

O: 919-553-4021 | F: 919-553-2169 | www.afp-nc.com

Product Data & Hydraulic Calculations

Cape Fear MOB - TI

Date: November 27, 2023

Project Location: 225 Brightwater Drive Lillington, NC

Cape Fear MOB - TI EDW-1588

Product Data Submittal

Section 1 Sprinklers

Section 2 Pipe and Fittings

Section 3 Valves

Section 4 Electrical Components

Section 5 Pipe Hangers

Section 6 Specialties

Section 7 Hydraulic Calculations

11/27/2023 Page 2

Section 1 - Sprinklers

Series TY-FRB – 2.8, 4.2, 5.6, and 8.0 K-Factor Upright, Pendent, and Recessed Pendent Sprinklers Quick Response, Standard Coverage

General Description

The TYCO Series TY-FRB 2.8, 4.2, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers described in herein are quick response, standard coverage, decorative 3 mm glass bulb-type spray sprinklers. They are designed for use in light or ordinary hazard, commercial occupancies such as banks, hotels, and shopping malls.

The TY-FRB Recessed Pendent Sprinkler, where applicable, is intended for use in areas with a finished ceiling. This recessed pendent sprinkler uses one of the following Recessed Escutcheons:

- A two-piece Style 10 (1/2 in. NPT) or Style 40 (3/4 in. NPT) Recessed Escutcheon with 1/2 in. (12,7 mm) of recessed adjustment or up to 3/4 in. (19,1 mm) of total adjustment from the flush pendent position.
- A two-piece Style 20 (1/2 in. NPT) or Style 30 (3/4 in. NPT) Recessed Escutcheon with 1/4 in. (6,4 mm) of recessed adjustment or up to 1/2 in. (12,7 mm) of total adjustment from the flush pendent position.

The adjustment provided by the Recessed Escutcheon reduces the accuracy to which the fixed pipe drops to the sprinklers must be cut.

Corrosion-resistant coatings, where applicable, are utilized to extend the life of copper alloy sprinklers beyond what would be obtained when exposed

IMPORTANT

Refer to Technical Data Sheet TFP2300 for warnings pertaining to regulatory and health information.

Always refer to Technical Data Sheet TFP700 for the "INSTALLER WARNING" that provides cautions with respect to handling and installation of sprinkler systems and components. Improper handling and installation can permanently damage a sprinkler system or its components and cause the sprinkler to fail to operate in a fire situation or cause it to operate prematurely.

to corrosive atmospheres. Although corrosion-resistant coated sprinklers have passed the standard corrosion tests of the applicable approval agencies, the testing is not representative of all possible corrosive atmospheres. Consequently, it is recommended that the end user be consulted with respect to the suitability of these coatings for any given corrosive environment. The effects of ambient temperature, concentration of chemicals, and gas/ chemical velocity, should be considered, as a minimum, along with the corrosive nature of the chemical to which the sprinklers will be exposed.


An intermediate level version of the Series TY-FRB Pendent Sprinklers is detailed in Technical Data Sheet TFP356. Sprinkler Guards are detailed in Technical Data Sheet TFP780.

NOTICE

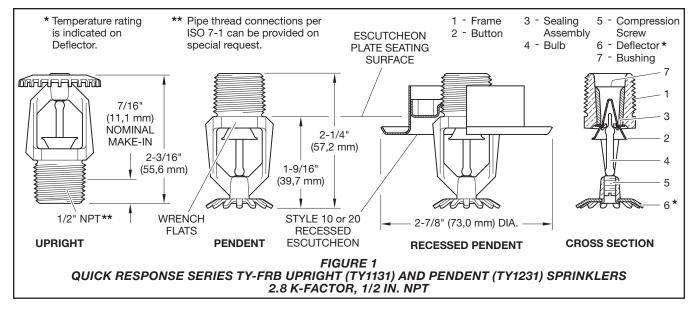
The Series TY-FRB 2.8, 4.2, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers described herein must be installed and maintained in compliance with this document and with the applicable standards of the National Fire Protection Association (NFPA), in addition to the standards of any authorities having jurisdiction. Failure to do so may impair the performance of these devices.

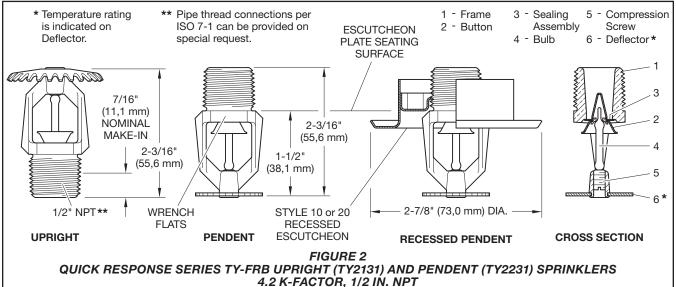
The owner is responsible for maintaining their fire protection system and devices in proper operating condition. The installing contractor or sprinkler manufacturer should be contacted with any questions.

NFPA 13 prohibits installation of 1/2 in. NPT sprinklers with K-factors greater than 5.6 in new construction. They are intended for retrofit in existing sprinkler systems only.

Sprinkler Identification Number (SIN)

TY1131 . . . Upright 2.8K, 1/2 in. NPT TY1231 . . Pendent 2.8K, 1/2 in. NPT TY2131 . . . Upright 4.2K, 1/2 in. NPT TY2231 . . Pendent 4.2K, 1/2 in. NPT TY3131 . . . Upright 5.6K, 1/2 in. NPT TY3231 . . Pendent 5.6K, 1/2 in. NPT TY4131 . . . Upright 8.0K, 3/4 in. NPT TY4231 . . Pendent 8.0K, 3/4 in. NPT TY4831 . . . Upright 8.0K, 1/2 in. NPT TY4931 . . Pendent 8.0K, 1/2 in. NPT


Technical Data


Approvals

UL and C-UL Listed FM, LPCB, and NYC Approved

Refer to Table A and B for complete approval information including corrosion-resistant status

Maximum Working Pressure Refer to Table C

Discharge Coefficient

K=2.8 GPM/psi½ (40,3 LPM/bar½) K=4.2 GPM/psi½ (60,5 LPM/bar½) K=5.6 GPM/psi½ (80,6 LPM/bar½) K=8.0 GPM/psi½ (115,2 LPM/bar½)

Temperature Rating

Refer to Table A and B

Finishes

Sprinkler: Refer to Table D

Recessed Escutcheon: Signal or Pure White, Grey Aluminum, Jet Black, Chrome Plated, or Natural Brass

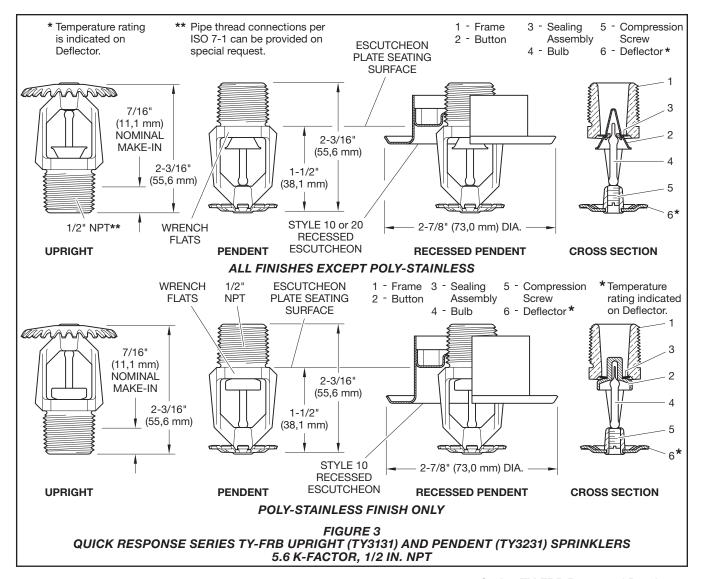
Physical Characteristics

Frame	Bronze
Button Bras	ss/Copper
Sealing Assembly Beryllium Nickel v	v/TEFLON
Bulb	Glass
Compression Screw	Bronze
Deflector Copp	er/Bronze
Bushing (K=2.8)	Bronze

Poly-Stainless

Physical Characteristics

FrameBronze
Button L316 Stainless Steel*
BulbGlass
Compression Screw L316 Stainless Steel*
Deflector Copper/Bronze
Sealing Assembly . Gold Plated Beryllium Nickel
w/TEFLON
*Type L316 stainless steel (UNS 31603) per ASTM


*Type L316 stainless steel (UNS 31603) per ASTN A479/479M or BS EN 1008 WN1.4404.

Operation

The glass bulb contains a fluid that expands when exposed to heat. When the rated temperature is reached, the fluid expands sufficiently to shatter the glass bulb, allowing the sprinkler to activate and water to flow.

Design Criteria

The TYCO Series TY-FRB 2.8, 4.2, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers are intended for fire protection systems designed in accordance with the standard installation rules recognized by the applicable Listing or Approval agency, such as UL Listing based on the requirements of NFPA 13 and FM Approval based on the requirements of the FM Global Loss Prevention Data Sheets. Use only the style 10, 20, 30, or 40 Recessed Escutcheon, as applicable, for recessed pendent installations.

Installation

The TYCO Series TY-FRB 2.8, 4.2, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers must be installed in accordance with this section.

General Instructions

Do not install any bulb type sprinkler if the bulb is cracked or there is a loss of liquid from the bulb. With the sprinkler held horizontally, a small air bubble should be present. The diameter of the air bubble is approximately 1/16 in. (1,6 mm) for the 135°F (57°C) and 3/32 in. (2,4 mm) for the 286°F (141°C) temperature ratings. A leak-tight 1/2 in. NPT sprinkler joint should be obtained by applying a minimum-to-maximum torque of 7 to 14 lb-ft (9,5 to 19,0 N·m). A leak tight 3/4 in. NPT sprinkler joint should be obtained with a torque of 10 to 20 lb-ft (13,4 to 26,8 N⋅m). Higher levels of torque can distort the sprinkler inlet and cause leakage or impairment of the sprinkler. Do not attempt to compensate for insufficient adjustment in the escutcheon plate by under- or overtightening the sprinkler. Re-adjust the position of the sprinkler fitting to suit.

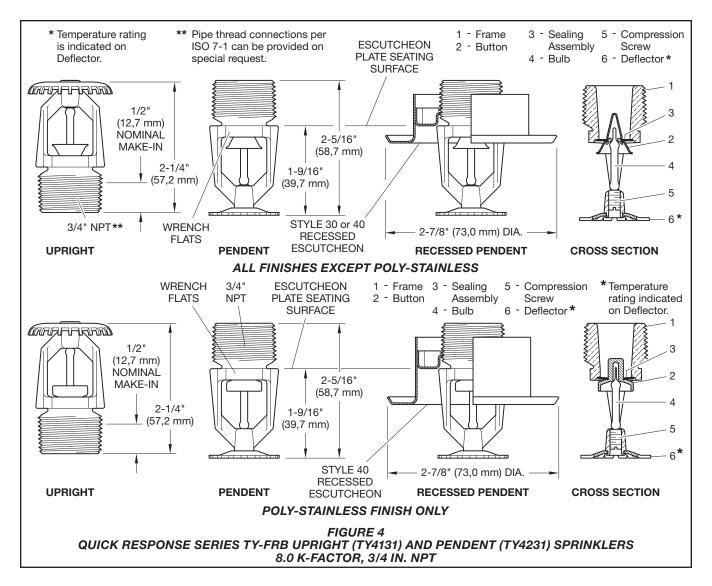
Series TY-FRB Upright and Pendent Sprinklers

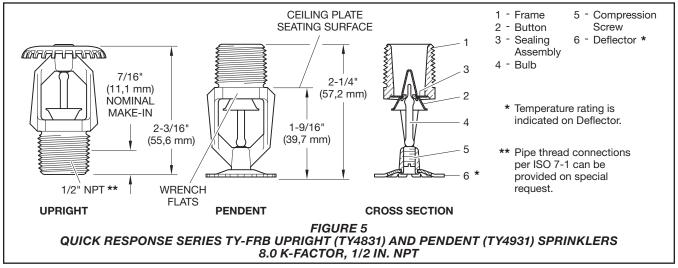
The Series TY-FRB Upright and Pendent Sprinklers must be installed in accordance with the following instructions:

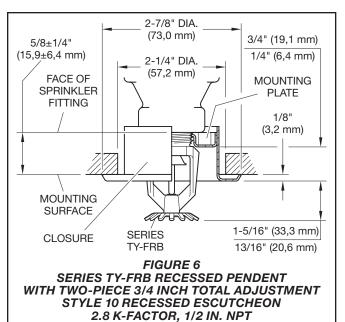
Step 1. Install pendent sprinklers in the pendent position. Install upright sprinklers in the upright position.

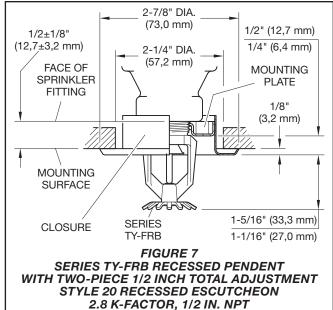
Step 2. With pipe thread sealant applied to the pipe threads, hand-tighten the sprinkler into the sprinkler fitting.

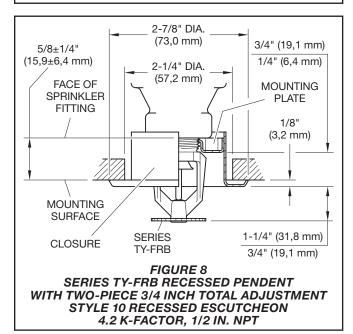
Step 3. Tighten the sprinkler into the sprinkler fitting using only the W-Type 6 Sprinkler Wrench (Ref. Figure 14). With reference to Figure 1 to Figure 5, apply the W-Type 6 Sprinkler Wrench to the sprinkler wrench flats.

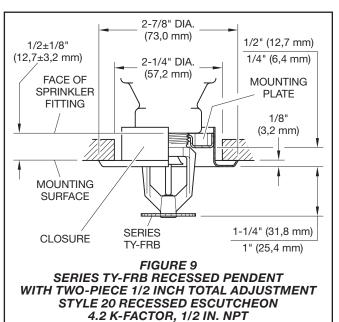

Series TY-FRB Recessed Pendent Sprinklers

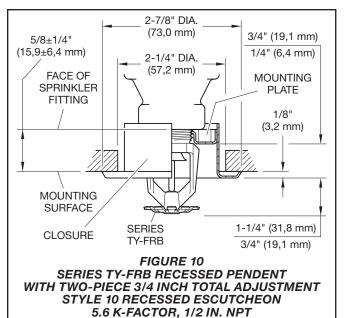

The Series TY-FRB Recessed Pendent Sprinklers must be installed in accordance with the following instructions:

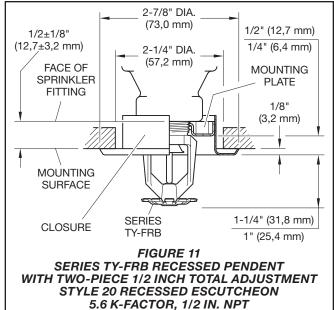

Step 1. After installing the Style 10, 20, 30, or 40 Mounting Plate, as applicable, over the sprinkler threads and with pipe-thread sealant applied to the pipe threads, hand-tighten the sprinkler into the sprinkler fitting.

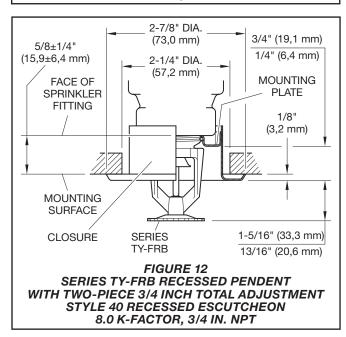

Step 2. Tighten the sprinkler into the sprinkler fitting using only the W-Type 7 Recessed Sprinkler Wrench (Ref. Figure 15). With reference to Figure 1 to 4, apply the W-Type 7 Recessed Sprinkler Wrench to the sprinkler wrench flats.

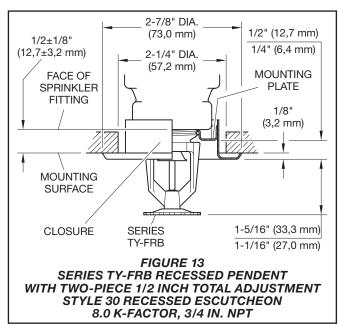

Step 3. After the ceiling is installed or the finish coat is applied, slide on the Style 10, 20, 30, or 40 Closure over the Series TY-FRB Recessed Pendent Sprinkler and push the Closure over the Mounting Plate until its flange comes in contact with the ceiling.

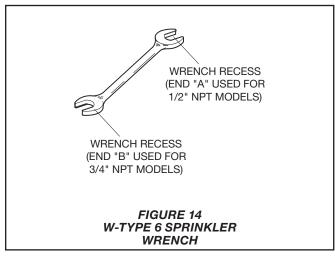


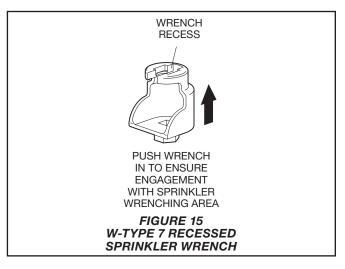












			Sprinkler Finish ⁵				
K- Factor	Type	Temperature	Bulb Liquid Color	Natural Brass	Chrome Plated	Polyester ^c	
		135°F (57°C)	Orange				
	Pendent (TY1231)	155°F (68°C)	Red				
	` and ´	175°F (79°C)	Yellow		1, 2, 3, 4		
	Upright (TY1131)	200°F (93°C)	Green				
	. ,	286°F (141°C)	Blue				
		135°F (57°C)	Orange				
2.8 1/2 in. NPT	Recessed Pendent	155°F (68°C)	Red				
.,	(TY1231) ^a Figure 6	175°F (79°C)	Yellow				
	rigure o	200°F (93°C)	Green		1.0.4		
	Recessed Pendent (TY1231) ^b Figure 7	135°F (57°C)	Orange	1, 2, 4			
		155°F (68°C)	Red	- - -			
		175°F (79°C)	Yellow				
		200°F (93°C)	Green				
		135°F (57°C)	Orange				
	Pendent (TY2231)	155°F (68°C)	Red				
	and	175°F (79°C)	Yellow				
	Upright (TY2131)	200°F (93°C)	Green				
	,	286°F (141°C)	Blue	7			
		135°F (57°C)	Orange				
4.2 1/2 in. NPT	Recessed Pendent	155°F (68°C)	Red	1, 2			
.,	(TY2231) ^a Figure 8	175°F (79°C)	Yellow				
	rigure o	200°F (93°C)	Green				
Ī		135°F (57°C)	Orange	7			
	Recessed Pendent	155°F (68°C)	Red				
	(TY2231) ^b Figure 9	175°F (79°C)	Yellow				
	i igui e a	200°F (93°C)	Green				

- NOTES

 a. Installed with Style 10 (1/2 in. NPT) or Style 40 (3/4 in. NPT) 3/4 in. Total Adjustment Recessed Escutcheon, as applicable.

 b. Installed with Style 20 (1/2 in. NPT) or Style 30 (3/4 in. NPT) 1/2 in. Total Adjustment Recessed Escutcheon, as applicable.

 c. Frame and Deflector only.

 1. Listed by Underwriters Laboratories, Inc., (UL) as Quick Response Sprinklers.

 2. Listed by Underwriters Laboratories, Inc., for use in Canada (C-UL) as Quick Response Sprinklers.

 3. Approved by Factory Mutual Research Corporation (FM) as Quick Response Sprinklers.

 4. Approved by the City of New York under MEA 354-01-E.

 5. Where Polyester Coated Sprinklers are noted to be UL and C-UL Listed, the sprinklers are UL and C-UL Listed as corrosion-resistant sprinklers.

TABLE A LABORATORY LISTINGS AND APPROVALS FOR 2.8 AND 4.2 K-FACTOR SPRINKLERS

Page 8 of 10

			Sprinkler Finish ⁸						
K- Factor	Туре	Temperature	Bulb Liquid Color	Natural Brass	Chrome Plated	Polyesterc	Poly-Stainless ^c	Lead Coated	
		135°F (57°C)	Orange						
	Pendent (TY3231)	155°F (68°C)	Red						
	` and ´	175°F (79°C)	Yellow		1, 2, 3, 4, 5, 6, 7		1, 2	1, 2, 3, 5	
	Upright (TY3131)	200°F (93°C)	Green						
	(110101)	286°F (141°C)	Blue						
		135°F (57°C)	Orange						
5.6	Recessed	155°F (68°C)	Red						
1/2 in.	Pendent (TY3231) ^a	175°F (79°C)	Yellow		1, 2, 4, 5		1, 2	N/A ^d	
NPT	Figure 10	200°F (93°C)	Green						
		286°F (141°C)	Blue						
		135°F (57°C)	Orange						
	Recessed	155°F (68°C)	Red						
	Pendent (TY3231) ^b Figure 11	175°F (79°C)	Yellow	1, 2, 3, 4, 5		N/A	N/A		
		200°F (93°C)	Green						
		286°F (141°C)	Blue						
	Pendent (TY4231) and Upright (TY4131)	135°F (57°C)	Orange						
		155°F (68°C)	Red					 	
		175°F (79°C)	Yellow	1, 2, 3, 4, 5, 6, 7		1, 2	1, 2, 5		
		200°F (93°C)	Green						
		286°F (141°C)	Blue						
	Recessed Pendent (TY4231) ^a	135°F (57°C)	Orange						
8.0		155°F (68°C)	Red	1, 2, 5			N/A		
3/4 in.		175°F (79°C)	Yellow			1, 2			
NPT	Figure 12	200°F (93°C)	Green						
	_	286°F (141°C)	Blue						
		135°F (57°C)	Orange						
	Recessed	155°F (68°C)	Red				N/A		
	Pendent (TY4231)b	175°F (79°C)	Yellow		1, 2, 3, 5			N/A	
	Figure 13	200°F (93°C)	Green						
		286°F (141°C)	Blue	-					
		135°F (57°C)	Orange						
8.0	Pendent (TY4931)	155°F (68°C)	Red	-					
1/2 in.	` and ´	175°F (79°C)	Yellow		1, 2, 4, 5, 6		N/A	1, 2, 5	
NPT	Upright	200°F (93°C)	Green						
	(TY4831)	286°F (141°C)	Blue						

- a. Installed with Style 10 (1/2 in. NPT) or Style 40 (3/4 in. NPT) 3/4 in. Total Adjustment Recessed Escutcheon, as applicable.
 b. Installed with Style 20 (1/2 in. NPT) or Style 30 (3/4 in. NPT) 1/2 in. Total Adjustment Recessed Escutcheon, as applicable.
 c. Frame and Deflector only.
 d. Not Available (N/A)

- Listed by Underwriters Laboratories, Inc., (UL) as Quick Response Sprinklers.
 Listed by Underwriters Laboratories, Inc., for use in Canada (C-UL) as Quick Response Sprinklers.
- Approved by Factory Mutual Research Corporation (FM) as Quick Response Sprinklers.
 Approved by the Loss Prevention Certification Board (LPCB Ref. No. 007k/04) as Quick Response Sprinklers. However, LPCB does not rate the thermal sensitivity of recessed
- Approved by the City of New York under MEA 354-01-E.
 VdS Approved (For details, contact Johnson Controls, Enschede, Netherlands, Tel. 31-53-428-4444/Fax 31-53-428-3377.)
- Approved by the Loss Prevention Certification Board (LPCB Ref. No. 094a/06) as Quick Response Sprinklers.
 Where Polyester Coated and Lead-Coated Sprinklers are noted to be UL and C-UL Listed, the sprinklers are UL and C-UL Listed as Corrosion-Resistant Sprinklers. Where Lead-Coated Sprinklers are noted to be FM Approved, the sprinklers are FM Approved as a Corrosion-Resistant Sprinklers.

TABLE B LABORATORY LISTINGS AND APPROVALS FOR **5.6 AND 8.0 K-FACTOR SPRINKLERS**

		Sprinkler Finish						
K- Factor	Туре	Natural Brass	Chrome Plated	Polyester	Lead Coated			
2.8 1/2 in.	Pendent (TY1231) and Upright (TY1131)	175 psi (12,1 bar)		175 (4041)				
NPT	Recessed Pendent (TY1231)		N/A ²					
4.2 1/2 in.	Pendent (TY2231) and Upright (TY2131)	- 175 psi (12,1 bar) N/A						
1/2 In. NPT	Recessed Pendent (TY2231)		N/A					
5.6 1/2 in.	Pendent (TY3231) and Upright (TY3131)	250 psi (17,2 bar) or 175 psi (12,1 bar) ¹						
NPT	Recessed Pendent (TY3231)							
8.0 3/4 in.	Pendent (TY4231) and Upright (TY4131)	475 mai (40.4 lana)			175 psi (12,1 bar)			
NPT	Recessed Pendent(TY4231)	175 psi (12,1 bar)			N/A			
8.0 1/2 in. NPT	Pendent (TY4931) and Upright (TY4831)		175 psi (12,1 bar)		175 psi (12,1 bar)			

NOTES

- 1. The maximum working pressure of 250 psi (17,2 bar) only applies to the Listing by Underwriters Laboratories Inc. (UL); the Listing by Under-
- writers Laboratories, Inc. for use in Canada (C-UL); and, the Approval by the City of New York.
- 2. Not applicable (N/A).

TABLE C MAXIMUM WORKING PRESSURE

Care and Maintenance

The TYCO Series TY-FRB 2.8, 4.2, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers must be maintained and serviced in accordance with this section. Before closing a fire protection system main control valve for maintenance work on the fire protection system that it controls, obtain permission to shut down the affected fire protection systems from the proper authorities and notify all personnel who may be affected by this action.

Absence of the outer piece of an escutcheon, which is used to cover a clearance hole, can delay sprinkler operation in a fire situation.

Sprinklers which are found to be leaking or exhibiting visible signs of corrosion must be replaced.

Automatic sprinklers must never be painted, plated, coated, or otherwise altered after leaving the factory. Modified sprinklers must be replaced. Sprinklers that have been exposed to

corrosive products of combustion, but have not operated, should be replaced if they cannot be completely cleaned by wiping the sprinkler with a cloth or by brushing it with a soft bristle brush.

Care must be taken to avoid damage to the sprinklers before, during, and after installation. Sprinklers damaged by dropping, striking, wrench twist/slippage, or the like, must be replaced. Also, replace any sprinkler that has a cracked bulb or that has lost liquid from its bulb. (Ref. Installation Section).

The owner is responsible for the inspection, testing, and maintenance of their fire protection system and devices in compliance with this document, as well as with the applicable standards of the National Fire Protection Association (e.g., NFPA 25), in addition to the standards of any other authorities having jurisdiction. Contact the installing contractor or sprinkler manufacturer regarding any questions.

Automatic sprinkler systems are recommended to be inspected, tested, and maintained by a qualified Inspection Service in accordance with local requirements and/or national codes.

Care must be exercised to avoid damage to the sprinklers before, during, and after installation. Sprinklers damaged by dropping, striking, wrench twist/slippage, or the like, must be replaced. Also, replace any sprinkler that has a cracked bulb or that has lost liquid from its bulb. (Ref. Installation Section).

Initial and frequent visual inspections of random samples are recommended for corrosion-resistant sprinklers to verify the integrity of the corrosion-resistant material of construction. Thereafter, annual inspections per NFPA 25 should suffice. Inspections of corrosion-resistant sprinklers are recommended at close range, instead of from the floor level per NFPA. Inspection at close range can better determine the exact sprinkler condition and the long-term integrity of the corrosion-resistant material, which can be affected by the corrosive conditions present.

		SIN
330	2.8K UPRIGHT (1/2 in. NPT)	TY1131
331	2.8K PENDENT (1/2 in. NPT)	TY1231
340	4.2K UPRIGHT (1/2 in. NPT)	TY2131
341	4.2K PENDENT (1/2 in. NPT)	TY2231
370	5.6K UPRIGHT (1/2 in. NPT)	TY3131
371	5.6K PENDENT (1/2 in. NPT)	TY3231
390	8.0K UPRIGHT (3/4 in. NPT)	TY4131
391	8.0K PENDENT (3/4 in. NPT)	TY4231

8.0K UPRIGHT (1/2 in. NPT)

8.0K PENDENT (1/2 in. NPT)

P/N 57 - XXX - X - XXX

		SPRINKLER FINISH
1		NATURAL BRASS
2		POLY-STAINLESS GREY ALUMINUM (RAL9007) ¹ POLYESTER
		PURE WHITE POLYESTER (RAL9010) ²
4		SIGNAL WHITE POLYESTER (RAL9003)
5	5	JET BLACK POLYESTER (RAL9005) ³
7	,	LEAD COATED
9		CHROME PLATED

		TEMPERATURE RATINGS
13	35	135°F (57°C)
155		155°F (68°C)
175		175°F (79°C)
20	00	200°F (93°C)
28	36	286°F (141°C)

NOTES

TY4831

TY4931

- 1. Available only on TY3131, TY3231, TY4131, and TY4231
- Eastern Hemisphere sales only. Available in only 2.8K, 4.2K, and 8.0K, 155°F (68°C) and 200°F (93°C); requires longer lead time to manufacture.

