XLDRP-H & HB1-GR-48-XLDRP-H	1 x½	54.1	2 (51)	8	35	(1205)
HB1-59-XLDRP-H & HB1-GR-59-XLDRP-H	1x½	66.2	2 (51)	10	48	
HB1-28-XLDRP-T & HB1-GR-28-XLDRP-T	1 x 3⁄4	35.2	2 (51)	4	15	
HB1-40-XLDRP-T & HB1-GR-40-XLDRP-T	1 x 3⁄4	46.2	2 (51)	5	23	175 (1205)
HB1-48-XLDRP-T & HB1-GR-48-XLDRP-T	1 x 3⁄4	54.1	2 (51)	8	35	175 (1205)
HB1-59-XLDRP-T & HB1-GR-59-XLDRP-T	1 x 3⁄4	66.2	2 (51)	10	48	
HB1CE-28-SHDRP-H & HB1CE-GR-28-SHDRP-H	1x½	30.5	2 (51)	4	18	
HB1CE-40-SHDRP-H & HB1CE-GR-40-SHDRP-H	1x½	41.5	2 (51)	5	23	
HB1CE-48-SHDRP-H & HB1CE-GR-48-SHDRP-H	1x½	49.5	2 (51)	8	36	175 (1205)
HB1CE-59-SHDRP-H & HB1CE-GR-59-SHDRP-H	1x½	61.5	2 (51)	10	48	
HB1CE-71-SHDRP-H & HB1CE-GR-71-SHDRP-H	1x½	73.5	2 (51)	12	57	
HB1CE-28-SHDRP-T & HB1CE-GR-28-SHDRP-T	1 x 3⁄4	30.5	2 (51)	4	17	
HB1CE-40-SHDRP-T & HB1CE-GR-40-SHDRP-T	1 x 3⁄4	41.5	2 (51)	5	25	
HB1CE-48-SHDRP-T & HB1CE-GR-48-SHDRP-T	1 x3⁄4	49.5	2 (51)	8	36	175 (1205)
HB1CE-59-SHDRP-T & HB1CE-GR-59-SHDRP-T	1 x ¾	61.5	2 (51)	10	49	
HB1CE-71-SHDRP-T & HB1CE-GR-71-SHDRP-T	1x¾	73.5	2 (51)	12	57	
HB1CE-28-LDRP-H & HB1CE-GR-28-LDRP-H	1 x1/2	33.5	2 (51)	4	18	
HB1CE-40-LDRP-H & HB1CE-GR-40-LDRP-H	1x½	44.5	2 (51)	5	22	175
HB1CE-48-LDRP-H & HB1CE-GR-48-LDRP-H	1x½	52.5	2 (51)	8	36	(1205)
HB1CE-59-LDRP-H & HB1CE-GR-59-LDRP-H	1x½	64.5	2 (51)	10	46	

ULTRA SPRINKFLEX®

HB1 FRICTION LOSS TABLE (UL) CONTINUTED											
HOSE ASSEMBLIES	INLET BY OUTLET (INCHES)	HOSE ASSEMBLY LENGTH IN. (mm)	MINIMUM BEND RADIUS IN. (mm)	MAX NUMBER OF 90° BENDS	EQUIVALENT LENGTH OF 1 IN. SCHEDULE 40 PIPE FT. (m)	MAX RATED WORKING PRESSURE PSI (KPA)					
HB1CE-28-LDRP-T & HB1CE-GR-28-LDRP-T	1x¾	33.5	2 (51)	4	17						
HB1CE-40-LDRP-T & HB1CE-GR-40-LDRP-T	1x¾	44.5	2 (51) 2 (51)	5	25	175 (1205)					
HB1CE-48-LDRP-T & HB1CE-GR-48-LDRP-T	1x¾	52.5		8	36						
HB1CE-59-LDRP-T & HB1CE-GR-59-LDRP-T	1x¾	64.5	2 (51)	10	49						

- Extra-long reducer, 13" reducers=, with HB1-71 length hose has not been evaluated by UL
- HB1Series is rated to be used in temperature of 225°F UL and 175°F FM.