TABLE D SERIES TY-FRB PENDENT AND UPRIGHT SPRINKLERS PART NUMBER SELECTION

Limited **Warranty**

360

361

For warranty terms and conditions, visit www.tyco-fire.com.

Ordering Procedure

Contact your local distributor for availability. When placing an order, indicate the full product name and Part Number (P/N).

Sprinkler Assemblies with NPT Thread Connections

Specify: Series TY-FRB (Specify SIN), (specify K-factor), (specify Pendent or Upright) Sprinkler (specify) temperature rating, (specify) finish or coating, P/N (specify from Table D)

Recessed Escutcheon

Specify: Style (10, 20, 30, or 40) Recessed Escutcheon with (specify*) finish, P/N (specify*)

Sprinkler Wrench

Specify: W-Type 6 Sprinkler Wrench, P/N 56-000-6-387

Specify: W-Type 7 Sprinkler Wrench, P/N 56-850-4-001

^{*} Refer to Technical Data Sheet TFP770

Series TY-FRB – 2.8, 4.2, 5.6, and 8.0 K-Factor Upright, Pendent, and Recessed Pendent Sprinklers Quick Response, Standard Coverage

General Description

The TYCO Series TY-FRB 2.8, 4.2, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers described in herein are quick response, standard coverage, decorative 3 mm glass bulb-type spray sprinklers. They are designed for use in light or ordinary hazard, commercial occupancies such as banks, hotels, and shopping malls.

The TY-FRB Recessed Pendent Sprinkler, where applicable, is intended for use in areas with a finished ceiling. This recessed pendent sprinkler uses one of the following Recessed Escutcheons:

- A two-piece Style 10 (1/2 in. NPT) or Style 40 (3/4 in. NPT) Recessed Escutcheon with 1/2 in. (12,7 mm) of recessed adjustment or up to 3/4 in. (19,1 mm) of total adjustment from the flush pendent position.
- A two-piece Style 20 (1/2 in. NPT) or Style 30 (3/4 in. NPT) Recessed Escutcheon with 1/4 in. (6,4 mm) of recessed adjustment or up to 1/2 in. (12,7 mm) of total adjustment from the flush pendent position.

The adjustment provided by the Recessed Escutcheon reduces the accuracy to which the fixed pipe drops to the sprinklers must be cut.

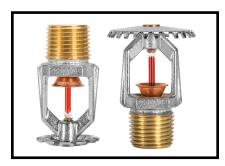
Corrosion-resistant coatings, where applicable, are utilized to extend the life of copper alloy sprinklers beyond what would be obtained when exposed

IMPORTANT

Refer to Technical Data Sheet TFP2300 for warnings pertaining to regulatory and health information.

Always refer to Technical Data Sheet TFP700 for the "INSTALLER WARNING" that provides cautions with respect to handling and installation of sprinkler systems and components. Improper handling and installation can permanently damage a sprinkler system or its components and cause the sprinkler to fail to operate in a fire situation or cause it to operate prematurely.

to corrosive atmospheres. Although corrosion-resistant coated sprinklers have passed the standard corrosion tests of the applicable approval agencies, the testing is not representative of all possible corrosive atmospheres. Consequently, it is recommended that the end user be consulted with respect to the suitability of these coatings for any given corrosive environment. The effects of ambient temperature, concentration of chemicals, and gas/ chemical velocity, should be considered, as a minimum, along with the corrosive nature of the chemical to which the sprinklers will be exposed.


An intermediate level version of the Series TY-FRB Pendent Sprinklers is detailed in Technical Data Sheet TFP356. Sprinkler Guards are detailed in Technical Data Sheet TFP780.

NOTICE

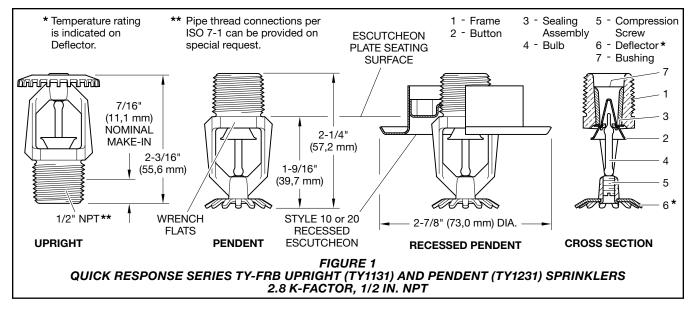
The Series TY-FRB 2.8, 4.2, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers described herein must be installed and maintained in compliance with this document and with the applicable standards of the National Fire Protection Association (NFPA), in addition to the standards of any authorities having jurisdiction. Failure to do so may impair the performance of these devices.

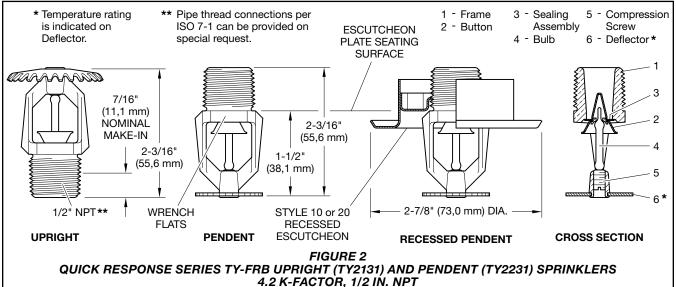
The owner is responsible for maintaining their fire protection system and devices in proper operating condition. The installing contractor or sprinkler manufacturer should be contacted with any questions.

NFPA 13 prohibits installation of 1/2 in. NPT sprinklers with K-factors greater than 5.6 in new construction. They are intended for retrofit in existing sprinkler systems only.

Sprinkler Identification Number (SIN)

TY1131 . . . Upright 2.8K, 1/2 in. NPT TY1231 . . Pendent 2.8K, 1/2 in. NPT TY2131 . . . Upright 4.2K, 1/2 in. NPT TY2231 . . Pendent 4.2K, 1/2 in. NPT TY3131 . . . Upright 5.6K, 1/2 in. NPT TY3231 . . Pendent 5.6K, 1/2 in. NPT TY4131 . . . Upright 8.0K, 3/4 in. NPT TY4231 . . Pendent 8.0K, 3/4 in. NPT TY4831 . . . Upright 8.0K, 1/2 in. NPT TY4931 . . Pendent 8.0K, 1/2 in. NPT


Technical Data


Approvals

UL and C-UL Listed FM, LPCB, and NYC Approved

See Tables A, B, C and D for complete approval information including corrosion-resistant status.

Maximum Working Pressure See Table E

Discharge Coefficient

K=2.8 GPM/psi½ (40,3 LPM/bar½) K=4.2 GPM/psi½ (60,5 LPM/bar½) K=5.6 GPM/psi½ (80,6 LPM/bar½) K=8.0 GPM/psi½ (115,2 LPM/bar½)

Temperature Rating

See Tables A and B

Finishes

Sprinkler: See Table D

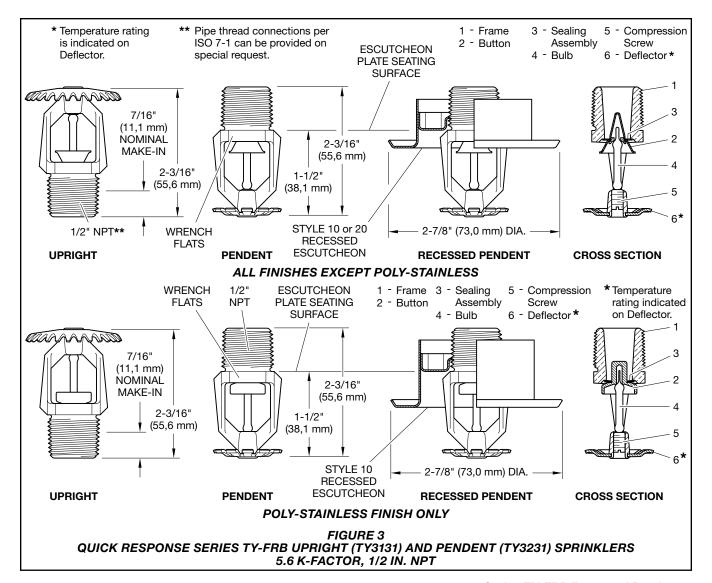
Recessed Escutcheon: Signal or Pure White, Grey Aluminum, Jet Black, Chrome Plated, or Natural Brass

Physical Characteristics

Frame	3ronze
Button Brass/C	copper
Sealing Assembly Beryllium Nickel w/TE	EFLON
Bulb	. Glass
Compression Screw	3ronze
Deflector Copper/E	3ronze
Bushing (K=2.8)	3ronze

Poly-Stainless Physical Characteristics

Frame	
Button	L316 Stainless Steel*
Bulb	
Compression Scre	ew L316 Stainless Steel*
Deflector	Copper/Bronze
Sealing Assembly	. Gold Plated Beryllium Nickel
	w/TEFLON
*Type L316 stainless	steel (UNS 31603) per ASTM


*Type L316 stainless steel (UNS 31603) per ASTM A479/479M or BS EN 1008 WN1.4404.

Operation

The glass bulb contains a fluid that expands when exposed to heat. When the rated temperature is reached, the fluid expands sufficiently to shatter the glass bulb, allowing the sprinkler to activate and water to flow.

Design Criteria

The TYCO Series TY-FRB 2.8, 4.2, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers are intended for fire protection systems designed in accordance with the standard installation rules recognized by the applicable Listing or Approval agency, such as UL Listing based on the requirements of NFPA 13 and FM Approval based on the requirements of the FM Global Loss Prevention Data Sheets. Use only the style 10, 20, 30, or 40 Recessed Escutcheon, as applicable, for recessed pendent installations.

Installation

The TYCO Series TY-FRB 2.8, 4.2, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers must be installed in accordance with this section.

General Instructions

Do not install any bulb type sprinkler if the bulb is cracked or there is a loss of liquid from the bulb. With the sprinkler held horizontally, a small air bubble should be present. The diameter of the air bubble is approximately 1/16 in. (1,6 mm) for the 135°F (57°C) and 3/32 in. (2,4 mm) for the 286°F (141°C) temperature ratings. A leak-tight 1/2 in. NPT sprinkler joint should be obtained by applying a minimum-to-maximum torque of 7 to 14 lb-ft (9,5 to 19,0 N·m). A leak tight 3/4 in. NPT sprinkler joint should be obtained with a torque of 10 to 20 lb-ft (13,4 to 26,8 N⋅m). Higher levels of torque can distort the sprinkler inlet and cause leakage or impairment of the sprinkler. Do not attempt to compensate for insufficient adjustment in the escutcheon plate by under- or overtightening the sprinkler. Re-adjust the position of the sprinkler fitting to suit.

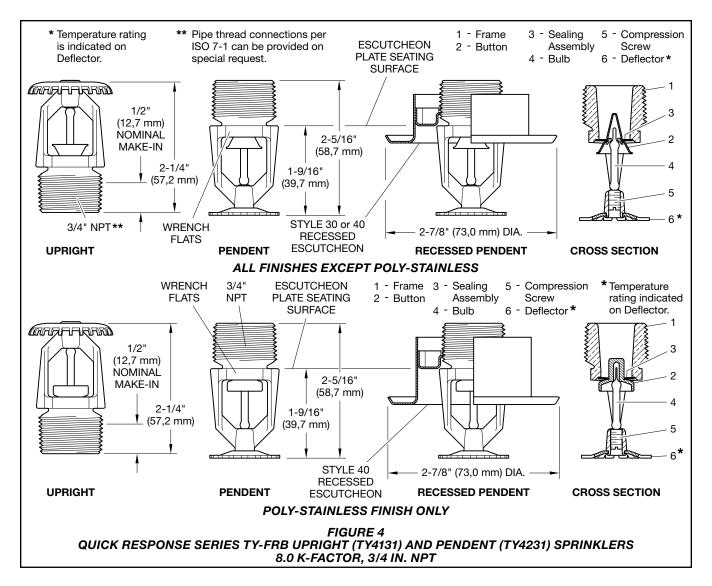
Series TY-FRB Upright and Pendent Sprinklers

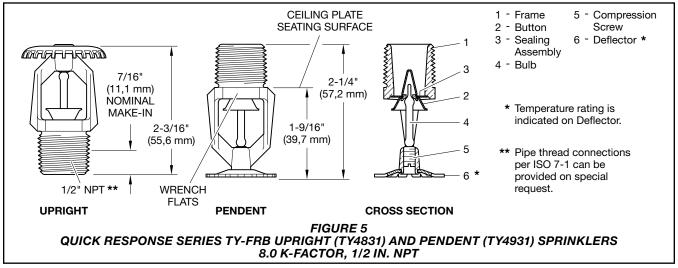
The Series TY-FRB Upright and Pendent Sprinklers must be installed in accordance with the following instructions:

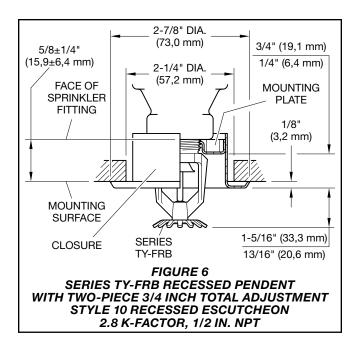
Step 1. Install pendent sprinklers in the pendent position. Install upright sprinklers in the upright position.

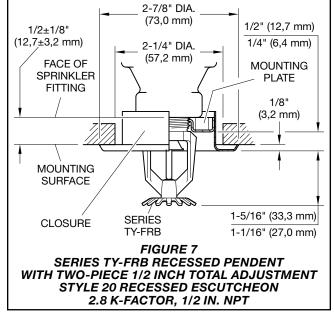
Step 2. With pipe thread sealant applied to the pipe threads, hand-tighten the sprinkler into the sprinkler fitting.

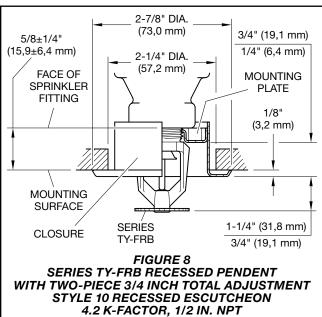
Step 3. Tighten the sprinkler into the sprinkler fitting using only the W-Type 6 Sprinkler Wrench (Ref. Figure 14). With reference to Figure 1 to Figure 5, apply the W-Type 6 Sprinkler Wrench to the sprinkler wrench flats.

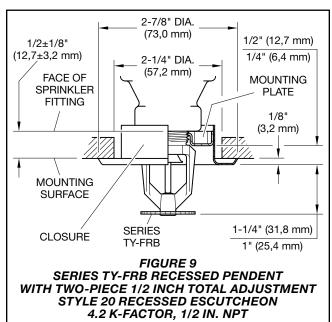

Series TY-FRB Recessed Pendent Sprinklers

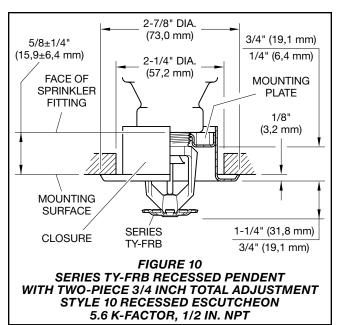

The Series TY-FRB Recessed Pendent Sprinklers must be installed in accordance with the following instructions:

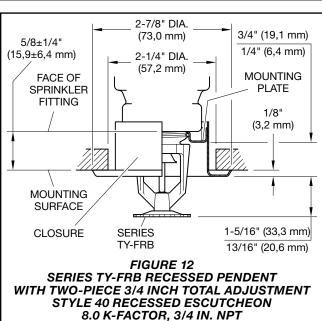

Step 1. After installing the Style 10, 20, 30, or 40 Mounting Plate, as applicable, over the sprinkler threads and with pipe-thread sealant applied to the pipe threads, hand-tighten the sprinkler into the sprinkler fitting.

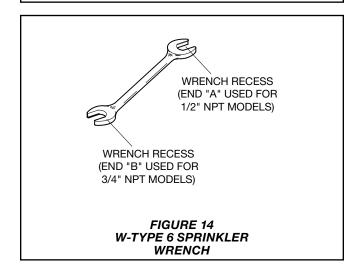

Step 2. Tighten the sprinkler into the sprinkler fitting using only the W-Type 7 Recessed Sprinkler Wrench, see Figure 15. With reference to Figure 1 to 4, apply the W-Type 7 Recessed Sprinkler Wrench to the sprinkler wrench flats.

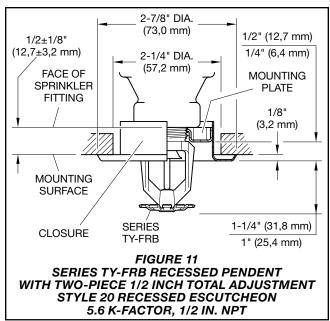

Step 3. After the ceiling is installed or the finish coat is applied, slide on the Style 10, 20, 30, or 40 Closure over the Series TY-FRB Recessed Pendent Sprinkler and push the Closure over the Mounting Plate until its flange comes in contact with the ceiling.

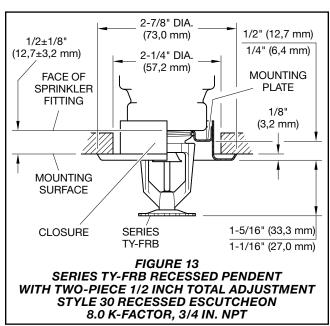


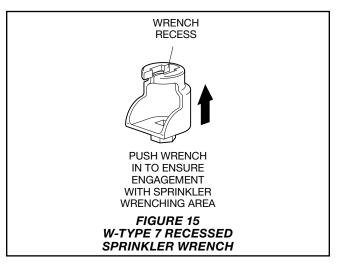












			D. W. Linning		Sprinkler Finish ⁵			
K-Factor	Туре	Temperature	Bulb Liquid Color	Natural Brass	Chrome Plated	Polyester ^c		
		135°F (57°C)	Orange					
		155°F (68°C)	Red					
	Pendent (TY1231)	175°F (79°C)	Yellow					
	(11.20.)	200°F (93°C)	Green					
		286°F (141°C)	Blue		1 0 0 4			
		135°F (57°C)	Orange	1, 2, 3, 4				
	Upright (TY1131)	155°F (68°C)	Red					
		175°F (79°C)	Yellow					
2.8		200°F (93°C)	Green					
1/2 in. NPT		286°F (141°C)	Blue					
		135°F (57°C)	Orange					
	Recessed Pendent	155°F (68°C)	Red					
	(TY1231)a Figure 6	175°F (79°C)	Yellow					
	riguie	200°F (93°C)	Green					
		135°F (57°C)	Orange	1, 2, 4 - -				
	Recessed Pendent	155°F (68°C)	Red					
	(TY1231) ^b Figure 7	175°F (79°C)	Yellow					
	rigure /	200°F (93°C)	Green					

- NOTES

 a. Installed with Style 10 (1/2 in. NPT) or Style 40 (3/4 in. NPT) 3/4 in. Total Adjustment Recessed Escutcheon, as applicable.
 b. Installed with Style 20 (1/2 in. NPT) or Style 30 (3/4 in. NPT) 1/2 in. Total Adjustment Recessed Escutcheon, as applicable.
 c. Frame and Deflector only.

 1. Listed by Underwriters Laboratories, Inc., (UL) as Quick Response Sprinklers.
 2. Listed by Underwriters Laboratories, Inc., for use in Canada (C-UL) as Quick Response Sprinklers.
 3. Approved by Factory Mutual Research Corporation (FM) as Quick Response Sprinklers.
 4. Approved by the City of New York under MEA 354-01-E.
 5. Where Polyester Coated Sprinklers are noted to be UL and C-UL Listed, the sprinklers are UL and C-UL Listed as corrosion-resistant sprinklers.

TABLE A LABORATORY LISTINGS AND APPROVALS FOR 2.8 K-FACTOR SPRINKLERS

Page 8 of 12

			Dolla Lincia		Sprinkler Finish ³	
K-Factor	Туре	Temperature	Bulb Liquid Color	Natural Brass	Chrome Plated	Polyester ^c
		135°F (57°C)	Orange			
		155°F (68°C)	Red			
	Pendent (TY2231)	175°F (79°C)	Yellow			
	[200°F (93°C)	Green			
		286°F (141°C)	Blue			
	Upright (TY2131)	135°F (57°C)	Orange			
		155°F (68°C)	Red			
		175°F (79°C)	Yellow			
4.2		200°F (93°C)	Green	1, 2		
1/2 in. NPT		286°F (141°C)	Blue			
	_	135°F (57°C)	Orange			
	Recessed Pendent	155°F (68°C)	Red			
	(TY2231) ^a Figure 8	175°F (79°C)	Yellow			
	1 igui o o	200°F (93°C)	Green			
	B	135°F (57°C)	Orange			
	Recessed Pendent	155°F (68°C)	Red			
	(TY2231) ^b Figure 9	175°F (79°C)	Yellow			
	Figure 9	200°F (93°C)	Green			

- NOTES

 a. Installed with Style 10 (1/2 in. NPT) or Style 40 (3/4 in. NPT) 3/4 in. Total Adjustment Recessed Escutcheon, as applicable.
 b. Installed with Style 20 (1/2 in. NPT) or Style 30 (3/4 in. NPT) 1/2 in. Total Adjustment Recessed Escutcheon, as applicable.
 c. Frame and Deflector only.
 1. Listed by Underwriters Laboratories, Inc., (UL) as Quick Response Sprinklers.
 2. Listed by Underwriters Laboratories, Inc., for use in Canada (C-UL) as Quick Response Sprinklers.
 3. Where Polyester Coated Sprinklers are noted to be UL and C-UL Listed, the sprinklers are UL and C-UL Listed as corrosion-resistant sprinklers.

TABLE B LABORATORY LISTINGS AND APPROVALS FOR 4.2 K-FACTOR SPRINKLERS

			B. II. I		Sp	rinkler Finisl	1 ⁸	
K-Factor	Туре	Temperature	Bulb Liquid Color	Natural Chrome Brass Plated Polyester ^c		Polyesterc	Poly-Stainless ^c	Lead Coated
		135°F (57°C)	Orange					
		155°F (68°C)	Red					
	Pendent (TY3231)	175°F (79°C)	Yellow	1	, 2, 3, 4, 5, 6, 7		1, 2	1, 2, 3, 5
	(1.10201)	200°F (93°C)	Green					
		286°F (141°C)	Blue					
		135°F (57°C)	Orange					1, 2, 3, 5
		155°F (68°C)	Red					
	Upright (TY3131)	175°F (79°C)	Yellow		1, 2, 3, 5, 6		1, 2	
	(1.10.01,	200°F (93°C)	Green					
5.6 1/2 in.		286°F (141°C)	Blue					
NPT		135°F (57°C)	Orange					
	Recessed	155°F (68°C)	Red					
	Pendent (TY3231)a	175°F (79°C)	Yellow		1, 2, 4, 5		1, 2	N/A ^d
	Figure 10	200°F (93°C)	Green					
		286°F (141°C)	Blue					
		135°F (57°C)	Orange					
	Recessed	155°F (68°C)	Red					
	Pendent (TY3231)b	175°F (79°C)	Yellow		1, 2, 3, 4, 5		N/A	N/A
	Figure 11	200°F (93°C)	Green					
		286°F (141°C)	Blue					

NOTES

- a. Installed with Style 10 (1/2 in. NPT) or Style 40 (3/4 in. NPT) 3/4 in. Total Adjustment Recessed Escutcheon, as applicable.
- b. Installed with Style 20 (1/2 in. NPT) or Style 30 (3/4 in. NPT) 1/2 in. Total Adjustment Recessed Escutcheon, as applicable.
- c. Frame and Deflector only.d. Not available (N/A).

- Listed by Underwriters Laboratories, Inc., (UL) as Quick Response Sprinklers.
 Listed by Underwriters Laboratories, Inc., for use in Canada (C-UL) as Quick Response Sprinklers.
 Approved by Factory Mutual Research Corporation (FM) as Quick Response Sprinklers.
- 4. Approved by the Loss Prevention Certification Board (LPCB Ref. No. 007k/04) as Quick Response Sprinklers. However, LPCB does not rate the thermal sensitivity of recessed
- 5. Approved by the City of New York under MEA 354-01-E.

- VdS Approved (For details, contact Johnson Controls, Enschede, Netherlands, Tel. 31-53-428-4444/Fax 31-53-428-3377.)
 Approved by the Loss Prevention Certification Board (LPCB Ref. No. 094a/06) as Quick Response Sprinklers.
 Where Polyester Coated and Lead-Coated Sprinklers are noted to be UL and C-UL Listed, the sprinklers are UL and C-UL Listed as Corrosion-Resistant Sprinklers. Where Lead-Coated Sprinklers are noted to be FM Approved, the sprinklers are FM Approved as a Corrosion-Resistant Sprinklers.

TABLE C LABORATORY LISTINGS AND APPROVALS FOR **5.6 K-FACTOR SPRINKLERS**

					Sp	rinkler Finisl	1 ⁸		
K-Factor	Туре	Temperature	Bulb Liquid Color	Natural Brass	Chrome Plated	Polyester	Poly-Stainless ^c	Lead Coated	
		135°F (57°C)	Orange						
		155°F (68°C)	Red						
	Pendent (TY4231)	175°F (79°C)	Yellow						
	(114201)	200°F (93°C)	Green						
		286°F (141°C)	Blue] ,	, 2, 3, 4, 5, 6, 7		1.0	1, 2, 5	
		135°F (57°C)	Orange] '	, 2, 3, 4, 5, 6, 7	1, 2		1, 2, 5	
		155°F (68°C)	Red						
	Upright (TY4131)	175°F (79°C)	Yellow						
	(114101)	200°F (93°C)	Green	1					
8.0 3/4 in.		286°F (141°C)	Blue]					
NPT		135°F (57°C)	Orange						
	Recessed	155°F (68°C)	Red						
	Pendent (TY4231)a	175°F (79°C)	Yellow	1	1, 2, 5		1, 2	N/A ^d	
	Figure 12	200°F (93°C)	Green						
		286°F (141°C)	Blue						
		135°F (57°C)	Orange				N/A	N/A	
	Recessed	155°F (68°C)	Red						
	Pendent (TY4231)b	175°F (79°C)	Yellow		1, 2, 3, 5				
	Figure 13	200°F (93°C)	Green						
		286°F (141°C)	Blue	1					
		135°F (57°C)	Orange						
		155°F (68°C)	Red						
	Pendent (TY4931)	175°F (79°C)	Yellow						
	(114001)	200°F (93°C)	Green						
8.0 1/2 in.		286°F (141°C)	Blue		10156		N/A	1, 2, 5	
NPT			IN/A	1, 2, 3					
	11	155°F (68°C)	Red						
	Upright (TY4831)	175°F (79°C)	Yellow]					
	(,	200°F (93°C)	Green						
		286°F (141°C)	Blue						

- a. Installed with Style 10 (1/2 in. NPT) or Style 40 (3/4 in. NPT) 3/4 in. Total Adjustment Recessed Escutcheon, as applicable. b. Installed with Style 20 (1/2 in. NPT) or Style 30 (3/4 in. NPT) 1/2 in. Total Adjustment Recessed Escutcheon, as applicable. c. Frame and Deflector only.

- d. Not available (N/A).
 1. Listed by Underwriters Laboratories, Inc., (UL) as Quick Response Sprinklers.
 2. Listed by Underwriters Laboratories, Inc., for use in Canada (C-UL) as Quick Response Sprinklers.
- 3. Approved by Factory Mutual Research Corporation (FM) as Quick Response Sprinklers.
 4. Approved by the Loss Prevention Certification Board (LPCB Ref. No. 007k/04) as Quick Response Sprinklers. However, LPCB does not rate the thermal sensitivity of recessed

- 5. Approved by the City of New York under MEA 354-01-E.

 6. VdS Approved (For details, contact Johnson Controls, Enschede, Netherlands, Tel. 31-53-428-4444/Fax 31-53-428-3377.)

 7. Approved by the Loss Prevention Certification Board (LPCB Ref. No. 094a/06) as Quick Response Sprinklers.

 8. Where Polyester Coated and Lead-Coated Sprinklers are noted to be UL and C-UL Listed, the sprinklers are UL and C-UL Listed as Corrosion-Resistant Sprinklers. Where Lead-Coated Sprinklers are noted to be FM Approved, the sprinklers are FM Approved as a Corrosion-Resistant Sprinklers.

TABLE D LABORATORY LISTINGS AND APPROVALS FOR 5.6 AND 8.0 K-FACTOR SPRINKLERS

			Sprinkle	er Finish	
K-Factor	Туре	Natural Brass	Chrome Plated	Polyester	Lead Coated
2.8 1/2 in.	Pendent (TY1231) and Upright (TY1131)	475 (40.4 b)		N/A²	
NPT	Recessed Pendent (TY1231)		175 psi (12,1 bar)		IV/A-
4.2 1/2 in.	Pendent (TY2231) and Upright (TY2131)		175 psi (12,1 bar)		N/A
NPT	Recessed Pendent (TY2231)		65. (.2,. 54.)	si (17,2 bar) osi (12,1 bar)¹	
5.6 1/2 in.	Pendent (TY3231) and Upright (TY3131)				
NPT	Recessed Pendent (TY3231)		or 1/5 psi	(12,1 bar) ¹	
8.0 3/4 in.	Pendent (TY4231) and Upright (TY4131)		175 psi (12,1 bar)		175 psi (12,1 bar)
NPT	Recessed Pendent(TY4231)		170 psi (12,1 bai)		N/A
8.0 1/2 in. NPT	Pendent (TY4931) and Upright (TY4831)		175 psi (12,1 bar)		175 psi (12,1 bar)
NOTES					

NOTES

1. The maximum working pressure of 250 psi (17,2 bar) only applies to the Listing by Underwriters Laboratories Inc. (UL); the Listing by Underwriters Laboratories, Inc. for use in Canada (C-UL); and, the Approval by the City of New York.

2. Not available (N/A).

TABLE E MAXIMUM WORKING PRESSURE

Care and Maintenance

The TYCO Series TY-FRB 2.8, 4.2, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers must be maintained and serviced in accordance with this section. Before closing a fire protection system main control valve for maintenance work on the fire protection system that it controls, obtain permission to shut down the affected fire protection systems from the proper authorities and notify all personnel who may be affected by this action.

Absence of the outer piece of an escutcheon, which is used to cover a clearance hole, can delay sprinkler operation in a fire situation.

Sprinklers which are found to be leaking or exhibiting visible signs of corrosion must be replaced.

Automatic sprinklers must never be painted, plated, coated, or otherwise altered after leaving the factory. Modified sprinklers must be replaced. Sprinklers that have been exposed to corrosive products of combustion, but have not operated, should be replaced if they cannot be completely cleaned by wiping the sprinkler with a cloth or by brushing it with a soft bristle brush.

Care must be taken to avoid damage to the sprinklers before, during, and after installation. Sprinklers damaged by dropping, striking, wrench twist/slippage, or the like, must be replaced. Also, replace any sprinkler that has a cracked bulb or that has lost liquid from its bulb. For more information, see Installation section.

The owner is responsible for the inspection, testing, and maintenance of their fire protection system and devices in compliance with this document, as well as with the applicable standards of the National Fire Protection Association such as NFPA 25, in addition to the standards of any other authorities having jurisdiction. Contact the installing contractor or sprinkler manufacturer regarding any questions.

Automatic sprinkler systems are recommended to be inspected, tested, and maintained by a qualified Inspection Service in accordance with local requirements and/or national codes.

Care must be exercised to avoid damage to the sprinklers before, during, and after installation. Sprinklers damaged by dropping, striking, wrench twist/slippage, or the like, must be replaced. Also, replace any sprinkler that has a cracked bulb or that has lost liquid from its bulb. For more information, see Installation section.

Initial and frequent visual inspections of random samples are recommended for corrosion-resistant sprinklers to verify the integrity of the corrosion-resistant material of construction. Thereafter, annual inspections per NFPA 25 should suffice. Inspections of corrosion-resistant sprinklers are recommended at close range, instead of from the floor level per NFPA. Inspection at close range can better determine the exact sprinkler condition and the long-term integrity of the corrosion-resistant material, which can be affected by the corrosive conditions present.

	P/N 57 – X	XX – X	– XX	XX				
		SIN]		SPRINKLER	Ì		TEMPERATURE RATINGS
330	2.8K UPRIGHT (1/2 in. NPT)	TY1131	Ī	1	FINISH NATURAL BRASS		135	135°F (57°C)
331	2.8K PENDENT (1/2 in. NPT)	TY1231			POLY-STAINLESS GREY		155	155°F (68°C)
340	4.2K UPRIGHT (1/2 in. NPT)	TY2131		2	ALUMINUM (RAL9007) ¹ POLYESTER		175	175°F (79°C)
341	4.2K PENDENT (1/2 in. NPT)	TY2231	1	3	PURE WHITE POLYESTER (RAL9010) ²		200	200°F (93°C)
370	5.6K UPRIGHT (1/2 in. NPT)	TY3131	1	4	SIGNAL WHITE POLYESTER (RAL9003)		286	286°F (141°C)
371	5.6K PENDENT (1/2 in. NPT)	TY3231	1 [5	JET BLACK POLYESTER (RAL9005) ³			<u> </u>
390	8.0K UPRIGHT (3/4 in. NPT)	TY4131		7	LEAD COATED			
391	8.0K PENDENT (3/4 in. NPT)	TY4231		9	CHROME PLATED			
360	8.0K UPRIGHT (1/2 in. NPT)	TY4831		OTE:	S silable only on TY3131, TY3231, TY41;	31. and 1	Γ Υ 4231	
361	8.0K PENDENT (1/2 in. NPT)	TY4931	2.	Eas Ava	stern Hemisphere sales only. silable in only 2.8K, 4.2K, and 8.0K, 1 d time to manufacture.			00°F (93°C); requires longer
	ı		_	TΔ	BLEF			

TABLE F SERIES TY-FRB PENDENT AND UPRIGHT SPRINKLERS **PART NUMBER SELECTION**

Limited Warranty

For warranty terms and conditions, visit www.tyco-fire.com.

Ordering Procedure

Contact your local distributor for availability. When placing an order, indicate the full product name and Part Number (P/N).

Sprinkler Assemblies with NPT Thread Connections

Specify: Series TY-FRB (Specify SIN), (specify K-factor), (specify Pendent or Upright) Sprinkler (specify) temperature rating, (specify) finish or coating, P/N (specify from Table F)

Recessed Escutcheon

Specify: Style (10, 20, 30, or 40) Recessed Escutcheon with (specify*) finish, P/N (specify*)

Sprinkler Wrench

Specify: W-Type 6 Sprinkler Wrench, P/N 56-000-6-387

Specify: W-Type 7 Sprinkler Wrench, P/N 56-850-4-001

^{*} Refer to Technical Data Sheet TFP770

Victaulic® FireLock Model FL-QR/C Standard Coverage, Quick Response Concealed Pendent Sprinklers, K5.6 (8.1)

1.0 PRODUCT DESCRIPTION

	QUICK RESPONSE CONCEALED PENDENT SPRINKLERS									
SIN	V5606	V3802	V3808							
ORIENTATION	Concealed Pendent	Concealed Pendent	Concealed Pendent							
K-FACTOR ¹	5.6 lmp./8.1 S.I.	5.6 lmp./8.1 S.I.	5.6 lmp./8.1 S.l.							
CONNECTION	½" NPT/15mm BSPT	½" NPT/15mm BSPT	1/2" NPT/15mm BSPT							
MAX. WORKING PRESSURE	175 psi (1200 kPa)	175 psi (1200 kPa)	300psi (2068 kPa)							
ESCUTCHEON	Concealed	Concealed	Concealed							
GLOBE RE-DESIGNATED	GL5606									
GLOBE EQUIVALENT		GL5604	GL5605							

	AVAILABLE WRENCHES								
SPRINKLER	1" ADJ Concealed	V38 Concealed	V38 Concealed						
PENDENT									

	CLEAN ROOM GASKET								
SPRINKLER	1" ADJ Concealed	V38 Concealed	V38 Concealed						
PENDENT									

Factory Hydrostatic Test: 100% @ 500 psi/3447 kPa/34 bar

Min. Operating Pressure: UL/FM: 7psi/48 kPa/.5 bar

Temperature Rating: See tables in section 2.0

 $^{\, 1}$ $\,$ For K-Factor when pressure is measured in bar, multiply S.I. units by 10.0.

ALWAYS REFER TO ANY NOTIFICATIONS AT THE END OF THIS DOCUMENT REGARDING PRODUCT INSTALLATION, MAINTENANCE OR SUPPORT.

2.0 CERTIFICATION/LISTINGS

	APPROVALS/LISTINGS									
SIN	V5606	Cover Plate	V3802	V3808	Cover Plate					
Nominal K Factor Imperial	5.6	-	5.6	5.6	-					
Nominal K Factor S.I. ²	8.1	-	8.1	8.1	_					
Orientation	Pendent	-	Pendent	Pendent	-					
Escutcheon	Concealed	_	Concealed	Concealed	_					
		APPROVED	TEMPERATURE RATII	NGS F°/C°						
cULus	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 135°F /57°C 155°F/68°C 155°F/68°C 155°F/68°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 135°F/57°C 165°F/74°C 165°F/74°C					
FM Standard Response Only	-	-	155°F/68°C 175°F/79°C 200°F/93°C	-	135°F/57°C 135°F/57°C 165°F/74°C 165°F/74°C					
LPCB	-	-	155°F/68°C 175°F/79°C 200°F/93°C	-	138°F/59°C 165°F/74°C 165°F/74°C					
CE	-	-	155°F/68°C 175°F/79°C 200°F/93°C	-	138°F/59°C 165°F/74°C 165°F/74°C					
CCC K ZSTDY	-	-	155°F/68°C 200°F/93°C	-	135°F/57°C 135°F/57°C 165°F/74°C					

APPROVALS/LISTINGS WITH CLEAN ROOM GASKET									
SIN	V3802 ³	V3808 ³	Cover Plate						
Nominal K Factor Imperial	5.6	5.6	_						
Nominal K Factor S.I. ²	8.1	8.1	_						
Orientation	Pendent	Pendent	_						
Escutcheon	Concealed	Concealed	_						
	A	PPROVED TEMPERATURE RATINGS F	°/C°						
cULus	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 135°F/57°C 165°F/74°C 165°F/74°C						

 $^{^{2}\,\,}$ $\,$ For K-Factor when pressure is measured in Bar, multiply S.I. units by 10.

NOTES

- Listings and approval as of printing.
- New York City Acceptance All UL Listed and/or FM Approved sprinklers acceptable to NYC per section 28-113 of the Administrative Code and the OTCR Rule.

Recognized as standard response when clean room gasket is installed.

3.0 SPECIFICATIONS – MATERIAL

Deflector: Bronze

Bulb Nominal Diamter: 3.0 mm

Load Screw: Brass
Pip Cap: Brass

Spring Seal: PTFE coated Beryllium nickel alloy

Frame: Brass

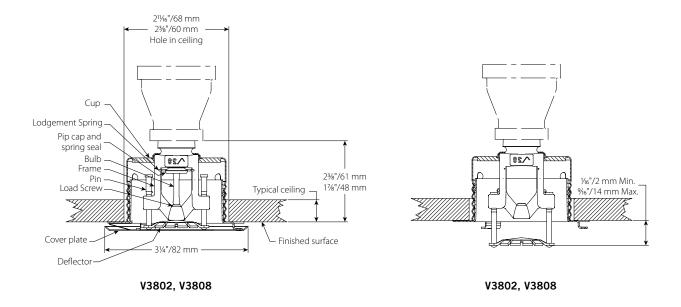
Concealed Cup: Steel
Cover Plate: Steel

Lodgement Spring: Stainless Steel

Pin: Stainless Steel

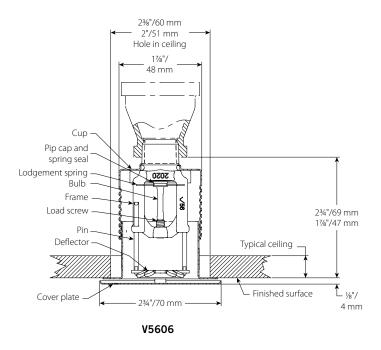
Installation Wrench: Ductile Iron

Sealing Gasket: White nitrile (CLEAN ROOM USE ONLY)

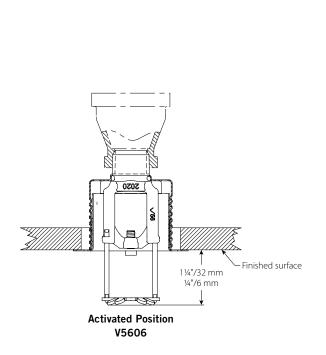

Cover Plate Finishes:Chrome platedWhite painted

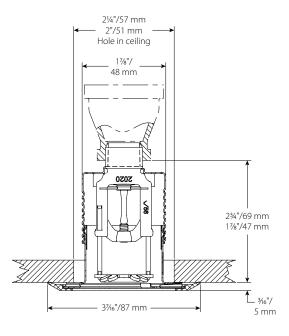
Flat black paintedCustom painted

NOTE

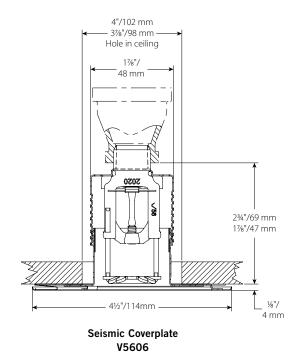

• For cabinets and other accessories refer to separate sheet.

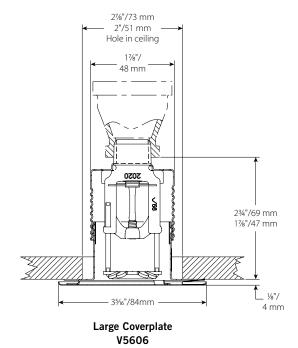
4.0 DIMENSIONS





4.0 DIMENSIONS (CONTINUED)


4



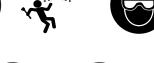
Clean Room Coverplate V5606

4.0 DIMENSIONS (CONTINUED)

5

victaulic.com

PERFORMANCE


Sprinkler is to be installed and designed as per NFPA, FM Datasheets, or any local standards.

6.0 **NOTIFICATIONS**

WARNING

- Read and understand all instructions before attempting to install any Victaulic products.
- Always verify that the piping system has been completely depressurized and drained immediately prior to installation, removal, adjustment, or maintenance of any Victaulic products.
- Wear safety glasses, hardhat, and foot protection.

Failure to follow these instructions could result in death or serious personal injury and property damage.

- These products shall be used only in fire protection systems that are designed and installed in accordance with current, applicable National Fire Protection Association (NFPA 13, 13D, 13R, etc.) standards, or equivalent standards, and in accordance with applicable building and fire codes. These standards and codes contain important information regarding protection of systems from freezing temperatures, corrosion, mechanical damage, etc.
- The installer shall understand the use of this product and why it was specified for the particular application.
- The installer shall understand common industry safety standards and potential consequences of improper product installation.
- It is the system designer's responsibility to verify suitability of materials for use with the intended fluid media within the piping system and external environment.
- The material specifier shall evaluate the effect of chemical composition, pH level, operating temperature, chloride level, oxygen level, and flow rate on materials to confirm system life will be acceptable for the intended service.

Failure to follow installation requirements and local and national codes and standards could compromise system integrity or cause system failure, resulting in death or serious personal injury and property damage.

REFERENCE MATERIALS 7.0

Ratings: All glass bulbs are rated for temperatures from -67°F/-55°C.

1-40: Victaulic FireLock™ Automatic Sprinklers Installation and Maintenance Instructions I-V9: Style V9 Victaulic FireLock™ IGS™ Installation-Ready™ Sprinkler Coupling Installation Instructions

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Victaulic products for a particular end-use application, in accordance with industry standards and project specifications, as well as Victaulic performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recommendation, advice, or opinion from any Victaulic employee, shall be deemed to alter, vary, supersede, or waive any provision of Victaulic Company's standard conditions of sale, installation guide, or this disclaimer

Intellectual Property Rights

No statement contained herein concerning a possible or suggested use of any material, product, service, or design is intended, or should be constructed, to grant any license under any patent or other intellectual property right of Victaulic or any of its subsidiaries or affiliates covering such use or design, or as a recommendation for the use of such material, product, service, or design in the infringement of any patent or other intellectual property right. The terms "Patented" or "Patent Pending" refer to design or utility patents or patent applications for articles and/or methods of use in the United States and/or other countries.

Note

This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Reference should always be made to the Victaulic installation handbook or installation instructions of the product you are installing. Handbooks are included with each shipment of Victaulic products, providing complete installation and assembly data, and are available in PDF format on our website at www.victaulic.com

Warranty

Refer to the Warranty section of the current Price List or contact Victaulic for details.

Trademarks

Victaulic and all other Victaulic marks are the trademarks or registered trademarks of Victaulic Company, and/or its affiliated entities, in the U.S. and/or other countries.

Victaulic® FireLock™ Series FL-QR/SW Standard Coverage, Quick Response Horizontal Sidewall and Recessed Horizontal Sidewall Sprinklers K2.8 (4.0), K4.2 (6.1), K5.6 (8.1), K8.0 (11.5)

1.0 PRODUCT DESCRIPTION

	QUICK RESPONSE HORIZONTAL SIDEWALL										
SIN	SIN V2826 V4226 V2710 V3410										
ORIENTATION	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall							
K-FACTOR ¹	2.8 lmp./4.0 S.I.	4.2 lmp./6.1 S.l.	5.6 lmp./8.1 S.I.	8.0 lmp./11.5 S.I.							
CONNECTION	½" NPT/15mm BSPT	½" NPT/15mm BSPT	½" NPT/15mm BSPT/IGS	3/4" NPT/ 20mm BSPT/IGS							
MAX. WORKING PRESSURE	175 psi/1200 kPa	175 psi/1200 kPa	175 psi/1200 kPa	175 psi/1200 kPa							
GLOBE RE-DESIGNATION	GL2826	GL4226									
GLOBE EQUIVALENT			GL5626	GL8127							

	QUICK RESPONSE RECESSED HORIZONTAL SIDEWALL									
SIN	V2826	V4226	V2710	V3410						
ORIENTATION	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall						
K-FACTOR ¹	2.8 lmp./4.0 S.I.	4.2 lmp./6.1 S.l.	5.6 lmp./8.1 S.l.	8.0 lmp./11.5 S.I.						
CONNECTION	1/2" NPT/15mm BSPT	½" NPT/15mm BSPT	½" NPT/15mm BSPT	3/4" NPT/ 20mm BSPT						
MAX. WORKING PRESSURE	175 psi/1200 kPa	175 psi/1200 kPa	175 psi/1200 kPa	175 psi/1200 kPa						
ESCUTCHEON	Recessed	Recessed	Recessed	Recessed						
GLOBE RE-DESIGNATION	GL2826	GL4226								
GLOBE EQUIVALENT			GL5626	GL8127						
	AVAILABLE GUARDS									
SPRINKLER	V28	V42	V27	V34						
Horizontal Sidewall										

	AVAILABLE WRENCHES										
Sprinkler	V56-2 Recessed	V56 Open End	V27-2 Recessed	V27 Open End	V34-2 Recessed	V34 Open End	3/16 Hex-Bit				
V2826 and V4226											
V2710											
V3410											

Factory Hydrostatic Test: 100% @ 500 psi/3447 kPa/34 bar

Min. Operating Pressure: UL/FM: 7psi/48 kPa/.5 bar

Temperature Rating: See tables in section 2.

 $^{\rm 1}$ $\,$ For K-Factor when pressure is measured in bar, multiply S.I. units by 10.0.

ALWAYS REFER TO ANY NOTIFICATIONS AT THE END OF THIS DOCUMENT REGARDING PRODUCT INSTALLATION, MAINTENANCE OR SUPPORT.

2.0 CERTIFICATION/LISTINGS

HORIZONTAL SIDEWALL APPROVALS/LISTINGS						
SIN	V2826	V4226	V2710	V3410		
Nominal K Factor Imperial	2.8	4.2	5.6	8		
Nominal K Factor S.I. ²	4.0	6.1	8.1	11.5		
Orientation	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall		
Escutcheon	Flush Extended	Flush Extended	Flush Extended	Flush Extended		
	Approved Temperature Ratings F°/C°					
cULus 4" – 12" Deflector Distance	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C		
FM	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	-		
LPCB	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	-		
CE	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	-		

RECESSED HORIZONTAL SIDEWALL APPROVALS/LISTINGS						
SIN	V2826	V4226	V2710	V3410		
Nominal K Factor Imperial	2.8	4.2	5.6	8		
Nominal K Factor S.I. ²	4.0	6.1	8.1	11.5		
Orientation	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall		
Escutcheon	RECESSED	RECESSED	RECESSED	RECESSED		
	Approved Temperature Ratings F°/C°					
cULus 4" – 12" Deflector Distance ½" and ¾" Adjustment Escutcheon "	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C		
FM ½" Adjustment Escutcheon Only	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	-		

² For K-Factor when pressure is measured in Bar, multiply S.I. units by 10.

NOTES

- Listings and approval as of printing.
- Where cULus Listed, Polyester and VC-250 Coatings Listed as Corrosion Resistant
- Where FM Approved, VC-250 Coating Approved as Corrosion Resistant
- New York City Acceptance All UL Listed and/or FM Approved sprinklers acceptable to NYC per section 28-113 of the Administrative Code and the OTCR Rule

victaulic.com

3.0 SPECIFICATIONS - MATERIAL

Deflector: Bronze

Bulb Nominal Diameter: 3.0mm

Load Screw: Bronze **Pip Cap:** Bronze

Spring Seal: PTFE coated Beryllium nickel alloy

Frame: Brass

Lodgement Spring: Stainless steel Installation Wrench: Ductile iron Sprinkler Frame Finishes:

Plain brass

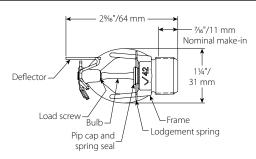
Chrome plated

White polyester painted^{3, 4}

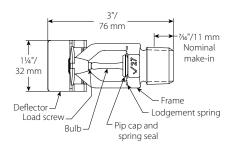
• Flat black polyester painted^{3, 4}

• Custom polyester painted^{3, 4}

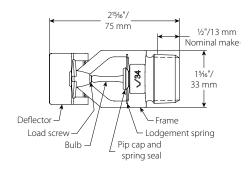
VC-250⁵


Not available on the Intermediate Level Style Pendent.

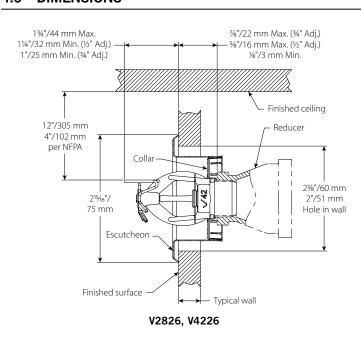
⁴ UL Listed for corrosion resistance.


5 UL Listed and FM Approved for corrosion resistance.

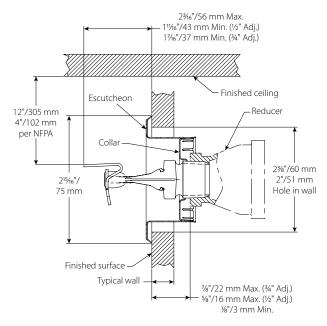
NOTE


• For cabinets and other accessories refer to separate sheet.

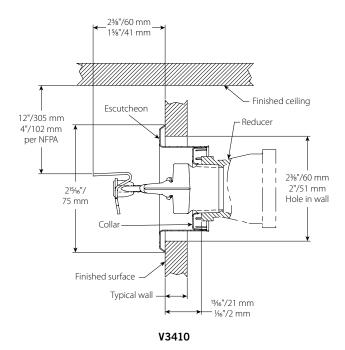
V2826, V4226



V2710


V3410

4.0 DIMENSIONS



4.0 DIMENSIONS (CONTINUED)

V2710

4

victaulic.com

5.0 PERFORMANCE

Sprinkler is to be installed and designed as per NFPA, FM Datasheets, or any local standards.

6.0 NOTIFICATIONS

WARNING

- Read and understand all instructions before attempting to install any Victaulic products.
- Always verify that the piping system has been completely depressurized and drained immediately prior to installation, removal, adjustment, or maintenance of any Victaulic products.
- Wear safety glasses, hardhat, and foot protection.

Failure to follow these instructions could result in death or serious personal injury and property damage.

- These products shall be used only in fire protection systems that are designed and installed in accordance with current, applicable National Fire Protection Association (NFPA 13, 13D, 13R, etc.) standards, or equivalent standards, and in accordance with applicable building and fire codes. These standards and codes contain important information regarding protection of systems from freezing temperatures, corrosion, mechanical damage, etc.
- The installer shall understand the use of this product and why it was specified for the particular application.
- The installer shall understand common industry safety standards and potential consequences of improper product installation.
- It is the system designer's responsibility to verify suitability of materials for use with the intended fluid media within the piping system and external environment.
- The material specifier shall evaluate the effect of chemical composition, pH level, operating temperature, chloride level, oxygen level, and flow rate on materials to confirm system life will be acceptable for the intended service.

Failure to follow installation requirements and local and national codes and standards could compromise system integrity or cause system failure, resulting in death or serious personal injury and property damage.

7.0 REFERENCE MATERIALS

Ratings: All glass bulbs are rated for temperatures from -67°F/-55°C.

1-40: Victaulic FireLock™ Automatic Sprinklers Installation and Maintenance Instructions
I-V9: Style V9 Victaulic FireLock™ IGS™ Installation-Ready™ Sprinkler Coupling Installation Instructions

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Victaulic products for a particular end-use application, in accordance with industry standards and project specifications, as well as Victaulic performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recommendation, advice, or opinion from any Victaulic employee, shall be deemed to alter, vary, supersede, or waive any provision of Victaulic Company's standard conditions of sale, installation guide, or this disclaimer.

Intellectual Property Rights

No statement contained herein concerning a possible or suggested use of any material, product, service, or design is intended, or should be constructed, to grant any license under any patent or other intellectual property right of Victaulic or any of its subsidiaries or affiliates covering such use or design, or as a recommendation for the use of such material, product, service, or design in the infringement of any patent or other intellectual property right. The terms "Patented" or "Patent Pending" refer to design or utility patents or patent applications for articles and/or methods of use in the United States and/or other countries.

Note

This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions. Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Installatio

Reference should always be made to the Victaulic installation handbook or installation instructions of the product you are installing. Handbooks are included with each shipment of Victaulic products, providing complete installation and assembly data, and are available in PDF format on our website at www.victaulic.com.

Warranty

Refer to the Warranty section of the current Price List or contact Victaulic for details.

Trademarks

Victaulic and all other Victaulic marks are the trademarks or registered trademarks of Victaulic Company, and/or its affiliated entities, in the U.S. and/or other countries.

Victaulic® VicFlex™ Sprinkler Fittings Series AH1 and AH1-CC Braided Flexible Hose

Series AH1

Series AH1-CC

1.0 PRODUCT DESCRIPTION

Available Sizes by Component

Series AH1 0.8"/DN20 ID Braided Hose: 31, 36, 48, 60, 72"/790, 914, 1220, 1525, 1830 mm. Note: length includes adapter nipple and 5.75"/140 mm straight reducer.

Series AH1-CC 0.8"/DN20 ID Braided Hose: 31, 36, 48, 60, 72"/790, 914, 1219, 1525, 1830 mm. Note: length includes captured coupling and 5.75"/140 mm straight reducer.

Connections

• From Branchline

- 3/4"/20mm BSPT female thread (VdS only)
- 1"/25mm NPT or BSPT female Thread
- 1"/25mm Grooved IGS (refer to Publication 10.54 for additional IGS connections)
 - No. 116 CPVC Adapter (1"/25mm Female CPVC Socket x 1"/25mm Grooved IGS)
 - No. 142 Welded Outlet
 - Style 922 Outlet-T
 - Style 920N Mechanical-T Outlet
 - No. 65 Grooved End of Run Fitting

Hose Inlet

- 1"/25mm Grooved IGS
- 1"/25mm NPT or BSPT male thread
- 3/4"/20mm BSPT male thread (VdS only)

ALWAYS REFER TO ANY NOTIFICATIONS AT THE END OF THIS DOCUMENT REGARDING PRODUCT INSTALLATION, MAINTENANCE OR SUPPORT.

1.0 PRODUCT DESCRIPTION (CONTINUED)

Sprinkler Reducer

- Sprinkler Connection: ½" and ¾"/15 mm and 20 mm NPT or BSPT
- Straight Lengths: 5.75, 9, 13"/140, 230, 330 mm
- 90° Elbows
 - Standard Short
 - Low Profile Short
 - Standard Long
 - Low Profile Long

(Short elbows typically used with concealed sprinklers. Long elbows typically used with recessed pendent sprinklers)

Brackets

- Style AB2 for suspended and hard-lid ceilings, allows for vertical sprinkler adjustment, and installation before
 most ceiling tiles in place
- Style AB3 for surface mount applications, wood, metal and block walls or ceilings
- Style AB4 for hard-lid ceilings with hat furring channel grid systems, allows for vertical sprinkler adjustment
- Style AB5 for hard-lid ceilings, allows for vertical sprinkler adjustment
- · Style AB7 for suspended and hard-lid ceilings
- Style AB7 Adjustable for suspended and hard-lid ceilings
- Style AB10 for Armstrong[®] TechZone[™] ceilings
- Style AB11 for lay-in panel suspended t-grid ceilings or drywall suspended t-grid ceilings, allows for low profile installations (use only with 90° low profile elbows)
- Style AB12 for suspended and hard-lid ceilings, allows for vertical sprinkler adjustment, and allows for low profile installation down to 4"/100mm
- · Style ABBA bracket for suspended, exposed, and hard-lid ceilings
- Style ABMM bracket for surface mount and stand off-mount applications, wood, metal and block walls, or ceilings and hard-lid ceilings
- Strut channel and pipe clamp, not supplied by Victaulic

Maximum Working Temperature

- 225°F/107°C
- 150°F/65°C (No. 116 CPVC Adapter)

Maximum Working Pressure

- 200 psi/1375 kPa (FM Approval)
- 175 psi/1206 kPa (cULus Listed)
- 1600 kPa/232 psi (VdS/LPCB Approved)
- 1.4 MPa (CCC Approval)
- 175 psi/1206 kPa (No. 116 CPVC Adapter)

Minimum Bend Radius

- 7"/178 mm (FM/CCC Approval)
- 3"/76.2 mm (cULus Listed)
- 3"/76.2 mm (VdS/LPCB Approved)

1.0 PRODUCT DESCRIPTION (CONTINUED)

Maximum Allowable Sprinkler K-Factors

- FM (½"/15mm reducer) K5.6/8,1 (S.I.), (¾"/20mm reducer) K14.0/20,2 (S.I.)
- cULus (½"/15mm reducer) K8.0/11,5 (S.I.), (¾"/20mm reducer) K14.0/20,2 (S.I.)
- VdS/LPCB (½"/15mm reducer) K5.6/8,1 (S.I.), (¾"/20mm reducer) K8.0/11,5 (S.I.)