HOSE SERIES CONFIGURATION

ULTRA SPRINKFLEX®

SprinkFLEX

IMPORTANT INSTALLATION INFORMATION

- SprinkFLEX products must be installed according to current, applicable National Fire Protection Association (NFPA 13, 13D, 13R, etc.) standards or equivalent standards for wet, dry, or pre-action systems. Deviations from these standards or alterations to SprinkFLEX products or sprinklers will void any warrant. In addition, installations must meet provision of the local authority having jurisdiction and local codes, as applicable.
- For suspended ceiling applications, the ends of the SprinkFLEX Bracket must be installed to the rails of an ASTM C635 ceiling installed in accordance with ASTM C636 standards.
- SprinkFLEX Stainless Steel Sprinkler Fittings and/ or the SprinkFLEX Bracket must not be intermixed with other manufacturer's products.
- Refer to the specific product submittal for applications and listing information. These submittals are located on the website at www.anvilintl.com.
- Size the piping system to provide the minimum required flow rate for the sprinkler system.
- Flush the system to remove foreign material. Continue to flush the system until water runs clear.
- DO NOT install sprinkler system piping through heating ducts.
- DO NOT connect sprinkler system piping to domestic hot water systems.
- DO NOT install sprinklers where they will be exposed to temperatures that exceed the maximum ambient temperature rating for the sprinkler.

- The flexible stainless steel hose should not be bent or fluctuated up-and-down or side-to-side when it is pressurized for test.
- The HB & HN stainless steel hose should not be bent within 2½ inches/64 mm of the connection nut at both ends.
- Flexible stainless steel hose and fittings have limited flexibility and are intended only to be installed with bends at their respective minimum bend radii.
- Protect wet piping systems for freezing temperatures.
- If construction is altered, refer to applicable standards to determine if additional sprinklers are required.
- The owner is responsible for maintaining the fire protection system in proper operating condition.
- For minimum maintenance and inspection requirements, refer to NFPA 25 and the NFPA pamphlet that describes the care and maintenance of sprinkler systems. In addition, the authority having jurisdiction may have additional maintenance, testing, and inspection requirements that must be followed.
- IPT48BKT1 has not been evaluated by UL.
- HB1 71 with extra long reducing drop has not been evaluated by UL.
- HB1 Elbow with extra long reducing drop has not been evaluated by UL.

Features

- Listed for indoor and outdoor use
- · Outdoor use requires BBK-1 or HC-BB weatherproof back box
- Indoor use mounts directly to standard 4" box
- Low current draw
- High dB output
- AC and DC models
- DC models are motor driven, polarized, and have built in transient protection for supervised alarm circuits
- Available in 6", 8" and 10" sizes

* ULC on MBA-DC Only

APPROVED

Description

These vibrating type bells are designed for use as fire or general signaling devices. They have low power consumption and high decibel ratings. The unit mounts on a standard 4" (101mm) square electrical box for indoor use or on a model BBK-1 or HC-BB weatherproof backbox for outdoor applications. Weatherproof backbox model BBK-1 or HC-BB, Stock No. 1500001.

Notes

- Minimum dB ratings are calculated from integrated sound pressure measurements made at Underwriters Laboratories as specified in UL Standard 464. UL temperature range is -30° to 150°F (-34° to 66°C)
- 2. Typical dB ratings are calculated from measurements made with a conventional sound level meter and are indicative of output levels in an actual installation.
- 3. ULC only applies to MBA DC bells.

Size inches (mm)	Voltage	Model Number	Stock Number	Current (Max.)	Typical dB at 10 ft. (3m) (2)	Minimum dB at 10 ft. (3m) (1)				
6 (150)	12VDC	MBA-6-12	1750070	.12A	85	76				
8 (200)	12VDC	MBA-8-12	1750080	.12A	90	77				
10 (250)	12VDC	MBA-10-12	1750060	.12A	92	78				
<mark>6 (150)</mark>	24VDC	MBA-6-24	1750100	.06A	87	77				
8 (200)	24VDC	MBA-8-24	1750110	.06A	91	79				
10 (250)	24VDC	MBA-10-24	1750090	.06A	94	80				
6 (150)	24VAC	PBA246	1806024*	.17A	91	78				
8 (200)	24VAC	PBA248	1808024*	.17A	94	77				
10 (250)	24VAC	PBA2410	1810024*	.17A	94	78				
6 (150)	120VAC	PBA1206	1806120*	.05A	92	83				
8 (200)	120VAC	PBA1208	1808120*	.05A	99	84				
10 (250)	120VAC	PBA12010	1810120*	.05A	99	86				
All DC hells are polarized and have built-in transient protection * Does not have ULC listing										