2.0 CERTIFICATION/LISTINGS

LPS 1261: Issue 1.2 Cert/LPCB Ref. 104//02

3.0 SPECIFICATIONS - MATERIAL

Series AH1

Flexible Hose: 300-series Stainless Steel Collar/Weld Fitting: 300-series Stainless Steel

Gasket Seal: Victaulic EPDM **Isolation Ring:** Nylon

Nut and Nipple: Carbon Steel, Zinc-Plated Reducer (½ or ¾"): Carbon Steel, Zinc-Plated Low Profile Elbows: Ductile Iron, Zinc-Plated

Brackets: Carbon Steel, Zinc-Plated

Series AH1-CC

Flexible Hose: 300-series Stainless Steel Collar/Weld Fitting: 300-series Stainless Steel

Gasket Seal: Victaulic EPDM

Isolation Ring: Nylon

Coupling Retainer Ring: Polyethelene **Nut:** Carbon Steel, Zinc-Plated

Reducer (1/2"/15 mm or 3/4"/20 mm): Carbon Steel, Zinc-Plated

Low Profile Elbows: Ductile Iron. Zinc-Plated

Housing: Ductile iron conforming to ASTM A 536, Grade 65-45-12. Ductile iron conforming to ASTM A 395, Grade 65-45-15, is available upon special request.

Coupling Housing Coating:

- Orange enamel (North America, Asia Pacific).
- Red enamel (Europe).
- · Hot dipped galvanized.

Gasket:1

Grade "E" EPDM (Type A)

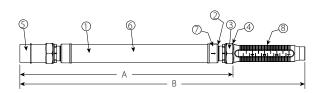
FireLock EZ products have been Listed by Underwriters Laboratories Inc., Underwriters Laboratories of Canada Limited, and Approved by Factory Mutual Research for wet and dry (oil free air) sprinkler services within the rated working pressure.

Bolts/Nut: Zinc electroplated carbon steel, trackhead meeting the physical and chemical requirements of ASTM A 449 and physical requirements of ASTM A 183.

Linkage: CrMo Alloy Steel zinc electroplated per ASTM B633 Zn/Fe 5, Type III Finish.

No. 116 Adapter Fitting: CPVC and Brass

Seal: Victaulic EPDM

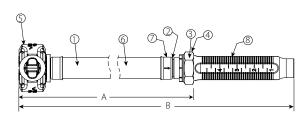

10.95 8507 Rev N Updated 06/2022 © 2022 Victaulic Company. All rights reserved.

ictauli

Services listed are General Service Guidelines only. It should be noted that there are services for which these gaskets are not compatible. Reference should always be made to the latest <u>Victaulic Gasket Selection Guide</u> for specific gasket service guidelines and for a listing of services which are not compatible.

4.0 DIMENSIONS

Product Details - Series AH1 Braided Hose



Item	Description
1	Flexible Hose
2	Isolation Ring
3	Gasket
4	Nut
5	Branch Line Nipple
6	Braid
7	Collar/Weld Fitting
8	Reducer

Hose Length Dimensions

Hose	Dimensions	
	Α	В
	inches	inches
Model	mm	mm
AH1-31	25.7	31.0
АПІ-ЭТ	653	788
AH1-36	31.7	36.0
AU1-20	806	915
AH1-48	42.7	48.0
AП1-40	1085	1220
AH1-60	54.7	60.0
AH1-00	1390	1524
AH1-72	66.7	72.0
ΑΠ1-/2	1695	1829

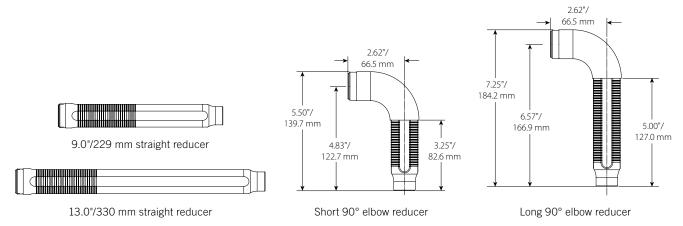
Series AH1-CC

Item	Description
1	Flexible Hose
2	Isolation Ring
3	Gasket
4	Nut
5	Style 108 Coupling
6	Braid
7	Collar/Weld Fitting
8	Reducer

Hose Length Dimensions

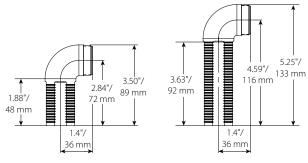
Hose	Dimensions	
	Α	В
	inches	inches
Model	mm	mm
AH1-CC-31	24.5	29.8
Ani-cc-3i	623	757
AH1-CC-36	29.5	34.8
Ani-cc-30	750	884
AH1-CC-48	41.5	46.8
ATT-CC-40	1055	1189
AH1-CC-60	53.5	58.8
Ant-cc-ou	1359	1494
AH1-CC-72	65.5	70.8
An 1-CC-/2	1664	1799

4


4.1 DIMENSIONS (CONTINUED)

Standard Reducer

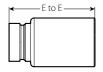
5.75"/140 mm straight reducer


Optional Reducers

NOTES

- The Short 90° elbow reducer is typically used with concealed sprinklers while the longer 90° elbow is typically used in the installation of recessed pendent sprinklers.
- FM/VdS Approved only.

Low Profile


Short 90° elbow reducer

Long 90° elbow reducer

NOTE

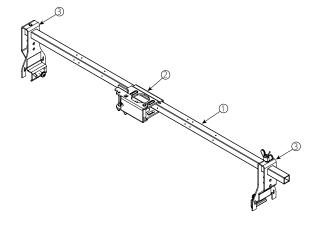
• Style AB11: When low profiles elbows are with the Style AB11 bracket, the Low Profile Short Elbow is typically used with concealed sprinklers while the Low Profile Long Elbow is typically used in the installation of recessed pendent sprinklers.

No. 116 CPVC Adapter

NOTES

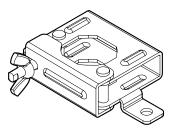
- E to E is 3.0"/76.0 mm
- The No. 116 CPVC Adapters have 2 ft (0.6 m). EQL of 1" Schedule 40 pipe

4.2 DIMENSIONS


Style AB2

- Suspended Ceilings
- Hard-Lid Ceilings

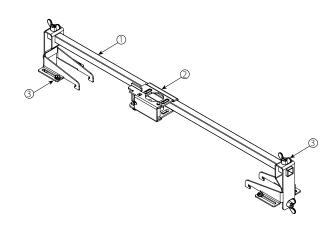
Item	Description
1	24"/610 mm or 48"/1220 mm Square Bar
2	Patented Vertically Adjustable Center Bracket
3	End Bracket


NOTE

Both sizes FM/VdS/LPCB approved, cULus listed

Style AB3

- Surface Mount Applications
- FM/LPCB Approved


Style AB4

• Hard-Lid Ceilings with Hat furring channel grid system

Item	Description
1	24"/610 mm or 48"/1220 mm Square Bar
2	Patented Vertically Adjustable Center Bracket
3	End Bracket for Hat Furring Channel

NOTE

Both sizes FM/VdS/LPCB approved, cULus listed

4.3 DIMENSIONS

VicFlex Brackets

Style AB5

• Hard-Lid Ceilings

Item	Description
1	24"/610 mm or 48"/1220 mm Square Bar
2	Patented Vertically Adjustable Center Bracket
3	End Bracket

NOTE

Both sizes FM/VdS/LPCB approved, cULus listed

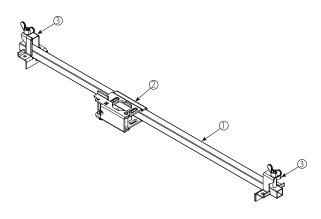
Style AB7

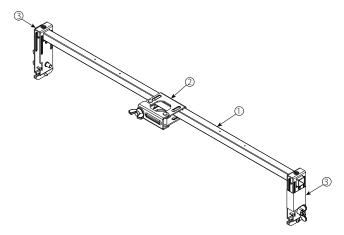
- Suspended Ceilings
- Hard-Lid Ceilings

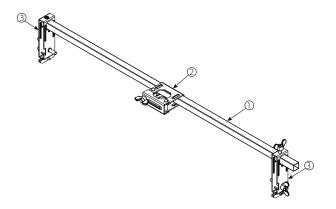
Item	Description
1	24"/610 mm or 48"/1220 mm Square Bar
2	Patented 1-Bee2® Center Bracket
3	End Bracket

NOTE

Both sizes FM/VdS/LPCB approved.


Style AB7 Adjustable


- Suspended Ceilings
- Hard-Lid Ceilings


Item	Description
1	700 mm or 1400 mm Square Bar
2	Patented 1-Bee2® Center Bracket
3	End Bracket (adjustable)

NOTE

Both sizes FM/VdS/LPCB approved.

7

4.4 DIMENSIONS

VicFlex Brackets

Style AB10

- Suspended ceilings
- Armstrong® TechZone™

Item	Description
1	6"/152 mm Square Bar
2	Patented 1-Bee2® Center Bracket
3	End Bracket

NOTE

• FM/VdS/LPCB approved, cULus listed.

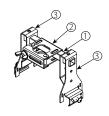
Style AB11

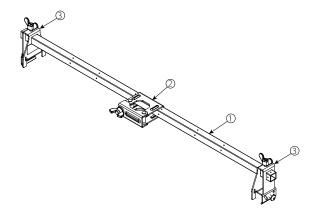
- Suspended ceilings
- Hard-Lid ceilings

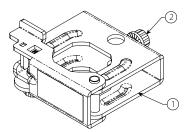
Item	Description
1	24"/610 mm or 48"/1219 mm Square Bar
2	Patented 1-Bee2® Center Bracket
3	End Bracket

NOTE

FM/VdS Approved, cULus listed.


Style AB12


- Suspended ceilings
- Hard-Lid ceilings


Item	Description
1	Style AB12 Bracket Body
2	T25 Drive Set Screw

NOTE

FM/VdS Approved.

4.5 DIMENSIONS

VicFlex Brackets

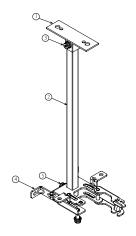
Style ABBA

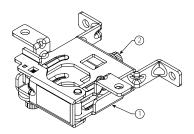
- Floor-above mount
- Cantilever mount
- Temporary mount in exposed ceilings

Item	Description						
1	Style ABBA Mounting Plate						
2	Style ABBA Square Bar						
3	Cap Screw, Serated Flange, M6 x 1 x 20, T25 Torx Drive Recessed						
4	Style ABMM Bracket Body						
5	Cap Screw, Serated Flange, M6 x 1 x 15.24, T25 Torx Drive Recessed						

NOTE

FM Approved.

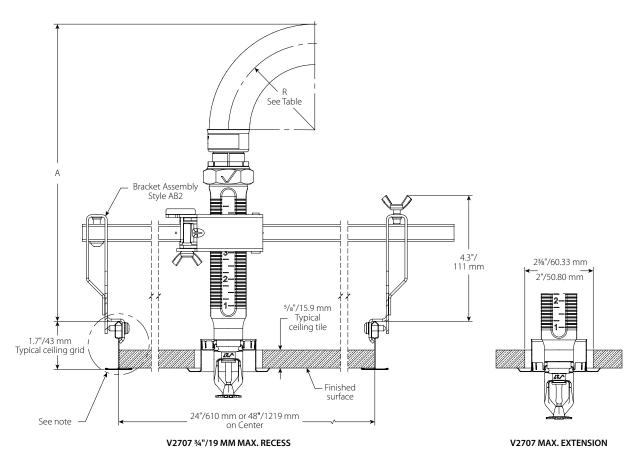



- Surface mount
- Stand-off mount

Item	Description
1	Style ABMM Bracket Body
2	Cap Screw, Serated Flange, M6 x 1 x 15.24, T25 Torx Drive Recessed

NOTE

FM Approved.



9

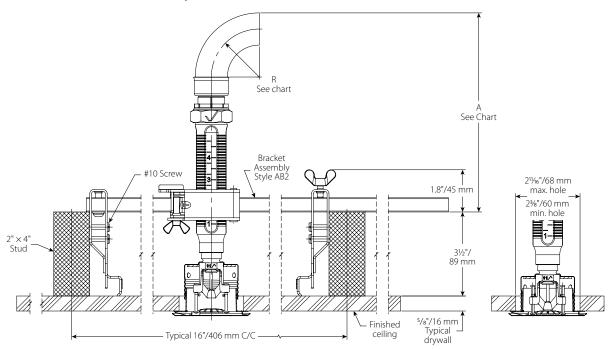
4.6 DIMENSIONS

Clearances

Series AH2 Braided Hose and Style AB2 Bracket

Hose Clearance Chart								
		Straight	Reducer		Long Elbow	Short Elbow		
	V2707 3/4" Max Recess	V3802 ½" Max Recess	V2707 3/4" Max Recess	V3802 ½" Max Recess	V2707 ³ ⁄ ₄ " Max Recess	V3802 ½" Max Recess		
	inches mm	inches mm	inches mm	inches mm	inches mm	inches mm		
"R" Minimum Bend Radius	3.0 76.2		-	.0 7.8	-	-		
"A" Minimum Required Installation Space	9.6 244	11.1 282	13.6 345	15.1 384	5.8 147	5.8 147		

NOTE


• Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

4.7 DIMENSIONS

Clearances

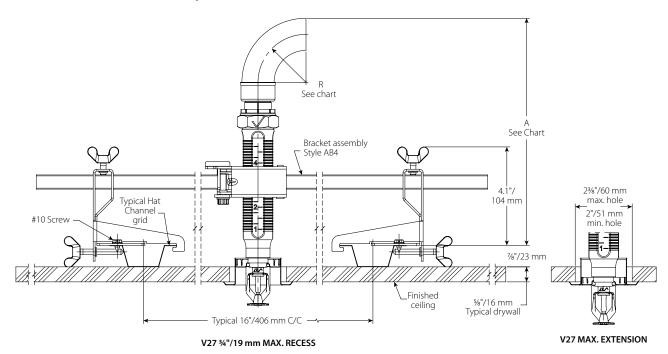
Series AH2 Braided Hose and Style AB2 Bracket

V38 ½"/13 mm MAX. RECESS	V38 MAX. EXTENSION

Hose Clearance Chart									
	Straight Reducer								
	V2707 3/4" 20 mm Max Recess	V3802 ½" 13 mm Max Recess	V2709 ³ ⁄ ₄ " I 20 mm Sidewall	V2707 ³ / ₄ " 20 mm Max Recess	V3802 ½" 13 mm Max Recess	V2709 ³ / ₄ " 20 mm Sidewall			
	inches mm	inches mm	inches mm	inches mm	inches mm	inches mm			
"R" Minimum Bend Radius	3.0			7.0 175					
"A" Minimum Required Installation Space	7.2 183	8.6 218	7.1 180	11.2 285	12.6 320	11.1 282			

Hose Clearance Chart								
	Long	Elbow	Short Elbow					
	V2707 ³ ⁄ ₄ " 20 mm Max Recess	V2709 ³ ⁄4" 20 mm Sidewall	V3802 ½" 13 mm Max Recess					
	inches	inches	inches					
	mm	mm	mm					
"R" Minimum Bend Radius		-						
"A" Minimum Required Installation Space	3.3 84	3.6 91	3.3 84					

NOTE


Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

ictaulic

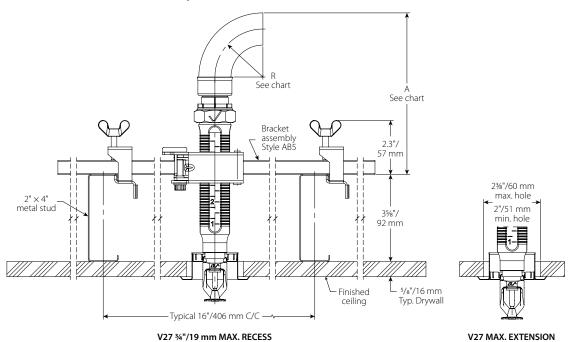
4.8 DIMENSIONS

Clearances

Series AH2 Braided Hose and Style AB4 Bracket

Hose Clearance Chart								
					Long Elbow	Short Elbow		
	V2707 3/4" Max Recess	V3802 ½" Max Recess	V2707 ³ ⁄ ₄ " Max Recess	V3802 ½" Max Recess	V2707 3/4" Max Recess	V3802 1/2" Max Recess		
	inches	inches	inches	inches	inches	inches		
	mm	mm	mm	mm	mm	mm		
"R" Minimum Bend Radius	3.0 80	3.0 80	7.0 175	7.0 175	-	-		
"A" Minimum Required Installation Space	9.8 249	11.2 285	13.8 351	15.2 386	8.0 203	5.9 150		

NOTE


Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

4.9 DIMENSIONS

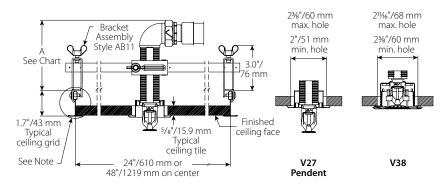
Clearances

Series AH2 Braided Hose and Style AB5 Bracket

Hose Clearance Chart									
	V2707	V3802	V2709	V2707	V3802	V2709			
	3/4" 20 mm	½" 13 mm	¾" I 20 mm	³ ⁄ ₄ " I 20 mm	½" 13 mm	³ / ₄ " 20 mm			
	Max Recess	Max Recess	Sidewall	Max Recess	Max Recess	Sidewall			
	inches	inches	inches	inches	inches	inches			
	mm	mm	mm	mm	mm	mm			
"R" Minimum	3.0			7.0					
Bend Radius	80			175					
"A" Minimum Required Installation Space	7.0 178	8.7 221	7.1 180	11.0 279	12.7 323	11.1 282			

Hose Clearance Chart								
		Long Elbow	Low-Profile Long Elbow	Short Elbow				
	V2707 3/4" 20 mm Max Recess	V3802 ½" 13 mm Max Recess	V2709 3/4" 20 mm Sidewall	V3802 ½" 13 mm Max Recess	V3802 ½" 13 mm Max Recess			
	inches mm	inches mm	inches mm	inches mm	inches mm			
"R" Minimum Bend Radius			-					
"A" Minimum Required Installation Space	3.5 89	4.9 124	3.6 91	2.9 74	3.3 84			

NOTE


Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

ictaulic

4.10 DIMENSIONS

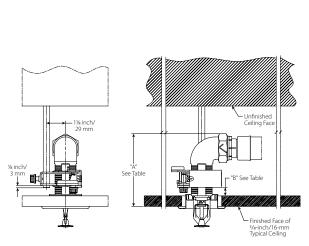
Clearances

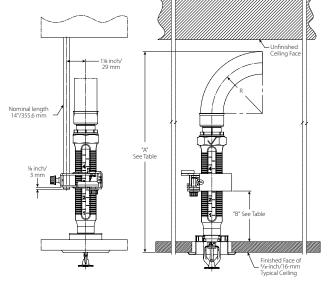
Series AH2 Braided Hose and Style AB11 Bracket (LOW PROFILE SOLUTION)

Hose Clearance Chart							
	Low-Profile Long Elbow	Low-Profile Short Elbow					
	V2707 ³ ⁄ ₄ " 20 mm Max Recess"	V3802 ½" 13 mm Max Recess					
	inches mm	inches mm					
"A" Minimum Required Installation Space	4.0 102	3.9 99					

NOTE

• Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.


4.11 DIMENSIONS


CLEARANCES ABOVE CEILING

Series AH1 Braided Hose and Style AB12 and ABBA Bracket

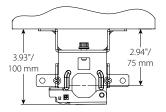
Suspended Ceiling Grid with Recessed Sprinkler with Low Profile Short Elbow

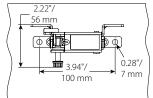
Suspended Ceiling Grid with Recessed Sprinkler and Straight 5.75"/140mm Reducer

V2707 ½"/12.7 mm MAX. RECESS

V2707 ¾"/19 mm MAX. RECESS

Dimension		Low Profile Short Elbow		Low Profile Long Elbow		Standard Short Elbow		Standard Long Elbow		Standard Straight Reducer	
		3/4"/19mm Recessed*	Concealed	3/4"/19mm Recessed	Concealed	3/4"/19mm Recessed	Concealed	3/4"/19mm Recessed	Concealed	3/4"/ 19mm Recessed	Concealed
		inches mm	inches mm	inches mm	inches mm	inches mm	inches mm	inches mm	inches mm	inches mm	inches mm
Α	Minimum Required Installation Space	4.0 101.6	5.5 139.7	5.6 142.2	7.2 182.9	5.9 149.9	7.5 190.5	7.7 195.6	9.3 236.2	15.0 381.0	16.6 421.6
В	Distance from Top of Typical Ceiling Tile to Bottom of Gate		2.0 50.8	1.5 38.1	1.5 38.1	1.5 38.1	1.5 38.1	3.0 76.2	3.0 76.2	3.0 76.2	3.0 76.2

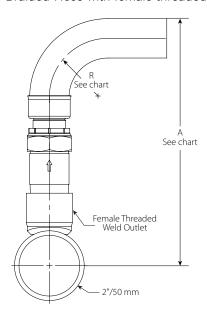

^{*} Adjustability will be limited


NOTE

4.12 DIMENSIONS

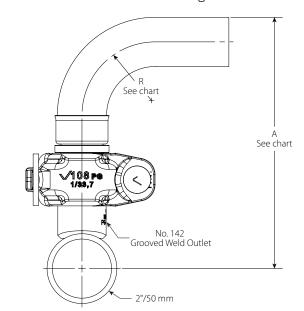
Style ABMM Bracket

Stand-off Dimensions



Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

4.13 DIMENSIONS

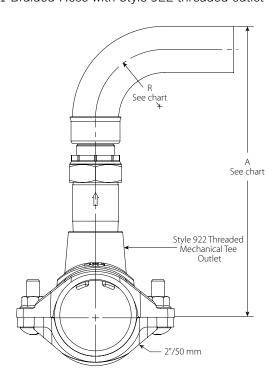

BRANCHLINE CLEARANCES

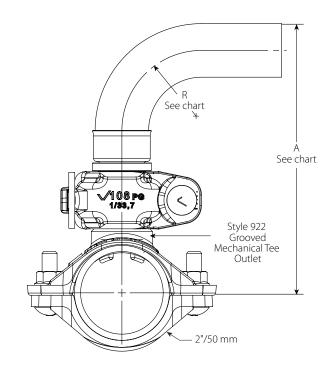
Series AH1 Braided Hose with female threaded outlet

Hose Clearance Chart									
Dime	ension								
		inches	inches	inches	inches	inches			
		mm	mm	mm	mm	mm			
D	Minimum	3	4	5	6	7			
R	Bend Radius	80	100	125	150	175			
А	Min.	9.4	10.4	11.4	12.4	13.41			
	IVIII.	239	264	290	315	341			

Series AH1-CC Braided Hose with grooved outlet

Hose Clearance Chart								
Dime	nsion							
		inches mm	inches mm	inches mm	inches mm	inches mm		
R	Minimum Bend Radius	3 80	4 100	5 125	6 150	7 175		
А	Min.	8.1 205	9.1 231	10.1 256	11.1 281	12.1 307		



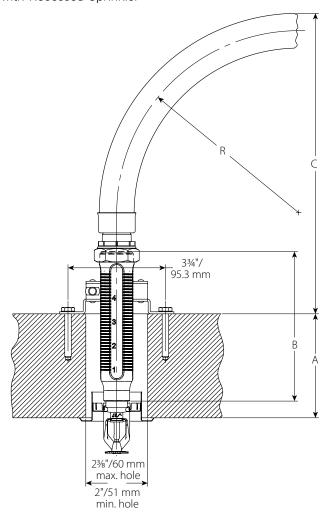

4.14 DIMENSIONS

BRANCHLINE CLEARANCES

Series AH1 Braided Hose with Style 922 threaded outlet

Series AH1-CC Braided Hose with Style 922 grooved outlet

Hose Clearance Chart								
Dime	nsion							
		inches	inches	inches	inches	inches		
		mm	mm	mm	mm	mm		
D	Minimum	3	4	5	6	7		
R	Bend Radius	80	100	125	150	175		
_	Min.	9.4	10.4	11.4	12.4	13.4		
Α	IVIII1.	238	263	289	314	339		


Hose Clearance Chart									
Dimension									
		inches	inches	inches	inches	inches			
		mm	mm	mm	mm	mm			
D	Minimum	3	4	5	6	7			
R	Bend Radius	80	100	125	150	175			
Α	Min.	7.7	8.7	9.7	10.7	11.7			
	IVIII I.	197	222	247	273	298			

4.15 DIMENSIONS

CLEARANCES ABOVE CEILING

Series AH1 Braided Hose and Style AB3 and ABMM Bracket

Surface Mount Application with Recessed Sprinkler

	Hose Clearances																
Wall Thickness "A"		4			5	8	10		2			4			5	8	10
		100			50	_	250		50			100			50	200	
Outlet Length	5.75	9	13	9	13	13	13	5.75	9	13	5.75	9	13	9	13	13	13
"B"	146.1	228.6	330.2	228.6	330.2	330.2	330.2	146.1	228.6	330.2	146.1	228.6	330.2	228.6	330.2	330.2	330.2
Hose	9.6	12.8	16.8	10.8	14.8	12.8	10.8	12.6	15.8	19.8	10.6	13.8	17.8	11.8	15.8	13.8	11.8
Clearance "C"	243	325	427	275	376	325	275	319	402	503	268	351	452	300	402	351	300
Bend Radius		7 8															
"R"				175								20	00				

NOTE

- Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.
- See installation instructions for mounting screw type and size.

5.0 PERFORMANCE – FRICTION LOSS DATA

Series AH1 and AH1-CC Braided Hose with Straight 5.75" Reducers Style AB2, AB4, AB5 and AB10 Brackets

Length inches mm	Туре	Nominal Outlet Size inches DN	Equivalent Length of 1"/33.7mm Sch. 40 pipe feet meters	Max Bends
31 790	Straight	½ DN15	41.0 12.5	3
31 790	Straight	³⁄ ₄ DN20	39.0 11.9	3
36 915	Straight	½ DN15	49.0 14.9	4
36 915	Straight	³ / ₄ DN20	48.0 14.6	4
48 1220	Straight	½ DN15	62.0 18.9	4
48 1220	Straight	³⁄4 DN20	59.0 18.0	4
60 1525	Straight	½ DN15	72.0 21.9	4
60 1525	Straight	³⁄4 DN20	73.0 22.3	4
72 1830	Straight	½ DN15	87.0 26.5	5
72 1830	Straight	³⁄ ₄ DN20	90.0 27.4	5

5.0 PERFORMANCE – FRICTION LOSS DATA (CONTINUED)

Series AH1 Braided Hose with 90° Low Profile Elbows Style AB11 VicFlex Bracket $\,$

Hose	Re	educer	U	L
Length inches mm	Туре	Nominal Outlet Size inches DN	Equivalent Length of 1"/33.7mm Sch. 40 pipe feet meters	Max Bends
31 790	LP Elbow	½ DN15	37.0 11.3	3
31 790	LP Elbow	³ / ₄ DN20	44.0 13.4	3
36 915	LP Elbow	½ DN15	47.0 14.3	4
36 915	LP Elbow	³⁄₄ DN20	53.0 16.2	4
48 1220	LP Elbow	½ DN15	58.0 17.7	4
48 1220	LP Elbow	³⁄ ₄ DN20	68.0 20.7	4
60 1525	LP Elbow	½ DN15	70.0 21.3	4
60 1525	LP Elbow	³ / ₄ DN20	77.0 23.5	4
72 1830	LP Elbow	½ DN15	83.0 25.3	5
72 1830	LP Elbow	³ / ₄ DN20	99.0 30.2	5

5.0 PERFORMANCE - FRICTION LOSS DATA

Series AH1 Braided Hose Equivalent Length Design Guide

Equivalent length values at various numbers of 90 degree bends at 3"/76.2 mm center line bend radius

	Hose			Bends		
Length	Nominal Outlet Size	1 Bend	2 Bends	3 Bends	4 Bends	5 Bends
inches	inches	feet	feet	feet	feet	feet
mm	DN	meters	meters	meters	meters	meters
31 790	½ DN15	28.0 8.5	34.0 10.4	41.0 12.5	-	-
31 790	³ ⁄ ₄ DN20	28.0 8.5	33.0 10.1	39.0 11.9	-	-
36	½	34.0	39.0	44.0	49.0	-
915	DN15	10.4	11.9	13.4	14.9	
36	³ / ₄	33.0	39.0	44.0	48.0	-
915	DN20	10.1	11.9	13.4	14.6	
48	½	44.0	50.0	56.0	62.0	-
1220	DN15	13.4	15.2	17.1	18.9	
48	³¾	44.0	50.0	55.0	59.0	-
1220	DN20	13.4	15.2	16.8	18.0	
60	½	55.0	61.0	66.0	72.0	-
1525	DN15	16.8	18.6	20.1	21.9	
60	³⁄₄	55.0	61.0	67.0	73.0	_
1525	DN20	16.8	18.6	20.4	22.3	
72	½	68.0	72.0	76.0	82.0	87.0
1830	DN15	20.7	21.9	23.2	25.0	26.5
72	³ ⁄ ₄	67.0	71.0	75.0	83.0	90.0
1830	DN20	20.4	21.6	22.9	25.3	27.4

NOTES

- Values for use with 5.75" straight reducers.
- The values in this table are provided by the manufacturer for reference only. For friction loss data in accordance with the UL Certification, please refer to page 17 of this publication.

How to use this Design Guide:

- For some systems, it may be advantageous for the designer to calculate the system hydraulics using shorter equivalent lengths associated with fewer than the maximum allowable number of bends. In this case, the designer may select a design number of bends for the job and use the associated equivalent length from the design guide to determine the system hydraulics.
- It is possible that the actual installed condition of some of the flexible drops may have more bends than the designer selected. When this happens, the design guide may be used to find equivalent lengths based on the actual installed number of bends for particular sprinkler installations. The system hydraulics can be recalculated using actual equivalent lengths to verify the performance of the system.

5.0 PERFORMANCE - FRICTION LOSS DATA

Series AH1 and AH1-CC Braided Hose Style AB2, AB3, AB4, AB5, AB7, AB7 Adj., AB8, AB10, AB12, ABBA and ABMM VicFlex Brackets

Hose	Red	lucer	Sprinkler	FM		
Length inches mm	Туре	Nominal Outlet Size inches DN	K-factor Imperial S.I.	Equivalent Length of 1"/33.7mm Sch. 40 pipe feet meters	Max Bends	
31		1/2	5.6	35.7		
790	Straight	DN15	8.1	10.9	2	
31 790	Elbow	½ DN15	5.6 8.1	30.4 9.3	2	
36 915	Straight	½ DN15	5.6 8.1	42.1 12.8	2	
36 915	Elbow	½ DN15	5.6 8.1	36.9 11.2	2	
48 1220	Straight	½ DN15	5.6 8.1	57.5 17.5	3	
48 1220	Elbow	½ DN15	5.6 8.1	52.2 15.9	3	
60 1525	Straight	½ DN15	5.6 8.1	72.9 22.2	4	
60 1525	Elbow	½ DN15	5.6 8.1	68.2 20.8	4	
72 1830	Straight	½ DN15	5.6 8.1	88.4 26.9	4	
72 1830	Elbow	½ DN15	5.6 8.1	83.8 25.5	4	
31 790	Straight	³ / ₄ DN20	8.0 11.5	32.9 10.0	2	
31 790	Elbow	³ / ₄ DN20	8.0 11.5	32.4 9.9	2	
36 915	Straight	3/4 DN20	8.0 11.5	39.2 11.9	2	
36 915	Elbow	3/4 DN20	8.0 11.5	38.9 11.9	2	
48 1220	Straight	³ / ₄ DN20	8.0 11.5	54.4 16.6	3	
48 1220	Elbow	3/ ₄ DN20	8.0 11.5	54.5 16.6	3	
60 1525	Straight	3/4 DN20	8.0 11.5	69.5 21.2	4	
60 1525	Elbow	3/ ₄ DN20	8.0 11.5	70.1 21.4	4	
72 1830	Straight	3/4 DN20	8.0 11.5	84.7 25.8	4	
72 1830	Elbow	3/4 DN20	8.0 11.5	85.7 26.1	4	

FM NOTES

- Series AH1 has been tested and Approved by FM Global for use in wet, dry and preaction systems per NFPA 13, 13R, and 13D and FM data sheets 2-0, 2-5, and 2-8. FM 1637 and Vds standards for safety include, but are not limited to, pressure cycling, corrosion resistance, flow characterisitics, vibration resistance, leakage, mechanical and hydrostatic strength.
- EXAMPLE: A 48-inch hose installed with two 30° bends and two 90° bends is permitted and considered equivalent to the data in the table shown above. In this example, the total number of degrees is 240°, which is less than the allowable 270°.

5.0 PERFORMANCE – FRICTION LOSS DATA (CONTINUED)

Series AH1 and AH1-CC Braided Hose Style AB2, AB3, AB4, AB5, AB7, AB7 Adj., AB8, AB10, AB12, ABBA and ABMM VicFlex Brackets

Hose	Re	educer	Sprinkler	FM	FM		
Length inches		Nominal Outlet Size	K-factor	Equivalent Length of 1"/33.7mm Sch. 40 pipe feet			
mm	Туре	DN	Imperial S.I.	meters	Max Bends		
31 790	Straight	³ / ₄ DN20	11.2 16.1	32.9 10.0	2		
31 790	Elbow	³ / ₄ DN20	11.2 16.1	32.4 9.9	2		
36 915	Straight	³ / ₄ DN20	11.2 16.1	39.2 11.9	2		
36 915	Elbow	³⁄₄ DN20	11.2 16.1	38.9 11.9	2		
48 1220	Straight	³⁄₄ DN20	11.2 16.1	54.4 16.6	3		
48 1220	Elbow	³ / ₄ DN20	11.2 16.1	54.5 16.6	3		
60 1525	Straight	³ / ₄ DN20	11.2 16.1	69.5 21.2	4		
60 1525	Elbow	³ / ₄ DN20	11.2 16.1	70.1 21.4	4		
72 1830	Straight	³ / ₄ DN20	11.2 16.1	84.7 25.8	4		
72 1830	Elbow	³ / ₄ DN20	11.2 16.1	85.7 26.1	4		
31 790	Straight	³ / ₄ DN20	14.0 20.2	32.9 10.0	2		
31 790	Elbow	³ / ₄ DN20	14.0 20.2	32.4 9.9	2		
36 915	Straight	³ / ₄ DN20	14.0 20.2	39.2 11.9	2		
36 915	Elbow	³ / ₄ DN20	14.0 20.2	38.9 11.9	2		
48 1220	Straight	³ / ₄ DN20	14.0 20.2	54.4 16.6	3		
48 1220	Elbow	³ / ₄ DN20	14.0 20.2	54.5 16.6	3		
60 1525	Straight	³ / ₄ DN20	14.0 20.2	69.5 21.2	4		
60 1525	Elbow	³ / ₄ DN20	14.0 20.2	70.1 21.4	4		
72 1830	Straight	3/4 DN20	14.0 20.2	84.7 25.8	4		
72 1830	Elbow	3/4 DN20	14.0 20.2	85.7 26.1	4		

FM NOTES

- Series AH1 has been tested and Approved by FM Global for use in wet, dry and preaction systems per NFPA 13, 13R, and 13D and FM data sheets 2-0, 2-5, and 2-8. FM 1637 and Vds standards for safety include, but are not limited to, pressure cycling, corrosion resistance, flow characterisitics, vibration resistance, leakage, mechanical and hydrostatic strength.
- EXAMPLE: A 48-inch hose installed with two 30° bends and two 90° bends is permitted and considered equivalent to the data in the table shown above. In this example, the total number of degrees is 240°, which is less than the allowable 270°.

5.0 PERFORMANCE - FRICTION LOSS DATA

Series AH1 Braided Hose with 90° Low Profile Elbows Style AB5, AB11, AB12, ABBA and ABMM VicFlex Bracket

Hose	Re	educer	Sprinkler	FM	
Length inches mm	Туре	Nominal Outlet Size inches DN	K-factor Imperial S.I.	Equivalent Length of 1"/33.7mm Sch. 40 pipe feet meters	Max Bends
31 790	LP Elbow	³ / ₄ DN20	5.6 8.1	31.4 9.6	2
36 915	LP Elbow	³ / ₄ DN20	5.6 8.1	37.7 11.5	2
48 1220	LP Elbow	³ / ₄ DN20	5.6 8.1	52.8 16.1	3
60 1525	LP Elbow	³ / ₄ DN20	5.6 8.1	67.8 20.7	4
72 1830	LP Elbow	³ / ₄ DN20	5.6 8.1	82.9 25.3	4
31 790	LP Elbow	³ / ₄ DN20	8.0 11.5	32.3 9.8	2
36 915	LP Elbow	³ / ₄ DN20	8.0 11.5	38.8 11.8	2
48 1220	LP Elbow	³ / ₄ DN20	8.0 11.5	54.4 16.6	3
60 1525	LP Elbow	³ / ₄ DN20	8.0 11.5	70.1 21.4	4
72 1830	LP Elbow	³ / ₄ DN20	8.0 11.5	85.7 26.1	4
31 790	LP Elbow	³ / ₄ DN20	11.2 16.1	32.3 9.8	2
36 915	LP Elbow	³ / ₄ DN20	11.2 16.1	38.8 11.8	2
48 1220	LP Elbow	³ / ₄ DN20	11.2 16.1	54.4 16.6	3
60 1525	LP Elbow	³ / ₄ DN20	11.2 16.1	70.1 21.4	4
72 1830	LP Elbow	³ / ₄ DN20	11.2 16.1	85.7 26.1	4
31 790	LP Elbow	³ / ₄ DN20	14.0 20.2	32.3 9.8	2
36 915	LP Elbow	³ / ₄ DN20	14.0 20.2	38.8 11.8	2
48 1220	LP Elbow	³ / ₄ DN20	14.0 20.2	54.4 16.6	3
60 1525	LP Elbow	³ / ₄ DN20	14.0 20.2	70.1 21.4	4
72 1830	LP Elbow	³ / ₄ DN20	14.0 20.2	85.7 26.1	4

FM NOTES

- Series AH1 has been tested and Approved by FM Global for use in wet, dry and preaction systems per NFPA 13, 13R, and 13D and FM data sheets 2-0, 2-5, and 2-8. FM 1637 and Vds standards for safety include, but are not limited to, pressure cycling, corrosion resistance, flow characterisitics, vibration resistance, leakage, mechanical and hydrostatic strength.
- Differences in equivalent lengths are due to varying test methods, per FM 1637 and VdS standards. Refer to these standards for additional information regarding friction loss test methods.
- EXAMPLE: A 48-inch hose installed with two 30° bends and two 90° bends at a 7-inch bend radius is permitted and considered equivalent to the data in the table shown above. In this example, the total number of degrees is 240°, which is less than the allowable 270°.

5.0 PERFORMANCE - FRICTION LOSS DATA

Series AH1 and AH1-CC Braided Hose Style AB2, AB4, AB5, AB7, AB7 Adj., AB8, AB10, AB11 and AB12 Brackets

Hose	Reducer	VdS	3
Length	Nominal Outlet Size	Equivalent Length according to EN 10255 DN 20 (26.9 x 2.65mm)	
mm	DN	meters	
inches	inches	feet	Max Bends
790	DN15	3.2	3
31	1/2	10.5	3
790	DN20	3.2	3
31	3/4	10.5	3
915	DN15	3.7	2
36	1/2	12.1	3
915	DN20	3.7	2
36	3/4	12.1	3
1220	DN15	4.9	2
48	1/2	16.1	3
1220	DN20	4.9	2
48	3/4	16.1	3
1525	DN15	6.1	4
60	1/2	20.0	4
1525	DN20	6.1	4
60	3/4	20.0	4
1830	DN15	7.3	4
72	1/2	24.0	4
1830	DN20	7.3	4
72	3/4	24.0	4

VDS CEILING MANUFACTURERS LIST

AB1, AB2, AB7, AB10, AB11, AB12 AB4

1. AMF

2. Armstrong

3. Chicago Metallic

4. Dipling

5. Durlum

6. Geipel

7. Gema-Armstrong

8. Hilti

9. Knauf

10. Lafarge 11. Linder

12. Odenwald

13. Richter

14. Rigips

15. Rockfon Pagos

16. Suckow & Fischer

17. USG Donn

AB8

No specific approval

1. Hilti

2. Knauf

3. Lafarge

4. Lindner

5. Rigips

5.0 PERFORMANCE - FRICTION LOSS DATA (continued)

Series AH1 and AH1-CC Braided Hose Style AB2, AB3, AB4, AB5, AB7, AB8 and AB10 Brackets

Hose	Reducer	LPCB		
Length	Nominal Outlet Size	Equivalent Length according to EN 10255 DN 25 (33.7 x 3.25mm)	Max Bends	
mm	DN	meters		
inches	inches	feet		
790	DN15	10.4	2	
31	1/2	34.1	2	
790	DN20	11.3	2	
31	3/4	37.1	2	
915	DN15	13.4	2	
36	1/2	44.0	3	
915	DN20	13.9	2	
36	3/4	45.6	3	
1220	DN15	16.2	3	
48	1/2	53.1	3	
1220	DN20	16.5	3	
48	3/4	54.1	3	
1525	DN15	19.2	3	
60	1/2	63.0	3	
1525	DN20	19.7	3	
60	3/4	64.6	3	
1830	DN15	22.8	3	
72	1/2	74.8	5	
1830	DN20	23.5	3	
72	3/4	77.1	3	

(W)

Series AH1 Flexible Hose Friction Loss Data

		Equivalent Length				
	Length of Flexible Hose	Straight Configuration	Bend Configuration			
	mm	meters	meters			
Model	inches	feet	feet			
AH1-31	790	4.78	5.80			
AH1-31	31	15.7	19.0			
AU1 26	915	5.59	10.15			
AH1-36	36	18.3	33.3			
ALI1 40	1220	9.75	16.25			
AH1-48	48	32.0	53.3			
AH1-60	1525	12.15	22.94			
An1-00	60	39.9	75.3			
A111 72	1830	14.26	25.98			
AH1-72	72	46.8	85.2			

NOTE

• Friction loss data is in accordance with GB5135.16 tested at a flow rate of 114 liters per minute (30 gallons per minute).

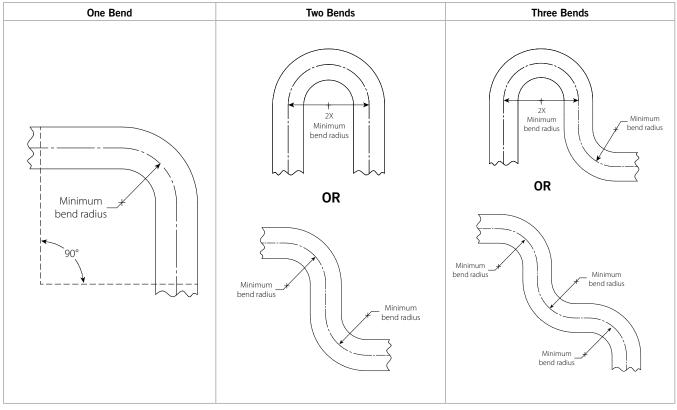
6.0 NOTIFICATIONS

WARNING

- Read and understand all instructions before attempting to install any Victaulic products.
- Always verify that the piping system has been completely depressurized and drained immediately prior to installation, removal, adjustment, or maintenance of any Victaulic products.
- Wear safety glasses, hardhat, and foot protection.
- These products shall be used only in fire protection systems that are designed and installed in accordance with current, applicable National Fire Protection Association (NFPA 13, 13D, 13R, etc.) standards, or equivalent standards, and in accordance with applicable building and fire codes. These standards and codes contain important information regarding protection of systems from freezing temperatures, corrosion, mechanical damage, etc.
- The installer shall understand the use of this product and why it was specified for the particular application.
- The installer shall understand common industry safety standards and potential consequences of improper product installation.

MARNING

- It is the responsibility of the system designer to verify suitability of 300-series stainless steel flexible hose for use with the intended fluid media within the piping system and external environments.
- The effect of chemical composition, pH level, operating temperature, chloride level, oxygen level, and flow rate
 on 300-series stainless steel flexible hose must be evaluated by the material specifier to confirm system life will
 be acceptable for the intended service.
- It is the responsibility of the owner of a building or their authorized agent to provide the sprinkler system installer with any knowledge that the water supply might be contaminated with or conducive to the development of microbiologically influenced corrosion (MIC), including as required by NFPA 13. Failure to identify adverse water quality issues may affect the VicFlex product and void the manufacturer's warranty.


Failure to follow these instructions could cause product failure, resulting in serious personal injury and/or property damage.

Victaulic VicFlex Series AH1 and AH1-CC Flexible Sprinkler Fittings may be painted provided the paint is compatible with stainless steel and zinc-plated carbon steel or ductile iron. Care should be taken to ensure the sprinkler and associated escutcheon or coverplate are not painted.

7.0 REFERENCE MATERIALS - CHARACTERISTICS

Flexible Hose In-Plane Bend Characteristics

NOTE

• For out-of-plane (three-dimensional) bends, care must be taken to avoid imparting torque on the hose.

I-VicFlex: Field Installation Handbook
I-RES: Field Installation Handbook

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Victaulic products for a particular end-use application, in accordance with industry standards and project specifications, and the applicable building codes and related regulations as well as Victaulic performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recommendation, advice, or opinion from any Victaulic employee, shall be deemed to alter, vary, supersede, or waive any provision of Victaulic Company's standard conditions of sale, installation guide, or this disclaimer.

Intellectual Property Rights

No statement contained herein concerning a possible or suggested use of any material, product, service, or design is intended, or should be constructed, to grant any license under any patent or other intellectual property right of Victaulic or any of its subsidaries or affiliates covering such use or design, or as a recommendation for the use of such material, product, service, or design in the infringement of any patent or other intellectual property right. The terms "Patented" or "Patent Pending" refer to design or utility patents or patent applications for articles and/or methods of use in the United States and/or other countries.

Note

This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions. Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Installation

Reference should always be made to I-VICFLEX-AB1-AB2-AB10, I-VICFLEX-AB4-AB9, I-VICFLEX-AB7, or I-VICFLEX-AB8 for the product you are installing. Handbooks are included with each shipment of Victaulic products for complete installation and assembly data, and are available in PDF format on our website at www.victaulic.com.

Warranty

Refer to the Warranty section of the current Price List or contact Victaulic for details.

Trademarks

Victaulic and all other Victaulic marks are the trademarks or registered trademarks of Victaulic Company, and/or its affiliated entities, in the U.S. and/or other countries.

10.95 8507 Rev N Updated 06/2022 © 2022 Victaulic Company. All rights reserved.

Section 2 – Pipe & Fittings

SCHEDULE 10 & 40 SPRINKLER PIPE SUBMITTAL DATA SHEET

APPROVALS AND SPECIFICATIONS

- ASTM A135, Grade A
- ASTM A795, Type E, Grade A
- Pressure rated to 300 psi
- Underwriters Laboratories— United States of America
- Underwriters Laboratories—Canada
- Factory Mutual
- NFPA-13
- NFPA-13R
- NFPA-14
- CIVIL DEFENSE APPROVAL— United Arab Emirates
- Made in the United States of America
- UL, ULC & FM listed for roll-groove, plain-end and welded joints for wet, dry, preaction and deluge sprinkler systems.
- · LEED v4 Certified

FINISHES AND COATINGS

- Schedule 10 & 40 Sprinkler Pipe receives an OD mill coating of water-based paint which has corrosion protection expected with a painted carbon steel product, i.e. it would be expected to resist corrosion for an extended and indefinite period in a clean and dry environment and, as environmental conditions deteriorate, the corrosion protection would also diminish.
- Schedule 10 & 40 Sprinkler Pipe (black) receives an ID mill coating of Eddy Guard II MIC preventative coating. EG2 has been tested at independent laboratories to resist bacterial growth and maintain minimal bacterial count after multiple flushes (25) of the pipe.
- Schedule 10 & 40 Sprinkler Pipe when Hot Dip Galvanized by ASTM A123 and supplied by Bull Moose Tube is UL listed and FM approved.

PRODUCT IDENTIFICATION

 Every length of Bull Moose fire sprinkler pipe features large, easy-toread, continuous stenciling, clearly identifying the manufacturer, type of pipe, size, and length.

	Nominal Pipe Size (inches)	1	1-1/4"	1-1/2"	2"	2-1/2"	3"	4"	6"**	8"**
	0.D. (in)	1.315	1.660	1.900	2.375	2.875	3.500	4.500	6.625	8.625
	I.D. (in)	1.097	1.442	1.682	2.157	2.635	3.260	4.260	6.357	8.249
Schedule 10	Empty Weight (lb/ft)	1.410	1.810	2.090	2.640	3.530	4.340	5.620	9.290	16.940
를	Water Filled Weight (lb/ft)	1.800	2.518	3.053	4.223	5.893	7.957	11.796	23.038	40.086
5	C.R.R.*	15.27	9.91	7.76	6.27	4.92	3.54	2.50	1.158	1.805
	Pieces per Lift	91	61	61	37	30	19	19	10	7
	0.D. (in)	1.315	1.660	1.900	2.375	2.875	3.500	4.500		
	I.D. (in)	1.049	1.380	1.610	2.067	2.469	3.068	4.026		
Schedule 40	Empty Weight (lb/ft)	1.680	2.270	2.720	3.660	5.800	7.580	10.800		
喜	Water Filled Weight (lb/ft)	2.055	2.918	3.602	5.114	7.875	10.783	16.316		
S	C.R.R.*	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
	Pieces per Lift	70	51	44	30	30	19	19		

^{*}Calculated using Standard UL CRR formula, UL Fire Protection Directory, Category VIZY **Not Eddy Guard II treated/Not produced by BMT

SUBMITTAL INFORMATION

	APPROVE
Project	
Contractor	
Engineer	
Specification Reference	
Date	System Type
Locations	
Comments	
	Schedule 10 - Black Schedule 10 - Hot Dip Galvanized Schedule 40 - Black Schedule 40 - Hot Dip Galvanized

FIG. 74FP SlideLOK® Ready for Installation Coupling

The patented SlideLOK coupling is the most rigid ready for installation coupling designed to reduce installation time. The slide action eases assembly and reduces installation time. The patented gasket provides four separate sealing surfaces for added protection.

The SlideLOK coupling is designed to be used with roll, cut or swage grooved steel pipe, Gruvlok® and SPF® grooved-end fittings, and valves.

The SlideLOK coupling allows for a maximum working pressure of 450 psi on roll or cut grooved carbon steel standard wall pipe. The SlideLOK coupling provides a rigid connection allowing pipe hanging practices per ASME B31 Pipe Codes.

SlideLOK Pressure Responsive Gasket

For Listings/Approval Details and Limitations, visit our website at www.anvilintl.com or contact an Anvil® Sales Representative

MATERIAL SPECIFICATIONS

Ductile Iron conforming to ASTM A-536, Grade 65-45-12

BOLTS:

- SAE J429, Grade 5, Zinc Electroplated (standard)
- ☐ SAE J429, Grade 5, Thermo-Diffusion Coated (special order)

HEAVY HEX NUTS:

- ASTM A563, Grade A, Zinc Electroplated, Violet Dyed (standard)
- ASTM A563, Grade A, Thermo-Diffusion Coated (special order)

HARDWARE KITS:

- 304 Stainless Steel (available in sizes up to 3/4") Kit includes: (2) Bolts per ASTM A193, Grade B8 and
 - (2) Heavy Hex Nuts per ASTM A194, Grade 8.

COATINGS:

- ☐ Rust inhibiting paint Color: ORANGE (standard)
- ☐ Hot Dipped Zinc Galvanized (optional)

GASKET: Material

Properties as designated in accordance with ASTM D-2000.

Pre-Lubricated Grade "E" EPDM, Type A Gasket (Violet color code)

-40°F to 150°F (Service Temperature Range)(-40°C to 66°C) Recommended for wet and dry (oil free air) pipe fire protection sprinkler systems. For dry pipe systems and freezer applications, Gruvlok Xtreme™ Lubricant is required.

GASKET TYPE:

SlideLOK (1" - 8")

LUBRICATION:

Gruvlok Xtreme™

PROJECT INFORMATION	APPROVAL STAMP
Project:	Approved
Address:	Approved as noted
Contractor:	☐ Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

^{*} Patents: 8282136; 8550502; 8615865; 9039046; 9168585; 9194516; 9297482; 9297484; 9500307; 9534715; 9631746; D680629; D680630; D696751

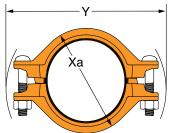
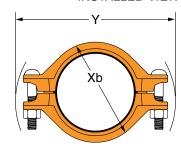
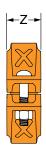


FIG. 74IFP SlideLOK® Ready for Installation Coupling




UNINSTALLED VIEW

INSTALLED VIEW

	74FP SLIDELOK COUPLING											
Figure	Nominal	Pipe	Max.	Max.	Range of	Coupling Dimensions				Coupling Bolts		Approx.
Number	Size	0.D.	Working Pressure▲	End Load	Pipe End Separation	Ха	Хb	Υ	Z	Qty.	Size	Wt. Ea.
	In./DN(mm)	In./mm	PSI/bar	Lbs./kN	In./mm	In./mm	In./mm	In./mm	In./mm		In./mm	Lbs./Kg
74FP	1	1.315	450	611	0-3/16	211/16	21/2	5	2	2	3/8 x 21/4	1.5
/4//	25	33.4	31.0	2.72	0-4.8	68	64	127	51		M10 x 57	0.7
7.450	111/4	1.660	450	973	0-3/16	229/32	21/2	517/32	2	2	½ x 2¾	1.9
74FP	32	42.2	31.0	4.33	0-4.8	74	64	140	51		M12 x 70	0.9
7.450	11/2	1.900	450	1,275	0-3/16	35/32	23/4	511/16	2	2	½ x 2¾	2.1
74FP	40	48.3	31.0	5.67	0-4.8	80	70	144	51		M12 x 70	1.0
7.450	2	2.375	450	1,993	0-3/16	413/32	4	615/32	2	2	½ x 2¾	2.5
74FP	50	60.3	31.0	8.87	0-4.8	112	102	164	51		M12 x 70	1.1
74FP	21/2	2.875	450	2,921	0-3/16	43/16	311/16	611/16	2	2	½ x 2¾	2.6
/4٢٢	65	73.0	31.0	12.99	0-4.8	106	94	170	51		M12 x 70	1.2
74FP	3	3.500	450	4,329	0-3/16	429/32	413/32	73//8	2	2	½ x 3	3.1
/4//	80	88.9	31.0	19.26	0-4.8	125	112	187	51		M12 x 76	1.4
74FP	4	4.500	400	6,361	0-1/4	531/32	513/32	811/16	2	2	½ x 3½	3.1
/4//	100	114.3	27.6	28.30	0-6.3	152	137	221	51		M12 x 89	1.4
74*	5	5.563	300	7,291	0-5/16	71/4	63/4	10½	2	2	5% x 3½	5.5
/4"	125	141.3	20.7	32.43	0-7.9	184	171	267	51		M16 x 89	2.5
7.1*	6	6.625	300	10,341	0-5/16	85/16	73/4	11	2	2	5/8 x 31/2	6.3
74*	150	168.3	20.7	46.00	0-7.9	211	197	279	51		M16 x 89	2.9
74*	8	8.625	300	17,527	0-5/16	10¾	101/8	14	21/2	2	3/4 x 41/2	14.3
/4"	200	219.1	20.7	77.96	0-7.9	273	273	356	64		M20 x 115	6.5

Range of Pipe End Separation values are for system layout reference only. Actual installation spacing may vary based on pipe condition.

▲ - Maximum Working Pressure Rating is for Schedule 40 pipe.

For use in Dry Pipe Systems: The SlideLOK pressure responsive gasket is featured with four sealing surfaces to increase protection in low temperature applications. Once the SlideLOK gasket is installed, the performance of the gasket is equivalent to the Gruvlok Flush Gap Gasket. Note: The Flush Gap Gasket is not interchangeable with the SlideLOK gasket.

For dry pipe systems and freezer applications lubrication of the gasket is required, Gruvlok® Xtreme™ Lubricant is required.

^{*} When ordering, refer to product as FP74.