Technical Specifications

Dimensions	6" (150mm), 8" (200mm) and 10" (250mm)
Enclosure	Cover: Steel Finish: Red Powder Coat Base: non-corrosive composite material All parts have corrosion resistant finishes Model BBK-1 or HC-BB weatherproof backbox (optional)
Voltages Available	24VAC 120VAC 12VDC (10.2 to 15.6) Polarized 24VDC (20.4 to 31.2) Polarized
Environmental Limitations	Indoor or outdoor use (See Note 1) -40° to 150°F (-40° to 66°C) (Outdoor use requires weatherproof backbox.)
Termination	AC Bells - 4 No. 18 AWG stranded wires DC Bells - Terminal strip
Service Use	NFPA 13, 72, local AHJ

*Specifications subject to change without notice.

A WARNING

- Installation must be performed by qualified personnel and in accordance with all
 national and local codes and ordinances.
- Shock hazard. Disconnect power source before servicing. Serious injury or death could result.
- Risk of explosion. Not for use in hazardous locations. Serious injury or death could result.

In outdoor or wet installations, bell must be mounted with weatherproof backbox, BBK-1 or HC-BB. Standard electrical boxes will not provide a weatherproof enclosure. If the bell and/or assembly is exposed to moisture, it may fail or create an electrical hazard.

Potter Electric Signal Company, LLC

Phone: 800-325-3936

www.pottersignal.com

St. Louis, MO

Installation

The bell shall be installed in accordance with NFPA 13, 72, or local AHJ. The top of the device shall be no less than 90" AFF and not less than 6" below the ceiling.

- 1. Remove the gong.
- 2. Connect wiring (see Fig. 3).
- 3. Mount bell mechanism to backbox (bell mechanism must be mounted with the striker pointing down).
- 4. Reinstall the gong (be sure that the gong positioning pin, in the mechanism housing, is in the hole in the gong).
- 5. Test all bells for proper operation and observe that they can be heard where required (bells must be heard in all areas as designated by the authority having jurisdiction).

AWARNING

Failure to install striker down will prevent bell from ringing.

Bell Dimension Inches (mm)

Fig 1

Wiring Rear View

Fig 3

WHEN ELECTRICAL SUPERVISION IS REQUIRED USE IN AND OUT LEADS AS SHOWN.

NOTES:

- 1. OBSERVE POLARITY TO RING D.C. BELLS.
- 2. RED WIRES POSITIVE (+).
- 3. BLACK WIRES NEGATIVE (-).
- 4. EOL RESISTOR IS SUPPLIED BY FIRE ALARM CONTROL PANEL.

Weatherproof Backbox Dimensions Inches (mm)

MODEL BBK-1 OR HC-BB Fig 2

A.C. BELLS

WHEN ELECTRICAL SUPERVISION IS REQUIRED USE IN AND OUT LEADS AS SHOWN.

NOTES:

- 1. WHEN USING A.C. BELLS, TERMINATE EACH EXTRA WIRE SEPERATELY AFTER LAST BELL.
- 2. END-OF-LINE RESISTOR IS NOT REQUIRED ON AC BELLS .

VSR vane type waterflow alarm switch with retard

Specifications subject to change without notice.

Ordering Information											
Nominal	Pipe Size	Model	Part Number								
2"	DN50	VSR-2	1144402								
2 1/2"	DN65	VSR-2 1/2	1144425								
3"	DN80	VSR-3	1144403								
3 1/2"	-	VSR-3 1/2	1144435								
<mark>4"</mark>	DN100	VSR-4	1144404								
5"	-	VSR-5	1144405								
6"	DN150	VSR-6	1144406								
8"	DN200	VSR-8	1144408								

Optional: Cover Tamper Switch Kit, stock no. 0090148 **Replaceable Components:** Retard/Switch Assembly, stock no. 1029030

UL, CUL and CSFM Listed, FM Approved, LPCBApproved, For CE Marked (EN12259-5)/VdS Approved model use VSR-EU Service Pressure: 450 PSI (31 BAR) - UL

Flow Sensitivity Range for Signal:

-	
	4-10 GPM (15-38 LPM) - UL
Maximum Surge:	18 FPS (5.5 m/s)
Contact Ratings:	Two sets of SPDT (Form C)
	10.0 Amps at 125/250VAC
	2.0 Amps at 30VDC Resistive
	10 mAmps min. at 24VDC
Conduit Entrances:	Two knockouts provided for 1/2" conduit.
	Individual switch compartments suitable
	for dissimilar voltages.
Environmental Spec	ifications:
 NEMA 4/II 	254 Rated Enclosure suitable for indoor or

- outdoor use with factory installed gasket and die-cast housing when used with appropriate conduit fitting.
- Temperature Range: 40°F 120°F, (4.5°C 49°C) UL
- Non-corrosive sleeve factory installed in saddle.

Service Use:

Automatic Sprinkler	NFPA-13
One or two family dwelling	NFPA-13D
Residential occupancy up to four stories	NFPA-13R
National Fire Alarm Code	NFPA-72

- Installation must be performed by qualified personnel and in accordance with all national and local codes and ordinances.
- Shock hazard. Disconnect power source before servicing. Serious injury or death could result.
- Risk of explosion. Not for use in hazardous locations. Serious injury or death could result.

CAUTION

Waterflow switches that are monitoring wet pipe sprinkler systems shall not be used as the sole initiating device to discharge AFFF, deluge, or chemical suppression systems. Waterflow switches used for this application may result in unintended discharges caused by surges, trapped air, or short retard times.

Important: This document contains important information on the installation and operation of the VSR waterflow switches. Please read all instructions carefully before beginning installation. A copy of this document is required by NFPA 72 to be maintained on site.

General Information

The Model VSR is a vane type waterflow switch for use on wet sprinkler systems. It is UL Listed for use on a steel pipe; schedules 5 through 40, sizes 2" - 6" and is UL Listed and FM Approved for use on steel pipe; schedules 10 through 40, sizes 2" thru 8" (50 mm thru 200 mm). LPC approved sizes are 2" thru 8" (50 mm thru 200 mm). See Ordering Information chart.

The VSR may also be used as a sectional waterflow detector on large systems. The VSR contains two single pole, double throw, snap action switches and an adjustable, instantly recycling pneumatic retard. The switches are actuated when a flow of 10 GPM (38 LPM) or more occurs downstream of the device. The flow condition must exist for a period of time necessary to overcome the selected retard period.

Enclosure

The VSR switches and retard device are enclosed in a general purpose, die-cast housing. The cover is held in place with two tamper resistant screws which require a special key for removal. A field installable cover tamper switch is available as an option which may be used to indicate unauthorized removal of the cover. See bulletin number 5401103 for installation instructions of this switch.

Potter Electric Signal Company, LLC • St. Louis, MO • Phone: 866-956-1211/Canada 888-882-1833 • www.pottersignal.com

VSR VANE TYPE WATERFLOW ALARM SWITCH WITH RETARD

Installation (see Fig. 1)

These devices may be mounted on horizontal or vertical pipe. On horizontal pipe they shall be installed on the top side of the pipe where they will be accessible. The device should not be installed within 6" (15 cm) of a fitting which changes the direction of the waterflow or within 24" (60 cm) of a valve or drain.

NOTE: Do not leave cover off for an extended period of time.

Drain the system and drill a hole in the pipe using a hole saw in a slow speed drill (see Fig. 1). Clean the inside pipe of all growth or other material for a distance equal to the pipe diameter on either side of the hole. Roll the vane so that it may be inserted into the hole; do not bend or crease it. Insert the vane so that the arrow on the saddle points in the direction of the waterflow. Take care not to damage the non-corrosive bushing in the saddle. The bushing should fit inside the hole in the pipe. Install the saddle strap and tighten nuts alternately to required torque (see the chart in Fig. 1). The vane must not rub the inside of the pipe or bind in any way.

A CAUTION

Do not trim the paddle. Failure to follow these instructions may prevent the device from operating and will void the warranty. Do not obstruct or otherwise prevent the trip stem of the flow switch from moving when water flows as this could damage the flow switch and prevent an alarm. If an alarm is not desired, a qualified technician should disable the alarm system.