FIG. 74FP SlideLOK® Ready for Installation Coupling

			NPS	Pressure	Rating
Manufacturer	Pipe	Groove	Size Range	cULus	FM
			In./DN(mm)	PSI/bar	PSI/bar
			1 - 4	450	450
			25 - 100	31.0	31.0
Scheo	1 404	D. II. C.	5-6	300	300
Sched	ule 4U^	Roll, Cut	125 - 150	20.7	20.7
			8	400	400
			200	27.6	27.6
CI	1 20+	D.II	8	400	400
Sched	ule 30*	Roll	200	27.6	27.6
			1 - 4	365	365
			25 - 100	25.2	25.2
CI	l 10+	Roll	5-6	300	300
Sched	ule 10*		125 - 150	20.7	20.7
			8	400	NR
			200	27.6	_
0.188 inch Wall		D.II	8	NR	400
	inch Wall	Roll	200	_	27.6
	Schedule 10	Swage	11/4 - 4	365	300
			32 - 100	25.2	20.7
			11/4 - 4	NR	300
		Swage	32 - 100	-	20.7
	Mega-Flow	D.II	11/4 - 4, 6	300	300
		Roll	32 - 100, 150	20.7	20.7
Wheatland		D II	1 - 2	300	300
Tube	Mega-Thread	Roll	25 - 50	20.7	20.7
	01	D II	1 - 2	300	300
	GL	Roll	25 - 50	20.7	20.7
	1117	D II	1 - 2	300	300
	MLT	Roll	25 - 50	20.7	20.7
	WII.C	D II	1 - 2	300	NR
	WLS	Roll	25 - 50	20.7	-
	F: F1	יי ח	1½ - 4	300	300
v ·	Fire-Flow	Roll	40 - 100	20.7	20.7
Youngstown	F7.TI '	יי ח	1 - 2	300	300
	EZ-Thread	Roll	25 - 50	20.7	20.7
	F.11 5'	D. "	11/4 - 4	300	300
Bull Moose Tube	Eddy-Flow	Roll	32 - 100	20.7	20.7
	FILT 140	D. "	1 - 2	300	300
	Eddy-Thread 40	Roll	25 - 50	20.7	20.7

For the latest cULus pressure ratings, FM pressure ratings, and pipe approvals, please visit anvilintl.com or contact your local Anvil Representative.

^{*} Schedule 40/30 pipe to ASTM A795/A53/ASME B36.10 in accordance with NFPA-13.

 $^{^{\}ast}$ Schedule 10 pipe to ASTM A135/A795/A53 in accordance with NFPA-13.

FIG. 74FP SlideLOK® Ready for Installation Coupling

WARNING

- Read and understand all instructions before use.
- Ensure system is drained and depressurized before installation or service.
- Use appropriate personal protective equipment.

LLATION INSTRUCTIONS

READY FOR INSTALLATION - RIGHT OUT OF THE BOX

Do not disassemble the SlideLOK Coupling. The 74FP coupling is ready for installation. The bolt and gasket do not need to be removed.

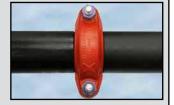
Pipe Preparation Pipe ends are to be cut, rolled or swage grooved according to Anvil specifications. Not for use on "EG" grooved pipe ends. The pipe end must be smooth and free from metal burrs, sharp edges or projections.

Gasket Preparation Ensure the gasket is suitable for the intended application by referring to the

Anvil gasket compatibility chart.

SlideLOK pre-lubricated gasket does not require lubrication.

NOTICE: Gruvlok Xtreme Lubricant must be applied when used in dry pipe systems or freezer applications. Assembly


The SlideLOK Fig. 74FP may be installed by one of two methods. The preferred method depends on the type of pipe components being joined and their orientation. Please review both methods before installing.

STEP 3 - METHOD #1

Slide the SlideLOK coupling completely over the grooved pipe end. This will allow a clear and un-obstructed view of the pipe for correct alignment.

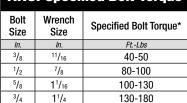
- A. Slide the coupling on the pipe past the groove. The bolts and nuts can be hand tightened to position the coupling in place.
- **B.** Align the mating pipe end. Align the two adjoining pipes together.

- C. Slide the coupling back over the grooves so that the coupling keys are located over the respective grooves on both pipe ends.
- D. Follow the instructions on fastening the coupling as shown in Step 4.

STEP 3 – METHOD #2

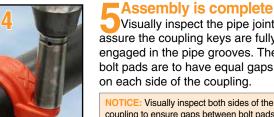
Slide the SlideLOK coupling half way onto the pipe end or fitting. This will better accommodate fitting, and valve accessories during installation.

- A. Slide the coupling on the fitting so that the groove and keys are aligned.
- B. Bring the pipe end or fitting towards the coupling and insert so that the groove and coupling keys are aligned.


- C. Hand tighten the nuts to correctly position the couplings keys over the respective grooved ends.
- **D.** Follow the instructions on fastening the coupling as shown in Step 4.

Tighten Nuts

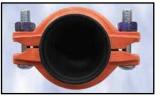
Securely tighten nuts alternately and equally, keeping the gaps at the bolt pads evenly spaced.


ANSI Specified Bolt Torque

Bolt Size	Wrench Size	Specified Bolt Torque*					
In.	ln.	FtLbs					
3/8	¹¹ / ₁₆	40-50					
1/2	7/8	80-100					
5/8	1 ¹ / ₁₆	100-130					
3/4	11/4	130-180					

^{*} Non-lubricated bolt torque

NOTICE: Uneven tightening may cause the gasket to pinch. Gasket should not be visible between segments after bolts are tightened.



Visually inspect the pipe joint to

assure the coupling keys are fully engaged in the pipe grooves. The bolt pads are to have equal gaps on each side of the coupling.

NOTICE: Visually inspect both sides of the coupling to ensure gaps between bolt pads are evenly spaced and are parallel. Any deviations must be corrected before placing coupling into service.

CORRECT

INCORRECT

A WARNING

- Read and understand all instructions before use.
- Ensure system is drained and depressurized before installation or service.
- Use appropriate personal protective equipment.

LLATION INSTRUCTIONS

REINSTALLATION OF THE 74FP SLIDELOK COUPLING

The SlideLOK coupling is designed to be installed in the ready for installation assembly position once. After the initial assemble the following steps are to be taken to re-install the 74FP SlideLOK coupling.

De-Pressurize the System De-pressurize the system before removing the SlideLOK Coupling. Disassemble the couplings by removing the nuts, bolts and gasket from the housing halves. A wrench is required to overcome the epoxy used to secure the nuts on the bolts.

Pipe Preparation Pipe ends are to be cut, rolled or swage grooved according to Anvil specifications. Not for use on "EG" grooved pipe ends. The pipe end must be smooth and free from metal burrs or projections.

Gasket Preparation Ensure the gasket is suitable for the intended application by referring to the Anvil gasket compatibility chart. A light coating of Gruvlok® XTreme™ lubricant must be applied to the gasket prior to installation.

Pipe Alignment and Gasket Installation

Slide the gasket onto the pipe then align the two pipe ends together. Pull the gasket into position, centering it between the grooves on each pipe. Gasket should not extend into the groove on either pipe.

Housing Assembly Place each of the housing halves on the pipe making sure the housing key fits into the groove. Be sure that the tongue and recess portions of the housing mate properly. Insert the bolts.

Tighten Nuts Securely tighten nuts alternately and equally, keeping the gaps at the bolt pads evenly spaced.

ANSI	Specifie	a Boit Torque				
Bolt Size	Wrench Size	Specified Bolt Torque*				
In.	In.	FtLbs				
3/8	11/16	40-50				
1/2	7/8	80-100				
5/8	1 ¹ / ₁₆	100-130				
3/4	11/4	130-180				

Non-lubricated bolt torque

NOTICE: Uneven tightening may cause the gasket to pinch. Gasket should not be visible between segments after bolts are tightened.

Assembly is complete Visually inspect the pipe joint to assure the coupling keys are fully engaged in the pipe grooves. The bolt pads are to have equal gaps on each side of the coupling.

NOTICE: Visually inspect both sides of the coupling to ensure gaps between bolt pads are evenly spaced and are parallel. Any deviations must be corrected before placing coupling into service.

CORRECT

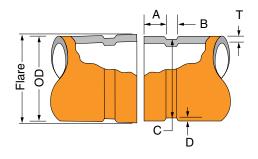

INCORRECT

FIG. 74FP SlideLOK® Ready for Installation Coupling

SWAGE GROOVE SPECIFICATION										
-]-	-2-			-3-	-4-	-5-		-6-	-7-	-8-
Nominal Pipe		0.D.		"A" "B"	"C" Actual	"C" Actual "C" Tol.		"T" Min. Allow.	Max. Flare	
Size	Actual	Toler	ance	$\pm 0.030/ \pm 0.76$	\pm 0.030/ \pm 0.76		+0.000	(Ref. Only)	Wall Thick	Dia.
In./DN(mm)	In./mm	+In./mm	-In./mm	In./mm	In./mm	In./mm	-In./mm	In./mm	In./mm	In./mm
11/4	1.660	+0.016	-0.016	0.625	0.281	1.535	-0.015	0.063	0.065	1.770
32	42.2	+0.41	-0.41	15.88	7.14	38.99	-0.38	1.60	1.7	45.0
1½	1.900	+0.019	-0.019	0.625	0.281	1.775	-0.015	0.063	0.065	2.010
40	48.3	+0.48	-0.48	15.88	7.14	45.09	-0.38	1.60	1.7	51.1
2	2.375	+0.024	-0.024	0.625	0.344	2.250	-0.015	0.063	0.065	2.480
50	60.3	+0.61	-0.61	15.88	8.74	57.15	-0.38	1.60	1.7	63.0
21/2	2.875	+0.029	-0.029	0.625	0.344	2.720	-0.018	0.078	0.083	2.980
65	73.0	+0.74	-0.74	15.88	8.74	69.09	-0.46	1.98	2.1	75.7
3	3.500	+0.035	-0.031	0.625	0.344	3.344	-0.018	0.078	0.083	3.600
80	88.9	+0.89	-0.79	15.88	8.74	84.94	-0.46	1.98	2.1	91.4
4	4.500	+0.045	-0.031	0.625	0.344	4.334	-0.020	0.083	0.083	4.600
100	114.3	+1.14	-0.79	15.88	8.74	110.08	-0.51	2.11	2.1	116.8

COLUMN 1- Nominal IPS Pipe size.

COLUMN 2 - IPS outside diameter.

COLUMN 3 - Gasket seat must be free from scores, seams, chips, rust or scale which may interfere with proper sealing of the gasket. Gasket seat width (Dimension A) is to be measured from the pipe end to the vertical flank in the groove wall.

COLUMN 4 - Groove width (Dimension B) is to be measured between vertical flank of the groove size walls.

COLUMN 5 - The groove must be of uniform depth around the entire pipe circumference. (See column 6).

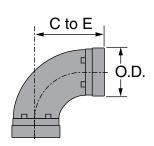
COLUMN 6 - Groove depth: for reference only. Groove must conform to the groove diameter "C" listed in column 5.

COLUMN 7 - Minimum allowable wall thickness which may be roll

COLUMN 8 - Maximum allowable pipe end flare diameter. Measured at the most extreme pipe end diameter of the gasket seat area.

Out of roundness: Difference between maximum O.D. and minimum O.D. measured at 90° must not exceed total O.D. tolerance listed (reference column 2).

For IPS pipe, the maximum allowable tolerance from square cut ends is 0.03" for 1" thru $3\frac{1}{2}$ "; and 0.045" for 4".


Weld Seams must be ground flush with the pipe O.D. and ID prior to roll grooving. Failure to do so may result in damage to the roll grooving machine and unacceptable roll grooves may be produced.

▼ "A" tolerance +0.030" / -0.060" (+0.77 / -1.54 mm)

FIG. 7050S* Standard 90° Elbow for Fire Protection

FIGURE 7050S* STANDARD 90° ELBOW

Nominal Size	0.D.	Max. Rated Pressure	Center to End	Approx. Wt. Ea.	
In./DN(mm)	In./mm	PSI/bar	In./mm	Lbs./Kg	
1	1.315	300	21/4	0.6	
25	33.4	20.7	57	0.3	
11/4	1.660	300	23/4	1.0	
32	42.2	20.7	70	0.5	
11/2	1.900	300	23/4	1.2	
40	48.3	20.7	70	0.5	
2	2.375	300	31/4	1.7	
50	60.3	20.7	83	0.8	
21/2	2.875	300	33/4	2.6	
65	73.0	20.7	95	1.2	
3 O.D.	2.996	300	4	3.6	
76.1	76.1	20.7	102	1.6	
3	3.500	300	41/4	4.0	
80	88.9	20.7	108	1.8	
4	4.500	300	5	7.7	
100	114.3	20.7	127	3.5	
51/2 O.D.	5.500	300	51/4	10.9	
139.7	139.7	20.7	133	4.9	
5	5.563	300	51/2	11.1	
125	141.3	20.7	140	5.0	
6 ¹ / ₂ O.D.	6.500	300	61/2	17.4	
165.1	165.1	20.7	165	7.9	
6	6.625	300	61/2	16.5	
150	168.3	20.7	165	7.5	
8	8.625	300	73/4	30.6	
200	219.1	20.7	197	13.9	
10	10.750	300	9	53.5	
250	273.1	20.7	229	24.3	
12	12.750	300	10	82	
300	323.9	20.7	254	37.2	

For additional sizes, see Fig. 7050 in the Gruvlok Catalog or contact an Anvil Representative.

These fittings are designed to provide minimal pressure drop and uniform strength.

— Available galvanized.

* When ordering, refer to product as FP7050S.

MATERIAL SPECIFICATIONS

CAST FITTINGS:

Ductile Iron conforming to ASTM A-536

COATINGS:

- Rust inhibiting paint Color: ORANGE (standard) or
- ☐ Hot Dipped Zinc Galvanized conforming to ASTM A-153 (optional) Other available options: Example: RAL3000 or RAL9000 Series

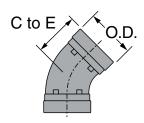

PROJECT INFORMATION	APPROVAL STAMP
Project:	Approved
Address:	Approved as noted
Contractor:	☐ Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

FIG. 7051*

Standard 45° Elbow for Fire Protection

FIGURE 7051* STANDARD 45° ELBOW

Nominal Size	0.D.	O.D. Rated Pressure to End		Approx. Wt. Ea.	
In./DN(mm)	In./mm	PSI/bar	In./mm	Lbs./Kg	
11/4	1.660	300	13/4	0.7	
32	42.2	20.7	44	0.3	
11/2	1.900	300	13/4	0.9	
40	48.3	20.7	44	0.4	
2	2.375	300	2	1.5	
50	60.3	20.7	51	0.7	
21/2	2.875	300	21/4	1.9	
65	73.0	20.7	57	0.9	
3	3.500	300	21/2	3.3	
80	88.9	20.7	64	1.5	
4	4.500	300	3	5.4	
100	114.3	20.7	76	2.4	
5	5.563	300	31/4	9.0	
125	141.3 20.7 83		83	4.1	
6	6.625	.625 300 3½		11.2	
150	168.3 20.7 89		5.1		
8	8.625	300	41/4	19.8	
200	00 2191 207 1		108	9.0	

Additional sizes available, see Gruvlok Catalog or contact an Anvil Representative.

These fittings are designed to provide minimal pressure drop and uniform strength.

Available as a fabricated fitting. - Available galvanized.

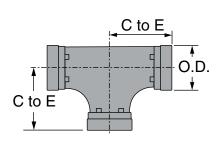
 st When ordering, refer to product as FP7051.

MATERIAL SPECIFICATIONS

CAST FITTINGS:

Ductile Iron conforming to ASTM A-536

COATINGS:


- $\hfill\square$ Rust inhibiting paint Color: ORANGE (standard) or
- ☐ Hot Dipped Zinc Galvanized conforming to ASTM A-153 (optional) Other available options: Example: RAL3000 or RAL9000 Series

PROJECT INFORMATION	APPROVAL STAMP
Project: Performance Partnership	Approved
Address: 3523 Jetstream Drive, Wilson, NC	Approved as noted
Contractor:	☐ Not approved
Engineer:	Remarks:
Submittal Date: February 26, 2021	
Notes 1:	
Notes 2:	

FIG. 70605* Standard Tee for Fire Protection

These fittings are designed to provide minimal pressure drop and uniform strength.

- Available galvanized.

* When ordering, refer to product as FP7060S.

FIGUR	E /U6(JS* SI	ANDAR	D TEE
Nominal Size	0.D.	Max. Rated Pressure	Center to End	Approx. Wt. Ea.

Nominal Size	0.D.	Max. Rated Pressure	Center to End	Approx. Wt. Ea.
In./DN(mm)	In./mm	PSI/bar	In./mm	Lbs./Kg
1	1.315	300	21/4	0.9
25	33.4	20.7	57	0.4
11/4	1.660	300	23/4	1.5
32	42.2	20.7	70	0.7
11/2	1.900	300	23/4	1.8
40	48.3	20.7	70	0.8
2	2.375	300	31/4	2.4
50	60.3	20.7	83	1.1
21/2	2.875	300	3¾	4.0
65	73.0	20.7	95	1.8
3 O.D.	2.996	300	4	4.6
76.1	1 76.1 20.7		101	2.1
3	3.500	300	41/4	5.8
80	88.9	20.7	108	2.6
4	4.500	300	5	10.3
100	114.3	20.7	127	4.7
51/2 O.D.	5.500	300	51/2	16.1
139.7	139.7	20.7	140	7.3
5	5.563	300	5½	16.2
125	141.3	20.7	140	7.3
61/2 O.D.	6.500	300	61/2	24.4
165.1	165.1	20.7	165	11.1
6	6.625	300	61/2	25.7
150	168.3			11.7
8	8.625	300	73/4	41.1
200	219.1	20.7	197	18.6
10	10.750	300	9	74.5
250	273.1	20.7	229	33.8
12	12.750	300	10	94.7

For Listings/Approval Details and Limitations, visit our website at

MATERIAL SPECIFICATIONS

CAST FITTINGS:

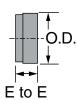
Ductile Iron conforming to ASTM A-536

COATINGS:

- \square Rust inhibiting paint Color: ORANGE (standard) or
- ☐ Hot Dipped Zinc Galvanized conforming to ASTM A-153 (optional) Other available options: Example: RAL3000 or RAL9000 Series

Additional sizes available, see Gruvlok Catalog or contact an Anvil Representative.

20.7


43.0

323.9

PROJECT INFORMATION	APPROVAL STAMP
Project:	Approved
Address:	Approved as noted
Contractor:	☐ Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

300

F	IGURE 7	074 CA	P
Nominal Size	0.D.	End to End	Approx. Wt. Ea.
In./DN(mm)	In./mm	In./mm	Lbs./Kg
1	1.315	11/4	0.3
25	33.4	32	0.1
11/4	1.660	11/4	0.4
32	42.2	32	0.2
11/2	1.900	11/4	0.5
40	48.3	32	0.2
2	2.375	1	0.5
50	60.3	25	0.2
21/2	2.875	1	0.7
65	73.0	25	0.3
3 O.D.	2.996	7	0.8
76.1	76.1	25	0.4
3	3.500	1	1.1
80	88.9	25	0.5
4	4.500	11//8	2.8
100	114.3	29	1.3
5 ¹ / ₂ 0.D.	5.500	11/8	4.0
139.7	139.7	29	1.8
5	5.563	11//8	4.0
125	141.3	29	1.8
61/2 O.D.	6.500	11/8	6.0
165.1	165.1	29	2.7
6	6.625	15/16	6.0
150	168.3	33	2.7
8	8.625	1½	12.5
200	219.1	38	5.7
10	10.750	1½	21.9
250	273.1	38	9.9
12	12.750	1½	33.8
300	323.9	38	15.3

— Available galvanized.

* When ordering, refer to product as FP7074.

MATERIAL SPECIFICATIONS

CAST FITTINGS:

Ductile Iron conforming to ASTM A-536

COATINGS:

- Rust inhibiting paint Color: ORANGE (standard) or
- ☐ Hot Dipped Zinc Galvanized conforming to ASTM A-153 (optional) Other available options: Example: RAL3000 or RAL9000 Series

PROJECT INFORMATION	APPROVAL STAMP
Project: Performance Partnership	Approved
Address: 3523 Jetstream Drive, Wilson, NC	Approved as noted
Contractor:	☐ Not approved
Engineer:	Remarks:
Submittal Date: February 26, 2021	
Notes 1:	
Notes 2:	

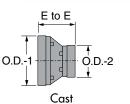
MATERIAL SPECIFICATIONS

CAST FITTINGS:

Ductile Iron conforming to ASTM A-536

FABRICATED FITTINGS:

1"-10" Carbon Steel, Schedule 40, conforming to ASTM A-53, Grade B


12" and above Carbon Steel, Standard Wall, conforming to ASTM A-53, Grade B

COATINGS:

- Rust inhibiting paint Color: ORANGE (standard) or
- ☐ Hot Dipped Zinc Galvanized conforming to ASTM A-153 (optional)
- Other available options: Example: RAL3000 or RAL9000 Series

Available as a fabricated fitting. - Available galvanized.

Weld

For Listings/Approval Details and Limitations, visit our website at www.anvilintl.com or contact an Anvil® Sales Representative

				U/E			IKIL		CER (U	GROO	٠.	- Бү С	RUU	YE)
Nominal Size	0.D1	0.D2	End to End	Approx. Wt. Ea.		Nominal Size	0.D1	0.D2	End to End	Approx. Wt. Ea.		Nominal Size	0.D1	0.D
In./DN(mm)	In./mm	In./mm	In./mm	Lbs./Kg		In./DN(mm)	In./mm	In./mm	In./mm	Lbs./Kg	l	In./DN(mm)	In./mm	ln./m
1¼ x 1	1.660	1.315	21/2	0.6	1	4 x 1	4.500	1.315	3	2.2	1	6 x 4 ■	6.625	4.50
32 x 25	42.2	33.4	64	0.3		100 x 25	114.3	33.4	76	1.0	l	150 x 100	168.3	114.
1½ x 1	1.900	1.315	21/2	0.6		4 x 11/4	4.500	1.660	3	2.2		6 x 5 ■	6.625	5.56
40 x 25	48.3	33.4	64	0.3		100 x 32	114.3	42.2	76	1.0]	150 x 125	168.3	141.
1½ x 1¼	1.900	1.660	21/2	0.6		4 x 1½	4.500	1.900	3	2.3	l	8 x 3	8.625	3.50
40 x 32	48.3	42.2	64	0.3		100 x 40	114.3	48.3	76	1.0		200 x 80	219.1	88.9
2 x 1	2.375	1.315	21/2	8.0		4 x 2 ■	4.500	2.375	3	2.4		8 x 4 ■	8.625	4.50
50 x 25	60.3	33.4	64	0.4	J	100 x 50	114.3	60.3	76	1.1]	200 x 100	219.1	114.
2 x 1⅓∎	2.375	1.660	21/2	1.3		4 x 2½ ■	4.500	2.875	3	2.6		8 x 5	8.625	5.56
50 x 32	60.3	42.2	64	0.6		100 x 65	114.3	73.0	76	1.2		200 x 125	219.1	141.
2 x 1½ ■	2.375	1.900	21/2	1.3		4 x 3 ■	4.500	3.500	3	3.2		8 x 6 ■	8.625	6.62
50 x 40	60.3	48.3	64	0.6		100 x 80	114.3	88.9	76	1.5		200 x 150	219.1	168.
2½ x 1	2.875	1.315	21/2	1.0		4 x 3½	4.500	4.000	3	3.6	l	10 x 4	10.750	4.50
65 x 25	73.0	33.4	64	0.5		100 x 90	114.3	101.6	76	1.6]	250 x 100	273.1	114.
2½ x 1¼	2.875	1.660	21/2	1.0		5 x 2	5.563	2.375	31/2	4.6		10 x 5	10.750	5.56
65 x 32	73.0	42.2	64	0.5		125 x 50	141.3	60.3	89	2.1	ļ	250 x 125	273.1	141.
2½ x 1½	2.875	1.900	21/2	1.3		5 x 2½	5.563	2.875	31/2	4.5		10 x 6 ■	10.750	6.62
65 x 40	73.0	48.3	64	0.6		125 x 65	141.3	73.0	89	2.0	ļ	250 x 150	273.1	168.
2½ x 2 ■	2.875	2.375	21/2	1.6		5 x 3	5.563	3.500	31/2	4.4		10 x 8	10.750	8.62
65 x 50	73.0	60.3	64	0.7	ļ	125 x 80	141.3	88.9	89	2.0	ļ	250 x 200	273.1	219.
3 x 1	3.500	1.315	21/2	1.2		5 x 4 ■	5.563	4.500	31/2	4.5		12 x 4	12.750	4.50
80 x 25	88.9	33.4	64	0.5		125 x 100	141.3	114.3	89	2.0	ļ	300 x 100	323.9	114.
3 x 11/4	3.500	1.660	21/2	1.3		6 x 1	6.625	1.315	4	6.8		12 x 6	12.750	6.62
80 x 32	88.9	42.2	64	0.6		150 x 25	168.3	33.4	102	3.1		300 x 150	323.9	168.
3 x 1½	3.500	1.900	21/2	1.3		6 x 1½	6.625	1.900	4	6.9		12 x 8	12.750	8.62
80 x 40	88.9	48.3	64	0.6		150 x 40	168.3	48.3	102	3.1		300 x 200	323.9	219.
3 x 2 ■	3.500	2.375	21/2	1.4		6 x 2 ■	6.625	2.375	4	6.0		12 x 10	12.750	10.75
80 x 50	88.9	60.3	64	0.6	ļ	150 x 50	168.3	60.3	102	2.7	ļ	300 x 250	323.9	273.
3 x 2½ ■	3.500	2.875	21/2	1.6		6 x 2½	6.625	2.875	4	6.0				
80 x 65	88.9	73.0	64	0.7		150 x 65	168.3	73.0	102	2.7	ļ			
3½ x 3	4.000	3.500	3	1.8		6 x 3 ■	6.625	3.500	4	5.4				
90 x 80	101.6	88.9	76	0.8		150 x 80	168.3	88.9	102	2.4				

	Nominal Size	0.D1	0.D2	End to End	Approx. Wt. Ea.
١	In./DN(mm)	In./mm	In./mm	In./mm	Lbs./Kg
	4 x 1	4.500	1.315	3	2.2
	100 x 25	114.3	33.4	76	1.0
١	4 x 11/4	4.500	1.660	3	2.2
	100 x 32	114.3	42.2	76	1.0
	4 x 1½	4.500	1.900	3	2.3
	100 x 40	114.3	48.3	76	1.0
ı	4 x 2 ■	4.500	2.375	3	2.4
ı	100 x 50	114.3	60.3	76	1.1
ı	4 x 2½ ■	4.500	2.875	3	2.6
	100 x 65	114.3	73.0	76	1.2
	4 x 3 ■	4.500	3.500	3	3.2
	100 x 80	114.3	88.9	76	1.5
	4 x 3½	4.500	4.000	3	3.6
	100 x 90	114.3	101.6	76	1.6
	5 x 2	5.563	2.375	31/2	4.6
	125 x 50	141.3	60.3	89	2.1
	5 x 2½	5.563	2.875	31/2	4.5
ı	125 x 65	141.3	73.0	89	2.0
ı	5 x 3	5.563	3.500	31/2	4.4
	125 x 80	141.3	88.9	89	2.0
ı	5 x 4 ■	5.563	4.500	31/2	4.5
	125 x 100	141.3	114.3	89	2.0
	6 x 1	6.625	1.315	4	6.8
	150 x 25	168.3	33.4	102	3.1
	6 x 1½	6.625	1.900	4	6.9
	150 x 40	168.3	48.3	102	3.1
ı	6 x 2 ■	6.625	2.375	4	6.0
	150 x 50	168.3	60.3	102	2.7
	6 x 2½	6.625	2.875	4	6.0
	150 x 65	168.3	73.0	102	2.7
	6 x 3 ■	6.625	3.500	4	5.4
١	150 x 80	168.3	88.9	102	2.4

Nominal Size	0.D1	0.D2	End to End	Approx. Wt. Ea.
In./DN(mm)	In./mm	In./mm	In./mm	Lbs./Kg
6 x 4 ■	6.625	4.500	4	5.6
150 x 100	168.3	114.3	102	2.5
6 x 5 ■	6.625	5.563	4	6.0
150 x 125	168.3	141.3	102	2.7
8 x 3	8.625	3.500	5	12.0
200 x 80	219.1	88.9	127	5.5
8 x 4 ■	8.625	4.500	5	9.0
200 x 100	219.1	114.3	127	4.1
8 x 5	8.625	5.563	5	11.5
200 x 125	219.1	141.3	127	5.2
8 x 6 ■	8.625	6.625	5	15.5
200 x 150	219.1	168.3	127	7.0
10 x 4	10.750	4.500	6	20.0
250 x 100	273.1	114.3	152	9.1
10 x 5	10.750	5.563	6	20.0
250 x 125	273.1	141.3	152	9.1
10 x 6 ■	10.750	6.625	6	20.0
250 x 150	273.1	168.3	152	9.1
10 x 8	10.750	8.625	6	23.9
250 x 200	273.1	219.1	152	10.8
12 x 4	12.750	4.500	7	25.0
300 x 100	323.9	114.3	178	11.3
12 x 6	12.750	6.625	7	29.0
300 x 150	323.9	168.3	178	13.2
12 x 8	12.750	8.625	7	29.0
300 x 200	323.9	219.1	178	13.2
12 x 10	12.750	10.750	7	32.4
300 x 250	323.9	273.1	178	14.7

Additional sizes available, see Gruvlok Catalog or contact an Anvil Representative.

■ - Cast fittings, all others are fabricated steel.

•	
PROJECT INFORMATION	APPROVAL STAMP
Project:	Approved
Address:	Approved as noted
Contractor:	☐ Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

Listings/Approval Details and Limitations, visit our website at ww.anvilintl.com or contact an Anvil® Sales Representative.

The Gruvlok® Clamp-T provides a quick and easy outlet at any location along the pipe. A hole drilled or cut in the pipe to receive the locating collar of the Clamp-T is all that is required. The full, smooth outlet area provides for optimum flow characteristics.

The Clamp-T housing is specially engineered to conform to the pipe O.D. and the Clamp-T gasket providing a leak tight reliable seal in both positive pressure and vacuum conditions. Working pressure ratings shown are for reference only and are based on Schedule 40 pipe. For the latest UL/ULC listed, LPCB, VdS and FM Approved pressure ratings versus pipe schedule, see www.anvilintl.com or contact your local Anvil Representative.

The Gruvlok Clamp-T provides for a branch or cross connection in light wall or standard wall steel pipe.

The Fig. 7045 Clamp-T female pipe thread branch is available with NPT or ISO 7/1 connection and the Fig. 7046 Clamp-T has grooved-end branch connection.

Clamp-T cross connections are available in various sizes allowing greater versatility in piping design.

NOTE: Variable End Configurations are Possible — 2" x 1/2" through 8" x 4" Thd x Thd and Gr. x Thd. Sizes

MATERIAL SPECIFICATIONS

HOUSING:

Ductile Iron conforming to ASTM A-536, Grade 65-45-12

ANSI BOLTS & HEAVY HEX NUTS:

Heat treated, oval neck track head bolts conforming to ASTM A-183 Grade 2 with a minimum tensile strength of 110,000 psi and heavy hex nuts of carbon steel conforming to ASTM A-563 Grade A or Grade B, or J995 Grade 2. Bolts and nuts are provided zinc electroplated as standard.

METRIC BOLTS & HEAVY HEX NUTS:

Heat treated, zinc electroplated oval-neck track head bolts made of carbon steel with mechanical properties per ISO 898-1 Class 8.8. Hex nuts and bolts are zinc electroplated followed by a yellow chromate dip.

U-BOLT:

Cold drawn steel and zinc plated.

COATINGS:

Rust	inhibiting	paint	Color:	ORANGE	(standard

☐ Hot Dipped Zinc Galvanized (optional)

Other available options: Example: RAL3000 or RAL9000 Series For other coating requirements contact an Anvil Representative.

LUBRICATION:

П	Ctana	امسما	C	اسا
	Stanc	lard	(aruv	IOK

Gruvlok Xtreme™ required for dry pipe systems and freezer applications.

GASKETS: Materials

Properties as designated in accordance with ASTM D-2000.

☐ Grade "E" EPDM (Green color code)

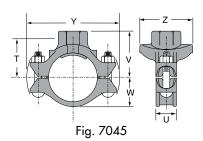
-40°F to 230°F (Service Temperature Range)(-40°C to 110°C) Recommended for water service, diluted acids, alkalies solutions, oil-free air and many chemical services.

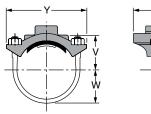
NOT FOR USE IN PETROLEUM APPLICATIONS.

Grade "EP" EPDM (Green and Red color code)

-40°F to 250°F (Service Temperature Range)(-40°C to 121°C) Recommended for water service, diluted acids, alkalies solutions, oil-free air and many other chemical services.

NOT FOR USE IN PETROLEUM APPLICATIONS.


	CLAMI	P-T FLOW DATA
D	Fig. 7045 T	hreaded Branch
Branch Size	C.V. Value	Equiv. Pipe Length
In./DN(mm)		Ft./m
1/2	22	1.0
3/4 20	25	2.0
1	44	2.0
11/4	76	2.5
11/2	89	4.0 1.2


(FR	(FRICTIONAL RESISTANCE)												
	Branch Size	Fig. 7045 Threaded Branch											
	Branch Size	C.V. Value	Equiv. Pipe Length										
	In./DN(mm)		Ft./m										
	2 50	164	3.5 1.1										
	2 ¹ / ₆₅	152	12.5 3.8										
	3 80	318	8.5 2.6										
	4 100	536	8.0 2.4										

PROJECT INFORMATION	APPROVAL STAMP
Project:	Approved
Address:	Approved as noted
Contractor:	☐ Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

FIG. 7045 Clamp-T[®], FPT Branch

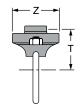
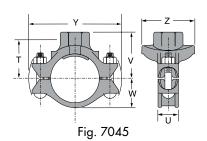


Fig. 7045 (U-Bolt)

A WARNING

For dry pipe systems and freezer applications lubrication of the gasket is required, Gruvlok® Xtreme™ Lubricant is required.

		FIGUR	E 7045	FPT B	RANC	CH (TA	BLE CO	UNITM	ES TO I	NEXT P	AGE)			
Nominal		Hole Dimensions		Max.			Clamp-T D	imensions	;		Bolt	Specified Torque §		Approx.
Size	0.D.	Min. Diameter	Max. Diameter	Working Pressure▲	Ţ	U	V Threaded	W	Y	Z	Size	Min.	Max.	Wt. Ea.
In./DN(mm)	In./mm	In./mm	In./mm	PSI/bar	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm		s./N-m	Lbs./Kg
2 x ½	2.375 x 0.840	1½	1%	500	23/16	%16	25/8	1/2	5½	3	½ U-Bolt	30	40	2.3
50 x 15	60.3 x 21.3	38 1½	41 1%	34.5	56 2 ½16	14 %16	67 25/8	12	140	76	- 1/ H.D.Jr	20	40	1.0 2.3
2 x ³ / ₄ 50 x 20	2.375 x 1.050 60.3 x 26.7	38	178	500 34.5	2 7/16 52	716	2% 67	1½ 38	5½ 140	3 76	½ U-Bolt	30	40	1.0
2 x 1	2.375 x 1.315	1½	15/8	500	115/16	9/16	25/8	11/2	51/2	3	½ U-Bolt	30	40	2.6
50 x 25	60.3 x 33.7	38	47	34.5	51	14	67	38	140	76	- 72 0-0011	30	40	1.2
2 x 11/4	2.375 x 1.660	2	21/8	500	23/16	%16	27/8	11/2	5½	3½	½ U-Bolt	30	40	2.7
50 x 32	60.3 x 42.4	51	54	34.5	55	14	73	38	140	89				1.2
2 x 1½	2.375 x 1.900	2	21/8	500	23/16	%16	27/8	11/2	7	3½	½ U-Bolt	30	40	2.5
50 x 40	60.3 x 48.3	51	54	34.5	55	14	73	38	178	89	-			1.1
2½ x ½	2.875 x 0.840	1½	1%	500	27/16	%16	27//8	13/4	5½	3	½ U-Bolt	30	40	3.0
65 x 15	73.0 x 21.3	38	41	34.5	62	14	73	44	140	76	- 1/ U.D. I:		40	1.4
2½ x ¾	2.875 x 1.050	1½	15%	500	25/16	%16	27/8	13/4	5½	3	½ U-Bolt	30	40	2.9
65 x 20 2½ x 1	73.0 x 26.7 2.875 x 1.315	38 1½	41 15/8	34.5 500	59 2 ³ ⁄16	14 %16	73 2 ½	44 1 ³ / ₄	140 6 ½	76 3	½ U-Bolt	30	40	1.3 2.9
65 x 25	73.0 x 33.7	38	178	34.5	2 916 55	716	73	174 44	156	76	/2 U-DUII	30	40	1.3
2½ x 1¼	2.875 x 1.660	2	21/8	500	27/16	%16	31/8	13/4	61/8	3%	½ U-Bolt	30	40	3.4
65 x 32	73.0 x 42.4	51	54	34.5	62	14	79	44	156	86		30	10	1.5
2½ x 1½	2.875 x 1.900	2	21/8	500	27/16	%16	31//8	13/4	61/8	3%	½ U-Bolt	30	40	3.4
65 x 40	73.0 x 48.3	51	54	34.5	62	14	79	44	156	86	-			1.5
3 x ½	3.500 x 0.840	1½	1%	500	2%16	%16	3	21//8	7	3¾	½ U-Bolt	30	40	2.8
80 x 15	88.9 x 21.3	38	41	34.5	65	14	76	54	178	95	-			1.2
3 x ¾	3.500 x 1.050	1½	1%	500	27/16	%16	3	21//8	7	3¾	½ U-Bolt	30	40	2.7
80 x 20	88.9 x 26.7	38	41	34.5	62	14	76	54	178	95	- 1/ H.D. I:		40	1.2
3 x 1	3.500 x 1.315	1½	15/8	500	25/16	%16	3	21/8	7	3¾	½ U-Bolt	30	40	2.7
80 x 25 3 x 11/4	88.9 x 33.7 3.500 x 1.660	38	2½	34.5 500	59 2 ¹¹ / ₁₆	14	76 33/8	54 21/8	178 6 7/8	95 3 ¾	½ x 2¾	80	100	3.4
80 x 32	88.9 x 42.4	51	Z 78 54	34.5	68	38	86	278 54	175	95	72 X Z 74	00	100	1.5
3 x 1½	3.500 x 1.900	2	21/8	500	211/16	1½	33/8	21//8	67//8	3¾	½ x 2¾	80	100	4.4
80 x 40	88.9 x 48.3	51	54	34.5	68	38	86	54	175	95		00	100	2.0
3 x 2	3.500 x 2.375	21/2	25//8	500	211/16	1½	33/8	21/8	67/8	41/8	½ x 2¾	80	100	4.6
80 x 50	88.9 x 60.3	64	67	34.5	68	38	86	54	175	105	-			2.1
4 x ½	4.500 x 0.840	1½	1%	500	31/16	%16	31/2	25/8	73/4	3¾	½ U-Bolt	30	40	2.9
100 x 15	114.3 x 21.3	38	41	34.5	76	14	89	67	197	95	-			1.3
4 x ³ / ₄	4.500 x 1.050	1½	1%	500	31/16	9/16	31/2	25//8	73/4	3¾	½ U-Bolt	30	40	2.8
100 x 20	114.3 x 26.7	38	47	34.5	78	14	89	67	197	95	1/ 1/ 1/ 1/	00	40	1.3
4 x 1	4.500 x 1.315	1½	15/8	500	213/16	%16	31/2	25/8	73/4	3¾	½ U-Bolt	30	40	2.7
100 x 25 4 x 1 1/4	114.3 x 33.7 4.500 x 1.660	38	2½	34.5 500	73 3 ³ ⁄16	14	89 37/8	67 2 5/8	197 7 ½	95 3 ¾	½ x 2¾	80	100	1.2 4.5
4 X 1 1/4 100 x 32	4.500 x 1.660 114.3 x 42.4	Z 51	Z'/8 54	34.5	3 %16 81	1'/8 48	3'/8 98	2 % 67	1 1/2	3 %4	/2 X Z //4	00	100	2.0
4 x 1½	4.500 x 1.900	2	21/8	500	33/16	11//8	37/8	25/8	71/2	33/4	½ x 2¾	80	100	4.6
4 X 172 100 x 40	114.3 x 48.3	51	Z 78 54	34.5	3716 81	48	98	278 67	191	95	// A Z /4	00	100	2.1


NOTE: $2\frac{1}{2}$ ", 5" and 6" Nominal size run pipe may be used on 3" O.D., $5\frac{1}{2}$ " O.D. and $6\frac{1}{2}$ " O.D. pipe.

Not for use in copper systems.

§ – For additional Bolt Torque information, see Technical Data Section. (Additional larger sizes on next page)

^{▲ –} Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, FM, VdS and LPCB pressure ratings versus pipe schedule, please visit anvillintl.com or contact your local Anvil Representative.

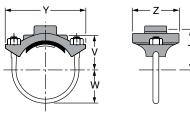


Fig. 7045 (U-Bolt)

A WARNING

For dry pipe systems and freezer applications lubrication of the gasket is required, Gruvlok® Xtreme™ Lubricant is required.

		FIGURE	7045	FPT BI	RANC	Н (со	NTINUE	D FRO	M PRE\	/IOUS F	PAGE)			
Nominal		Hole Dimensions		Max.	Clamp-T Dimensions					Bolt	Specified Torque §		Approx.	
Size	0.D.	Min. Diameter	Max. Diameter	Working Pressure▲	T	U	V Threaded	W	Υ	Z	Size	Min.	Max.	Wt. Ea.
In./DN(mm)	In./mm	In./mm	In./mm	PSI/bar	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm		s./N-m	Lbs./Kg
4 x 2	4.500 x 2.375	21/2	25/8	500	35/16	11//8	4	25/8	7½	41/8	½ x 2¾	80	100	7.7
100 x 50	114.3 x 60.3	64	67	34.5	84	48	102	67	191	105	-			3.5
4 x 2½	4.500 x 2.875	23/4	21//8	500	311/16	1%	4	25/8	7½	43/8	½ x 2¾	80	100	5.2
100 x 65 4 x 3 0.D.	114.3 x 73.0	70 2 ³ / ₄	73 2 ⁷ /8	34.5 500	78 3	48 1 ⁷ / ₈	102	67 25/8	191 7½	111 43/8	1/2 x 2 ³ / ₄	80	100	2.4 5.2
4 x 3 0.0. 100 x 80	4.500 x 2.996 114.3 x 76.1	70	73	34.5	76	48	102	67	191	111	1/2 X Z°/4	80	100	2.4
4 x 3	4.500 x 3.500	3½	35%	500	31/4	17/8	41/4	25%	71/2	51/4	½ x 3½	80	100	6.5
100 x 80	114.3 x 88.9	89	92	34.5	83	48	108	278 67	191	133	72 X 3 72	00	100	2.9
5 x 11/4	5.563 x 1.660	2	21/8	500	311/16	111/8	43/8	31/4	91/8	33/4	5/8 x 31/4	100	130	5.4
125 x 32	141.3 x 42.4	51	54	34.5	94	48	111	83	232	95	70 X U /4	100	100	2.4
5 x 1½	5.563 x 1.900	2	21/8	500	311/16	17/8	43/8	31/4	91/8	33/4	5% x 31/4	100	130	5.5
125 x 40	141.3 x 48.3	51	54	34.5	94	48	111	83	232	95	-			2.5
5 x 2	5.563 x 2.375	21/2	25/8	500	313/16	11//8	41/2	31/4	91/8	41//8	5% x 31/4	100	130	5.7
125 x 50	141.3 x 60.3	64	67	34.5	97	48	114	83	232	105	-			2.6
5 x 2½	5.563 x 2.875	23/4	21//8	500	313/16	11//8	43/4	31/4	91/8	4%	5% x 31/4	100	130	7.0
125 x 65	141.3 x 73.0	70	73	34.5	97	48	121	83	232	111	-			3.2
5 x 3 O.D.	5.563 x 2.996	23/4	27/8	500	33/4	17/8	43/4	31/4	91/8	43/8	5/8 x 3 ¹ / ₄	130	180	7.0
125 x 80	141.3 x 76.1	70	73	34.5	95	48	121	83	232	111	-	100		3.2
5 x 3	5.563 x 3.500	3½	35%	500	4	1%	5	31/4	91/8	51/4	5% x 31/4	100	130	8.7
125 x 80	141.3 x 88.9	89	92 2 ½	34.5 500	102 4 ³ / ₁₆	48	127 4 ⁷ / ₈	83 37/8	232 101/8	133 3¾	5/8 x 4 ¹ / ₄	100	130	3.9 7.8
6 x 1 ½ 150 x 32	6.625 x 1.660 168.3 x 42.4	2 51	Z ¹ /8 54	34.5	4 %16 106	2 51	4'/8 124	3 ′/8 98	257	3 %4 95	78 X 4 1/4	100	130	3.5
6 x 1½	6.625 x 1.900	2	21/8	500	43/16	2	47/8	37//8	101/8	33/4	5/8 x 4 ¹ / ₄	100	130	7.8
150 x 40	168.3 x 48.3	51	278 54	34.5	106	51	124	98	257	95 95	78 X 4 74	100	130	3.5
6 x 2	6.625 x 2.375	2½	25/8	500	43/16	2	47/8	37//8	101/8	41//8	5/8 x 41/4	100	130	7.8
150 x 50	168.3 x 60.3	64	67	34.5	106	51	124	98	257	105	70 A T /4	100	100	3.5
6 x 2½	6.625 x 2.875	23/4	27//8	500	43/16	2	51/8	37//8	101/8	43/8	5/8 x 4 1/4	100	130	8.4
150 x 65	168.3 x 73.0	70	73	34.5	106	51	130	98	257	111	-			3.8
6 x 3 O.D.	6.625 x 2.996	23/4	27/8	500	41/8	2	51/8	37/8	101/8	43/8	5/8 x 41/4	100	130	8.4
150 x 80	168.3 x 76.1	70	73	34.5	105	51	130	98	257	111	-			3.8
6 x 3	6.625 x 3.500	3½	3%	500	43/8	2	5%	37//8	101/8	51/4	5/8 x 41/4	100	130	9.6
150 x 80	168.3 x 88.9	89	92	34.5	111	51	137	98	257	133	-			4.4
6 x 4	6.625 x 4.500	41/2	45%	500	43/8	2	5½	37//8	101//8	6½	5/8 x 41/4	100	130	10.5
150 x 100	168.3 x 114.3	114	117	34.5	111	51	140	98	257	165	- 11/	100	100	4.8
8 x 2	8.625 x 2.750	2½	25/8	500	53/16	21/4	57/8	5	123/4	41/8	3/4 x 41/4	130	180	11.3
200 x 50 8 x 2½	219.1 x 70.0 8.625 x 2.875	2 ³ / ₄	67 2 ⁷ / ₈	34.5 500	132 55/16	57 2 ½	149 61/4	127 5	324 12¾	105 4 3/8	3/4 x 41/2	130	180	5.1 11.1
8 X Z ½ 200 x 65	8.625 X 2.875 219.1 x 73.0	2 %4 70	Z'/8 73	34.5	57/16 134	Z 1/4 57	159	127	324	4 %	74 X 4 1/2	130	100	5.0
8 x 3 O.D.	8.625 x 2.996	23/4	27/8	500	51/4	21/4	61/4	5	123/4	43/8	3/4 x 4 ¹ /2	130	180	11.1
200 x 80	219.1 x 76.1	70	73	34.5	133	57	159	127	324	111	74 A T/2	100	100	5.0
8 x 3	8.625 x 3.500	31/2	35%	500	5%	21/4	63/8	5	123/4	51/4	3/4 x 41/2	130	180	13.0
200 x 80	219.1 x 88.9	89	92	34.5	137	57	162	127	324	133			.50	5.9
8 x 4	8.625 x 4.500	41/2	45%	500	53/8	21/4	61/2	5	123/4	61/2	3/4 x 41/2	130	180	16.2
200 x 100	219.1 x 114.3	114	117	34.5	137	57	165	127	324	165				7.3

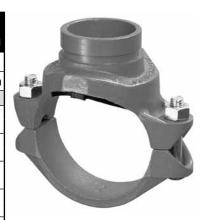
NOTE: 2½", 5" and 6" Nominal size run pipe may be used on 3" O.D., 5½" O.D. and 6½" O.D. pipe.

Not for use in copper systems.

 $[\]S$ – For additional Bolt Torque information, see Technical Data Section.

^{▲ -} Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, FM, VdS and LPCB pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

The Gruvlok® Clamp-T provides a quick and easy outlet at any location along the pipe. A hole drilled or cut in the pipe to receive the locating collar of the Clamp-T is all that is required. The full, smooth outlet area provides for optimum flow characteristics.


The Clamp-T housing is specially engineered to conform to the pipe O.D. and the Clamp-T gasket providing a leak tight reliable seal in both positive pressure and vacuum conditions. The maximum working pressure for all sizes is 500 PSI (34.5 bar) when assembled on standard wall steel pipe. For the latest UL/ULC listed, LPCB, VdS and FM Approved pressure ratings versus pipe schedule, see www.anvilintl.com or contact your local Anvil Representative.

The Gruvlok Clamp-T provides for a branch or cross connection in light wall or standard wall steel pipe.

Clamp-T cross connections are available in most sizes allowing greater versatility in

CLAMP-T FLOW DATA (FRICTIONAL RESISTANCE)

Branch Size	Fig. 7046	Grooved Branch				
Branch Size	C.V. Value	Equiv. Pipe Lengt				
In./DN(mm)		Ft./m				
11/4	5.4	5.0				
32	-	1.5				
$1^{1}/_{2}$	95	3.5				
40	-	1.1				
2	148	4.5				
50	-	1.4				
21/2	205	7.0				
65	-	2.1				
3	294	9.5				
80	-	2.9				
4	571	7.0				
100	-	2.1				

For Listings/Approval Details and Limitations, visit our website at www.anvilintl.com or contact an Anvil® Sales Representative.

- Available galvanized.

MATERIAL SPECIFICATIONS

HOUSING:

piping design.

Ductile Iron conforming to ASTM A-536, Grade 65-45-12

ANSI BOLTS & HEAVY HEX NUTS:

Heat treated, oval neck track head bolts conforming to ASTM A-183 Grade 2 with a minimum tensile strength of 110,000 psi and heavy hex nuts of carbon steel conforming to ASTM A-563 Grade A or Grade B, or J995 Grade 2. Bolts and nuts are provided zinc electroplated as standard.

METRIC BOLTS & HEAVY HEX NUTS:

Heat treated, zinc electroplated oval-neck track head bolts made of carbon steel with mechanical properties per ISO 898-1 Class 8.8. Hex nuts and bolts are zinc electroplated followed by a yellow chromate dip.

U-BOLT:

Cold drawn steel and zinc plated.

COATINGS:

Rust inhibiting paint Color: ORANGE (standard)

Hot Dipped Zinc Galvanized (optional)

Other available options: Example: RAL3000 or RAL9000 Series For other coating requirements contact an Anvil Representative.

LUBRICATION:

Standard Gruvlok

☐ Gruvlok Xtreme[™] required for dry pipe systems and freezer applications.

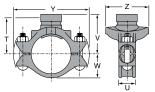
GASKETS: Materials

Properties as designated in accordance with ASTM D-2000.

☐ Grade "E" EPDM (Green color code)

-40°F to 230°F (Service Temperature Range)(-40°C to 110°C) Recommended for water service, diluted acids, alkalies solutions, oil-free air and many chemical services.

NOT FOR USE IN PETROLEUM APPLICATIONS.


☐ Grade "EP" EPDM (Green and Red color code)

-40°F to 250°F (Service Temperature Range)(-40°C to 121°C)
Recommended for water service, diluted acids, alkalies solutions, oil-free air and many other chemical services.

NOT FOR USE IN PETROLEUM APPLICATIONS.

PROJECT INFORMATION	APPROVAL STAMP
Project:	Approved
Address:	Approved as noted
Contractor:	☐ Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

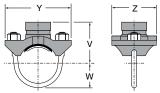


Fig. 7046 (U-Bolt)

A WARNING

For dry pipe systems and freezer applications lubrication of the gasket is required, Gruvlok® Xtreme™ Lubricant is required.

	rig.	/046			rig. 70)46 (U-Bo	DIT)						
			F	IGURE	7046	GR B	RANC	Н					
Nominal		Hole Di	mensions	Max.	Clamp-T Dimensions					Bolt*	Specified Torque §		Approx.
Size	0.D.	Min. Diameter	Max. Diameter	Working Pressure▲	U	V Grooved	W	Y	Z	Size	Min.	Max.	Wt. Ea.
In./DN(mm)	In./mm	In./mm	In./mm	PSI/bar	In./mm	In./mm	In./mm	In./mm	In./mm	In./mm		:./N-m	Lbs./Kg
2 ½ x 1¼ • 65 x 32	2.875 x 1.660 73.0 x 42.4	2 51	2 1/8 54	500 34.5	%16 14	31/8 79	1 ³ / ₄ 44	6 1/ ₈ 156	3½ 89	½ U-Bolt	30	40	3.4 1.5
2½ x 1½ 65 x 40	2.875 x 1.900 73.0 x 48.3	2 51	2½ 54	500 34.5	%16 14	31/8 79	1 ³ / ₄	6½ 156	3½ 89	½ U-Bolt	30	40	3.4 1.5
3 x 11/4 80 x 32	3.500 x 1.660 88.9 x 42.4	2 51	2½ 54	500 34.5	1½ 38	3½ 89	21/8 54	6 ⁷ / ₈ 175	3¾ 95	½ x 2¾	80	100	3.4 1.5
3 x 1½ 80 x 40	3.500 x 1.900 88.9 x 48.3	2 51	2½ 54	500 34.5	1½ 38	3½ 89	21/8 54	6 ⁷ / ₈ 175	3¾ 95	½ x 2¾	80	100	4.4 <i>2.0</i>
3 x 2 80 x 50	3.500 x 2.375 88.9 x 60.3	2½ 64	25/8 67	500 34.5	1½ 38	3½ 89	21/8 54	6 ⁷ / ₈ 175	4 ½ 105	½ x 2¾	80	100	4.6 2.1
4 x 1 1/4 100 x 32	4.500 x 1.660	2 51	2½ 54	500 34.5	17/8 48	4	25/8 67	7 ½	3 ³ / ₄	½ x 2¾	80	100	4.2
4 x 1½ 100 x 40	4.500 x 1.900 114.3 x 48.3	2 51	2½ 54	500 34.5	17/8 48	4	25/8 67	7 ½	3¾ 95	½ x 2¾	80	100	4.3 2.0
4 x 2 100 x 50	4.500 x 2.375	2½ 64	25/8 67	500 34.5	17/8 48	4	25/8 67	7 ½	4 ½ 105	½ x 2¾	80	100	4.6 2.1
4 x 2½ 100 x 65	4.500 x 2.875	2 ³ / ₄ 70	2 ⁷ / ₈ 73	500 34.5	17/8 48	4	25/8 67	7 ½	4 3/8	½ x 2¾	80	100	5.0 2.3
4 x 3 0.D. 100 x 80	4.500 x 2.996 114.3 x 76.1	2 ³ / ₄ 70	2 ⁷ / ₈ 73	500 34.5	17/8 48	102	25/8 67	7½ 191	4 ³ / ₈ 111	½ x 2¾	80	100	5.0 2.3
4 x 3 100 x 80	4.500 x 3.500	3½ 89	35/8 92	500 34.5	17/8 48	4	25/8 67	7 ½	51/4 133	½ x 3½	80	100	5.6 2.5
5 x 1¼ 125 x 32	5.563 x 1.660	2 51	2½ 54	500 34.5	17/8 48	4 ½ 108	3½ 83	9½ 232	3¾ 95	½ x 2¾	80	100	5.6 2.5
5 x 1½ 125 x 40	5.563 x 1.900	2 51	2½ 54	500 34.5	1 ⁷ / ₈	4 ½ 108	3½ 83	9 ½ 232	3¾ 95	5% x 31/4	100	130	5.6 2.5
5 x 2 125 x 50	5.563 x 2.375 141.3 x 60.3	2½ 64	25/8 67	500 34.5	1 ⁷ / ₈	4 ½ 108	3½ 83	9 ½ 232	4 ½ 105	5/8 x 31/4	100	130	5.5 2.5
5 x 2½ 125 x 65	5.563 x 2.875	2 ³ / ₄	2 ⁷ / ₈ 73	500 34.5	17/8 48	4 ½ 108	3½ 83	9½ 232	4 3/8	% x 31/4	100	130	5.8 2.6
5 x 3 125 x 80	5.563 x 3.500 141.3 x 88.9	3½ 89	35/8 92	500 34.5	17/8 48	45/8 117	3½ 83	9½ 232	51/4 133	5% x 31/4	100	130	7.1 3.2
6 x 1½ 150 x 40	6.625 x 1.900 168.3 x 48.3	2 51	2½ 54	500 34.5	2 51	5 127	3 ⁷ / ₈	101/8 257	3¾ 95	5/8 x 41/4	100	130	7.2 3.3
6 x 2 150 x 50	6.625 x 2.375 168.3 x 60.3	2 ¹ / ₂	25/8 67	500 34.5	2 51	5 127	3 ⁷ / ₈	101/8 257	4 ½ 105	5/8 x 41/4	100	130	7.8 3.5
6 x 2½ 150 x 65	6.625 x 2.875 168.3 x 73.0	2 ³ / ₄ 70	2½ 73	500 34.5	2 51	5½ 130	37/8 98	101/8 257	4 3/ ₈	5/8 x 4 ¹ / ₄	100	130	7.6 3.4
6 x 3 0.D. 150 x 80	6.625 x 2.996 168.3 x 76.1	2 ³ / ₄ 70	2 ⁷ / ₈ 73	500 34.5	2 51	5½ 130	3 ⁷ / ₈ 98	10½ 257	4 ³ / ₈ 111	5/8 x 4 ¹ / ₄	100	130	7.6 3.4
6 x 3 150 x 80	6.625 x 3.500 168.3 x 88.9	3½ 89	3% 92	500 34.5	2 51	5½ 130	31/8 98	101/8 257	51/4 133	5/8 x 41/4	100	130	8.0 3.6
6 x 4 150 x 100	6.625 x 4.500 168.3 x 114.3	4 ½ 114	4 5/8	500 34.5	2 51	5½ 133	3 ⁷ / ₈	101/8 257	6 ½ 165	5/8 x 41/4	100	130	10.4 4.7
8 x 2 200 x 50	8.625 x 2.375 219.1 x 60.3	2½ 64	25/8 67	500 34.5	2½ 57	61/8 156	5 127	12 ³ / ₄ 324	4 ½ 108	³ / ₄ x 4 ¹ / ₂	130	180	10.4 4.7
8 x 2½ 200 x 65	8.625 x 2.875 219.1 x 73.0	2 ³ / ₄	2 ⁷ / ₈ 73	500 34.5	2½ 57	61/8 156	5 127	12 ³ / ₄ 324	4 3/8	³ / ₄ x 4 ¹ / ₂ M20 x 110	130 175	180 245	10.6 4.8
8 x 3 200 x 80	8.625 x 3.500 219.1 x 88.9	3½ 89	35/8 92	500 34.5	2½ 57	61/8 156	5 127	12 ³ / ₄ 324	51/4 133	3/4 x 4 ¹ / ₂ M20 x 110	130	180 245	11.5 5.2
8 x 4 200 x 100	8.625 x 4.500 219.1 x 114.3	4 ½ 114	4 5/8	500 34.5	2½ 57	6½ 159	5 127	12 ³ / ₄ 324	6 ½ 165	3/4 x 4 ¹ / ₂ M20 x 110	130	180 245	16.2 7.3

NOTE: 2½", 5" and 6" Nominal size run pipe may be used on 3" O.D., 5½" O.D. and 6½" O.D. pipe.