Compatible Pipe/ Installation Requirements																		
Model	Nomi	nal Pipe	Nominal Pipe		nal Pipe Pipe Wall Thickness									Hole Siz	U-Bolt Nuts			
	Size O.D.		D.	Lightwall		Schedule 10 (UL)		Schedule 40 (UL)		BS-1387 (LPC)		DN (VDS)				Torque		
	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	ft-lb	n-m
VSR-2	2	DN50	2.375	60.3	.065	1.651	0.109	2.77	0.154	3.91	0.142	3.6	0.091	2.3	1.05 / 105/	33.0 ± 2.0	20	27
VSR-2 1/2	2.5	-	2.875	73.0	.084	2.134	0.120	3.05	0.203	5.16	-	-	-	-	1.25 + .125/-			
VSR-2 1/2	-	DN65	3.000	76.1	-	-	-	-	-	-	0.142	3.6	0.102	2.6	.002			
VSR-3	3	DN80	3.500	88.9	.083	2.108	0.120	3.05	0.216	5.49	0.157	4.0	0.114	2.9				
VSR-3 1/2	3.5	-	4.000	101.6	-	-	0.120	3.05	0.226	5.74	-	-	-	-				
VSR-4	4	DN100	4.500	114.3	.084	2.134	0.120	3.05	0.237	6.02	0.177	4.5	0.126	3.2	2.00 + 125	50.8 + 2.0		
VSR-5	5	-	5.563	141.3	-	-	0.134	3.40	0.258	6.55	-	-	-	-	2.00 ± .125	50.8 ± 2.0		
VSR-6	6	DN150	6.625	168.3	.115	2.921	0.134	3.40	0.280	7.11	0.197	5.0	0.157	4.0]			
VSR-8	8	DN200	8.625	219.1	-	-	0.148	3.76	0.322	8.18	0.248	6.3	0.177	4.5				
NOTE · For	aonnar	or plastic	nino uc	o Moda	IVCD	CE					•							

PRINTED IN USA

VSR vane type waterflow alarm switch with retard

Notes:

- 1. The Model VSR has two switches, one can be used to operate a central station, proprietary or remote signaling unit, while the other contact is used to operate a local audible or visual annunciator.
- For supervised circuits, see "Switch Terminal Connections" drawing and warning note (Fig. 4).

Testing

The frequency of inspection and testing for the Model VSR and its associated protective monitoring system shall be in accordance with applicable NFPA Codes and Standards and/or the authority having jurisdiction (manufacturer recommends quarterly or more frequently).

If provided, the inspector's test valve shall always be used for test purposes. If there are no provisions for testing the operation of the flow detection device on the system, application of the VSR is not recommended or advisable.

A minimum flow of 10 GPM (38 LPM) is required to activate this device.

VSR VANE TYPE WATERFLOW ALARM SWITCH WITH RETARD

Maintenance

Inspect detectors monthly. If leaks are found, replace the detector. The VSR waterflow switch should provide years of trouble-free service. The retard and switch assembly are easily field replaceable. In the unlikely event that either component does not perform properly, please order replacement retard switch assembly stock #1029030 (see Fig. 8). There is no maintenance required, only periodic testing and inspection.

Retard/Switch Assembly Replacement (See Fig. 8)

NOTICE

The Retard/Switch Assembly is field-replaceable without draining the system or removing the waterflow switch from the pipe

- Make sure the fire alarm zone or circuit connected to the waterflow switch is bypassed or otherwise taken out of service. 1.
- Disconnect the power source for local bell (if applicable). 2.
- Identify and remove all wires from the waterflow switch. 3.
- Remove the (2) mounting screws holding retard/switch assembly to the base. Do not remove the (2) retard housing screws. 4.
- 5. Remove the retard assembly by lifting it straight up over the tripstem.
- 6. Install the new retard assembly. Make sure the locating pins on the retard/switch assembly fit into the locating pin bosses on the base.
- Re-install the (2) original mounting screws. 7.
- 8. Reconnect all wires. Perform a flow test and place the system back in service.

Removal of Waterflow Switch

- To prevent accidental water damage, all control valves should be shut tight and the system completely drained before waterflow detectors are removed or replaced.
- Turn off electrical power to the detector, then disconnect wiring.
- Loosen nuts and remove U-bolts.
- Gently lift the saddle far enough to get your fingers under it. With your fingers, roll the vane so it will fit through the hole while continuing to lift the waterflow detector saddle.
- · Lift detector clear of pipe.