Not for use in copper systems.

^{*} All bolts and nuts are of track head design and are zinc plated conforming to ASTM B-633.

A – Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, FM, VdS and LPCB pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

^{§ –} For additional Bolt Torque information, see Technical Data Section.

[•] Can not be used in cross configuration.

The Gruvlok® Fig. 7012 Flange allows direct connection of Class 125 or Class 150 flanged components to a grooved piping system. The two interlocking halves of the 2" thru 12" sizes of the Gruvlok Flange are hinged for ease of handling, and are drawn together by a latch bolt which eases assembly on the pipe. Precision machined bolt holes, key and mating surfaces assure concentricity and flatness to provide exact fit-up with flanged, lug, and wafer styles of pipe system equipment. A specially designed gasket provides a leak-tight seal on both the pipe and the mating flange face.

Working pressure ratings shown are for reference only and are based on Schedule 40 pipe. For the latest UL/ULC listed, LPCB, VdS and FM Approved pressure ratings versus pipe schedule, see www.anvilintl.com or contact your local Anvil Representative.

The Gruvlok Fig. 7012 Flange requires the use of a steel adapter insert when used against rubber faced surfaces, wafer/lug design valves and serrated or irregular sealing surfaces. In copper systems a phenolic adapter insert is required, in place of the steel adapter insert. (See Installation and Assembly Instructions Section or contact your Anvil Rep. for details.)

For Listings/Approval Details and Limitations, visit our website a www.anvilintl.com or contact an Anvil® Sales Representative.

* When ordering, refer to product as FP7012.

MATERIAL SPECIFICATIONS

HOUSING:

Ductile Iron conforming to ASTM A-536, Grade 65-45-12

LATCH BOLT/NUT (2"-12"):

Heat treated, zinc electroplated, carbon steel oval neck track bolts conforming to ASTM A-183 and zinc electroplated heavy hex nuts of carbon steel conforming to ASTM A-563 Grade A or Grade B, or J995 Grade 2.

METRIC BOLTS & HEAVY HEX NUTS:

Heat treated, zinc electroplated oval-neck track head bolts made of carbon steel with mechanical properties per ISO 898-1 Class 8.8. Hex nuts and bolts are zinc electroplated followed by a yellow chromate dip.

COATINGS:

Hot Dipped Zinc Galvanized (optional)

Other available options: Example: RAL3000 or RAL9000 Series For other coating requirements contact an Anvil Representative.

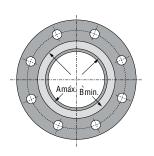
LUBRICATION:

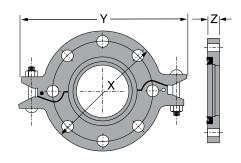
Standard Gruvlok

Gruvlok Xtreme™ required for dry pipe systems and freezer applications.

GASKETS: Materials

Properties as designated in accordance with ASTM D-2000.


☐ Grade "E" EPDM (Green color code)


-40°F to 230°F (Service Temperature Range)(-40°C to 110°C)
Recommended for water service, diluted acids, alkalies solutions, oil-free air and many chemical services.
NOT FOR USE IN PETROLEUM APPLICATIONS.

PROJECT INFORMATION	APPROVAL STAMP
Project:	Approved
Address:	Approved as noted
Contractor:	☐ Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

	FIGURE 7012 FLANGE: ANSI CLASS 125 & 150															
Nominal Pipe Max.			Max. End	Latc	h Bolt		I	Dimensions		Sealing	Surface	Mating Flange Bolts			Λ	
Size	O.D.	_ Working	Load	1h. Dla C:*	Specified	Torque §	χ	γ	7	A M	D 44:	Mating	Flange Bolts	Specified	Torque §	Approx. Wt. Ea.
3120	О.Б.	Pressure 📥	Loud 📥	Latch Bolt Size*	Min.	Max.	λ	ľ	Z	A Max.	B Min.	Qty.	Size (ANSI)	Min.	Max.	Wi. Eu.
In./DN(mm)	In./mm	PSI/bar	Lbs./kN	In./mm	FtLb	s/N-m	In./mm	In./mm	In./mm	In./mm	In./mm		in. (ISO) mm	FtLb:	s/N-m	Lbs./Kg
2	2.375	300	1,329	3/8 x 23/4	30	45	61/4	83%	3/4	23/8	37/16	4	5/8 x 23/4	110	140	4.2
50	60.3	20.7	5.91	M10 x 70	40	60	159	213	19	60	87	4	M16 x 70	149	190	1.9
21/2	2.875	300	1,948	3/8 x 23/4	30	45	7	91/2	3/4	21//8	4	4	5/8 x 23/4	110	140	4.6
65	73.0	20.7	8.66	M10 x 70	40	60	178	241	19	73	102	-	M16 x 70	149	190	2.1
3 O.D.	2.996	300	2,115	-	30	45	71/4	93/4	3/4	3	41/8	-	-	110	140	4.8
76.1	76.1	20.7	9.41	M10 x 70	40	60	184	248	19	76	105	4	M16 x 70	149	190	2.2
3	3.500	300	2,886	3/8 x 23/4	30	45	71//8	10½	3/4	3½	4%16	4	5/8 x 23/4	110	140	6.0
88.9	88.9	20.7	12.84	M10 x 70	40	60	200	267	19	89	116	8	M16 x 70	149	190	2.7
4	4.500	300	4,771	3/8 x 23/4	30	45	9	11½	3/4	41/2	5%16	8	5/8 x 2 ³ / ₄	110	140	6.3
100	114.3	20.7	21.22	M10 x 70	40	60	229	292	19	114	141	8	M16 x 70	149	190	2.9
5½ O.D.	5.500	300	7,127	-	30	45	97/8	121/8	7/8	5%16	63/4	-	-	220	250	15.6
139.7	139.7	20.7	31.70	M10 x 70	40	60	251	327	22	141	171	8	M16 x 75	298	339	7.1
5	5.563	300	7,292	3/8 x 23/4	30	45	10	121/2	7/8	5%16	63/4	8	3/4 x 27/8	220	250	8.8
125	141.3	20.7	32.44	M10 x 70	40	60	254	318	22	141	171	-	-	298	339	4.0
6½ O.D.	6.500	300	9,955	-	30	45	111/4	14	7/8	65/8	7 13/16	-	-	220	250	9.7
165.1	165.1	20.7	44.28	M10 x 70	40	60	286	356	22	168	198	8	M20 x 80	298	339	4.4
6	6.625	300	10,341	3/8 x 23/4	30	45	11	14	7/8	65%	713/16	8	3/4 x 31/8	220	250	9.6
150	168.3	20.7	46.00	M10 x 70	40	60	279	356	22	168	198	8	M20 x 80	298	339	4.4
8	8.625	300	17,528	3/8 x 23/4	30	45	13½	161/2	1	85%	10	8	3/4 x 31/4	220	250	15.6
200	219.1	20.7	77.97	M10 x 70	40	60	343	419	25	219	254	8 (12)	M20 x 80	298	339	7.1
10	10.750	300	27,229	3/8 x 23/4	30	45	16	19	1	103/4	121/8	12	1/8 x 31/2	320	400	18.2
250	273.1	20.7	121.12	M10 x 70	40	60	406	483	25	273	308	12	M20 x 90	439	542	8.3
12	12.750	300	38,303	3/8 x 23/4	30	45	19	21¾	11/4	12¾	141/8	12	7/8 x 33/4	320	400	29.9
300	323.9	20.7	170.38	M10 x 70	40	60	483	552	32	324	359	12	-	439	542	13.6

- + PN 16 uses M24 x 90 (PN) Dimensions for bolt circle PN 10 & 16 Flange.
- * Available in ANSI or metric bolt sizes only as indicated.
- Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, FM, VdS and LPCB pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.
- \S For additional Bolt Torque information, see Technical Data Section.

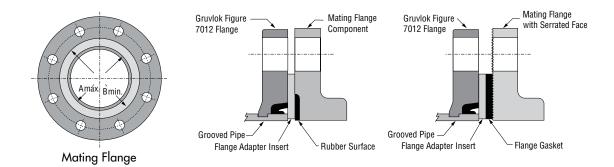
The Gruvlok Flange bolt hole pattern conforms to ANSI Class 150 and Class 125 flanges.

To avoid interference issues, flanges cannot be assembled directly to Series 7700 butterfly valve. Flange can be assembled to one side of series 7500 and 7600 valve only.

Mating flange bolts must be at least Intermediate Strength Bolting per ASME B16.5. Bolts with material properties equal or greater than SAE J429 Grade 5 are acceptable.

Refer to the Gruvlok Product Catalog or Anvil's web site for more information on installing this flange.

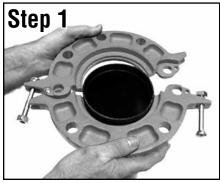
300 Lb Flange is available, Fig. 7013, see Gruvlok Catalog or contact your Anvil Rep. for more information.


Other sizes available, contact an Anvil Representative.

For dry pipe systems and freezer applications lubrication of the gasket is required, Gruvlok® Xtreme™ Lubricant is required.

GRUVLOK

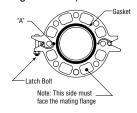
- A.The sealing surfaces A Max. to B Min. of the mating flange must be free from gouges, undulations and deformities of any type to ensure proper sealing of the gasket.
- B. Gruvlok Flanges are to be assembled on butterfly valves so as not to interfere with actuator or handle operation.
- C.Do not use Gruvlok Flanges within 90 degrees of one another on standard fittings because the outside dimensions may cause interference.
- D. Gruvlok Flanges should not be used as anchor points for tierods across non-restrained joints.
- E. Fig. 7012 Gruvlok Flange sealing gaskets require a hard flat surface for adequate sealing. The use of a Gruvlok Flange Adapter Insert is required for applications against rubber faced valves or other equipment. The Gruvlok Flange Adapter Insert is installed between the Gruvlok Flange sealing gasket and the mating flange or surface to provide a good sealing surface area.
- F. Gruvlok Flanges are not recommended for use against formed rubber flanges.
- G. An additional bolt is recommended for the hinge side of the 2" 12" Figure 7012 when connecting to lug valves.
- H. Contact an Anvil Representative for Di-Electric Flange connections.

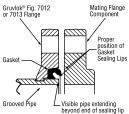

Applications which require a Gruvlok Flange Adapter Insert:

- When mating to a wafer valve (lug valve), if the valve is rubber faced in the area designated by the sealing surface dimensions (A Max. to B Min.), place the Gruvlok Flange Adapter Insert between the valve and the Gruvlok flange.
- 2. When mating to a rubber-faced metal flange, the Gruvlok Flange Adapter Insert is placed between the Gruvlok Flange and the rubber-faced flange.
- 3. When mating to a serrated flange surface, a standard full-faced flange gasket is installed against the serrated flange face and the Gruvlok Flange Adapter Insert is placed between the Gruvlok Flange and the standard Flange gasket.
- 4. When mating to valves or other component equipment where the flange face has an insert, use procedure described in note 3.

FRUVLOK

ALWAYS USE A GRUVLOK® SPF/ANVIL™ LUBRICANT FOR PROPER COUPLING ASSEMBLY. Thorough lubrication of the external surface of the gasket is essential to prevent pinching and possible damage to the gasket. For temperatures above 150°F (65°C) and below 32°F (0°C) use Gruvlok® SPF/Anvil™ Xtreme Lubricant™ and lubricate all gasket surfaces, internal and external. See Gruvlok SPF/Anvil Lubricants in the Technical Data section of the Anvil SPF catalog for additional important information. Check pipe end for proper grooved dimensions and to assure that the pipe end is free of indentations and projections that would prevent proper sealing of the Gruvlok flange gasket.


On the side without the hinge pin, loosen the latch bolt nut to the end of the bolt thread. (It is not necessary to remove the nut from the latch bolt.) Swing the latch bolt out of the slot. Open the Gruvlok Flange and place around the grooved pipe end with the key section fitting into the groove. The flange gasket cavity must face the pipe end.


Place the latch bolt back into the slotted hole. Tighten the nut until there is a 1/16" gap between the flange halves at location "A". (See Figure below)

Check the gasket to assure that it is properly suited for the intended service. Lubricate the entire exterior surface of the gasket, including the sealing lips, using the proper Gruvlok lubricant.

4 Stretch the Gruvlok gasket around the pipe end and then press the gasket into the cavity between the pipe O.D. and the flange. The gasket must be properly positioned as shown in the figure below.

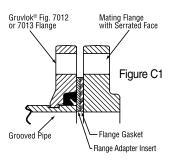
With the gasket in place apply lubricant to the exposed gasket tip, which will seal on the mating flange. Tighten the nuts on the latch bolts alternately to the specified latch bolt torque. The flange housings must be in firm metal-to-metal contact.

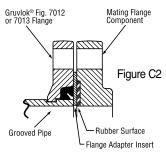
A WARNING

The Gruvlok Flange gasket must be inserted so that the sealing lips face toward the pipe end and the mating flange. The lip of the gasket, sealing on the pipe, should not extend beyond the pipe end. The pipe should extend out beyond the end of the sealing lip by approximately $^{1}\!/_{8}"$ on the 2"-6" sizes and $^{3}\!/_{16}"$ on the 8"-12" sizes.

GRUVLOK

Installation Instructions continued


Verify that the mating flange face is hard, flat and smooth, free of indentations, which would prevent proper sealing of the Gruvlok Flange gasket. Assure the gasket is still in the proper position and align Gruvlok Flange bolt holes with the mating flange, pump, tank, etc., bolt holes.



It is important to line up the bolt holes before bringing the two flanges together. Sliding the flanges into place will dislodge the gasket and cause leakage to occur. When using a flange insert, it is important that the insert is properly aligned with the gasket prior to tightening the bolts.

Insert a flange bolt or stud with material properties of SAE J429 Grade 5 or higher through the bolt holes and thread a nut on hand tight. Continue this procedure until all bolt holes have been fitted. Tighten the nuts alternately and evenly so the flange faces remain parallel. All the bolts or studs must be torqued to the mating flange bolts specified torque. The flange faces should have metal-to-metal contact.

Note: The Gruvlok Fig. 7012 Flange requires the use of a Flange Adapter Insert when used against rubber surfaces (Figure C1), serrated flange surfaces or mating flanges with inserts (Figure C2). The Flange Adapter Insert will be exposed to the fluids in the system. Ensure that the Insert is compatible with the fluids in the systems and with adjacent piping components.

Do not use a steel Flange Adapter Insert in copper systems or in systems where galvanic corrosion is possible.

Specified Bolt Torque for Latch and Mating Flange Bolts

Specified bolt torque is for the latch and mating flange bolts used on Gruvlok® flanges. The nuts must be tightened alternately and evenly until fully tightened. **Caution:** Use of an impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure supply, battery strength and operational variations.

Caution: Proper torquing of latch and mating flange bolts is required to obtain specified performance. Over torquing the bolts may result in damage to the bolt and/or casting which could result in pipe joint separation. Under torquing the bolts may result in lower pressure retention capabilities, lower bend load capabilities, joint leakage and pipe joint separation. Pipe joint separation may result in significant property damage and serious injury.

Note: For VDS approved applications, please refer to data sheet VDSGruv: "VDS - Roll Grooving Approval Specifications" in the Technical Data/Installation Instruction Section at www.anvilintl.com.

SPECIFI	ANSI/METRIC SPECIFIED LATCH BOLT TORQUE						
Bolt Size	Wrench Size	Specified Bolt Torque *					
In./mm	In./mm	FtLbs/N-M					
3/8	11/16	30-45					
M10	16	40-60					
1/2	7/8	80-100					
_	_	_					
5/8	11/16	100-130					
-	_	_					
3/4	11/4	130-180					
_	_	_					
7/8	17/16	180-220					
_	_	_					
* Non-lubi	ricated bolt	torques.					

		1.		

ANSI/METRIC SPECIFIED MATING FLANGE BOLT TORQUE					
Bolt Size	Wrench Size	Specified Bolt Torque *			
In./mm	In./mm	FtLbs/N-M			
5/8	11/16	110-140			
M16	24	149-190			
3/4	11/4	220-250			
M20	30	298-339			
7/8	17/16	320-400			
M24	36	434-542			
1	15/8	360-520			
_	_	-			
11//8	1 ¹³ / ₁₆	450-725			
_		_			
11/4	2	620-1000			
_	_	_			

^{*} Non-lubricated bolt torques.

90° ELBOW

- Approved By UL, ULC and FM at 300 psi
- Cast Iron ASTM A 126 Class B.
- NPT Thread per ANSI/ASME B1.20.1.
- Dimension per ASME B16.4
- Marked with SPD
- For current listing/approval details contact a Titus representative

Nominal Size	Pressure	Dimension		Unit WT
in/mm	PSI/MPa	А	В	LB/KGS
1	300	1.50	1.50	0.90
25	2065	38.1	38.1	0.41
1-1/4	300	1.75	1.75	1.39
32	2065	44.45	44.45	0.63
1-1/2	300	1.94	1.94	1.83
40	2065	49.27	49.27	0.83
2	300	2.25	2.25	3.10
50	2065	57.15	57.15	1.41
2-1/2	300	2.70	2.70	4.80
65	2065	68.58	68.58	2.18

90° REDUCED ELBOW

- Approved By UL, ULC and FM at 300 psi
- Cast Iron ASTM A 126 Class B.
- NPT Thread per ANSI/ASME B1.20.1.
- Dimension per ASME B16.4
- Marked with SPD
- For current listing/approval details contact a Titus representative

Nominal Size	Pressure	Dime	nsion	Unit WT
in/mm	PSI/MPa	Α	В	LB/KGS
1×1/2	300	1.26	1.36	0.68
25×15	2065	32.0	34.5	0.31
1×3/4	300	1.37	1.45	0.77
25×20	2065	34.80	36.83	0.35
1-1/4×1/2	300	1.34	1.53	0.97
32×15	2065	34.04	38.86	0.44
1-1/4×3/4	300	1.45	1.62	1.08
32×20	2065	36.83	41.15	0.49
1-1/4×1	300	1.58	1.67	1.19
32×25	2065	40.13	42.42	0.54
1-1/2×1/2	300	1.41	1.66	1.17
40×15	2065	35.8	42.2	0.53
1-1/2×3/4	300	1.52	1.75	1.30
40×20	2065	38.61	44.45	0.59
1-1/2×1	300	1.65	1.80	1.43
40×25	2065	41.91	45.72	0.65
1-1/2×1/-1/4	300	1.82	1.88	1.65
40×32	2065	46.23	47.75	0.75
2×1/2	300	1.49	1.88	1.72
50×15	2065	37.85	47.75	0.78
2×3/4	300	1.60	1.97	1.85
50×20	2065	40.6	50.0	0.84
2×1	300	1.73	2.02	2.00
50×25	2065	43.94	51.31	0.91
2×1-1/4	300	1.90	2.10	2.31
50×32	2065	48.26	53.34	1.05
2×1-1/2	300	2.02	2.16	2.53
50×40	2065	51.31	54.86	1.15

45° ELBOW

- Approved By UL, ULC and FM at 300 psi
- Cast Iron ASTM A 126 Class B.
- NPT Thread per ANSI/ASME B1.20.1.
- Dimension per ASME B16.4
- Marked with SPD
- For current listing/approval details contact a Titus representative

Nominal Size	Pressure Dimension		nsion	Unit WT
in/mm	PSI/MPa	Α	В	LB/KGS
1	300	1.120	1.120	0.81
25	2065	28.448	28.448	0.37
1-1/4	300	1.290	1.290	1.23
32	2065	32.766	32.766	0.56
1-1/2	300	1.430	1.430	1.65
40	2065	36.322	36.322	0.75
2	300	1.680	1.680	2.68
50	2065	42.672	42.672	1.22

REDUCED COUPLING

- Approved By UL, ULC and FM at 300 psi
- Cast Iron ASTM A 126 Class B.
- NPT Thread per ANSI/ASME B1.20.1.
- Dimension per ASME B16.4
- Marked with SPD
- For current listing/approval details contact a Titus representative

Nominal Size	Pressure	Dimension	Unit WT
in/mm	PSI/MPa	Α	LB/KGS
1×1/2	300	1.70	0.616
25×15	2065	43.18	0.28
1×3/4	300	1.70	0.684
25×20	2065	43.18	0.311

CROSS

- Approved By UL, ULC and FM at 300 psi
- Cast Iron ASTM A 126 Class B.
- NPT Thread per ANSI/ASME B1.20.1.
- Dimension per ASME B16.4
- Marked with SPD
- For current listing/approval details contact a Titus representative

Nominal Size	Pressure	Dimension		Unit WT
in/mm	PSI/MPa	Α	В	LB/KGS
1	300	1.50	1.50	1.60
25	2065	38.1	38.1	0.73
1-1/4	300	1.75	1.75	2.64
32	2065	44.45	44.45	1.20
1-1/2	300	1.94	1.94	2.99
40	2065	49.27	49.27	1.36
2	300	2.25	2.25	4.80
50	2065	57.15	57.15	2.18

REDUCED CROSS

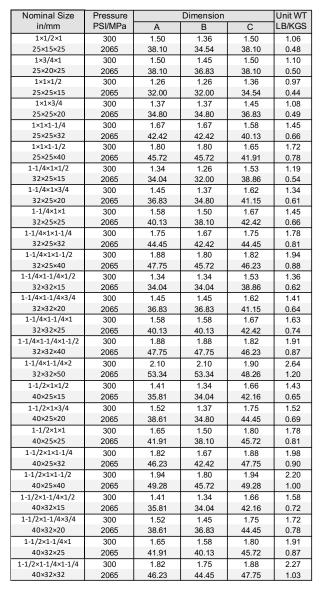
- Approved By UL, ULC and FM at 300 psi
- Cast Iron ASTM A 126 Class B.
- NPT Thread per ANSI/ASME B1.20.1.
- Dimension per ASME B16.4
- Marked with SPD
- For current listing/approval details contact a Titus representative

Nominal Size	Pressure	Dimension		Unit WT
in/mm	PSI/MPa	Α	В	LB/KGS
1-1/4×1	300	1.58	1.67	1.89
32×25	2065	40.13	42.42	0.86
1-1/2×1	300	1.65	1.80	2.27
40×25	2065	41.91	45.72	1.03
2×1	300	1.73	2.02	2.99
50×25	2065	43.94	51.31	1.36

TEE

- Approved By UL, ULC and FM at 300 psi
- Cast Iron ASTM A 126 Class B.
- NPT Thread per ANSI/ASME B1.20.1.
- Dimension per ASME B16.4
- Marked with SPD
- For current listing/approval details contact a Titus representative

Nominal Size	Pressure	Dimension		Unit WT
in/mm	PSI/MPa	Α	В	LB/KGS
1	300	1.50	1.50	1.25
25	2065	38.10	38.10	0.57
1-1/4	300	1.75	1.75	1.91
32	2065	44.45	44.45	0.87
1-1/2	300	1.94	1.94	2.55
40	2065	49.27	49.27	1.16
2	300	2.25	2.25	3.96
50	2065	57.15	57.15	1.80
2-1/2	300	2.70	2.70	6.38
65	2065	68.58	68.58	2.90



REDUCED TEE

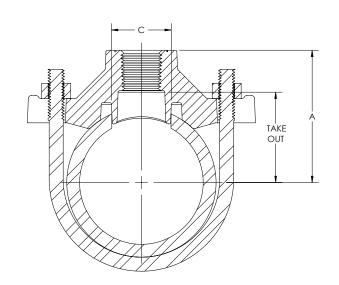
- Approved By UL, ULC and FM at 300 psi
- Cast Iron ASTM A 126 Class B.
- NPT Thread per ANSI/ASME B1.20.1.
- Dimension per ASME B16.4
- Marked with SPD
- For current listing/approval details contact a Titus representative

Nominal Size	Pressure		Dimension		Unit WT
in/mm	PSI/MPa	Α	В	С	LB/KGS
1-1/2×1-1/4×1-1/2	300	1.94	1.88	1.94	2.42
40×32×40	2065	49.28	47.75	49.28	1.10
1-1/2×1-1/4×2	300	2.16	2.10	2.02	2.95
40×32×50	2065	54.86	53.34	51.31	1.34
1-1/2×1-1/2×1/2	300	1.41	1.41	1.66	1.80
40×40×15	2065	35.81	35.81	42.16	0.82
1-1/2×1-1/2×3/4	300	1.52	1.52	1.75	1.91
40×40×20	2065	38.61	38.61	44.45	0.87
1-1/2×1-1/2×1	300	1.65	1.65	1.80	2.09
40×40×25	2065	41.91	41.91	45.72	0.95
1-1/2×1-1/2×1-1/4	300	1.82	1.82	1.88	2.42
40×40×32	2065	46.23	46.23	47.75	1.10
1-1/2×1-1/2×2	300	2.16	2.16	2.02	2.99
40×40×50	2065	54.86	54.86	51.31	1.36
2×1×2	300	2.25	2.02	2.25	3.21
50×25×50	2065	57.15	51.31	57.15	1.46
2×1-1/4×2	300	2.25	2.10	2.25	3.50
50×32×50	2065	57.15	53.34	57.15	1.59
2×1-1/2×1/2	300	1.49	1.41	1.88	2.27
50×40×15	2065	37.85	35.81	47.75	1.03
2×1-1/2×3/4	300	1.60	1.52	1.97	2.38
50×40×20	2065	40.64	38.61	50.04	1.08
2×1-1/2×1	300	1.73	1.65	2.02	2.53
50×40×25	2065	43.94	41.91	51.31	1.15
2×1-1/2×1-1/4	300	1.90	1.82	2.10	2.86
50×40×32	2065	48.26	46.23	53.34	1.30
2×1-1/2×1-1/2	300	2.02	1.94	2.16	3.08
50×40×40	2065	51.31	49.28	54.86	1.40
2×1-1/2×2	300	2.25	2.16	2.25	3.59
50×40×50	2065	57.15	54.86	57.15	1.63
2×2×1/2	300	1.49	1.49	1.88	2.57
50×50×15	2065	37.85	37.85	47.75	1.17
2×2×3/4	300	1.60	1.60	1.97	2.77
50×50×20	2065	40.64	40.64	50.04	1.26
2×2×1	300	1.73	1.73	2.02	2.93
50×50×25	2065	43.94	43.94	51.31	1.33
2×2×1-1/4	300	1.90	1.90	2.10	3.21
50×50×32	2065	48.26	48.26	53.34	1.46
2×2×1-1/2	300	2.02	2.02	2.16	3.52
50×50×40	2065	51.31	51.31	54.86	1.60
2×2×2-1/2	300	2.60	2.60	2.39	5.06
50×50×65	2065	66.04	66.04	60.71	2.30

PLUG

- Approved By UL, ULC and FM at 300 psi
- Cast Iron ASTM A 126 Class B.
- NPT Thread per ANSI/ASME B1.20.1.
- Dimension per ASME B16.4
- Marked with SPD
- For current listing/approval details contact a Titus representative

Nominal Size	Pressure	Dimension	Unit WT
in/mm	PSI/MPa	Α	LB/KGS
1/2	300	0.94	0.10
15	2065	23.88	0.05
3/4	300	1.07	0.18
20	2065	27.18	0.08
1	300	1.25	0.29
25	2065	31.75	0.13
1-1/4	300	1.36	0.46
32	2065	34.54	0.21
1-1/2	300	1.45	0.64
40	2065	36.83	0.29
2	300	1.56	1.08
50	2065	39.62	0.49


TEELOX™ MECHANICAL BRANCH CONNECTOR

Designed for fast installation of bolted branch outlets, TeeloxTM mechanical branch connectors are practical alternatives to existing branch connect systems. Made from high quality cast iron, TeeloxTM are known for long-lasting, maintenance-free performance. Key Features:

- A high grade EPDM rubber gasket surrounds the locating collar for accurate, permanent installation and the best seal in the industry.
- The locating collar is an integral part of the casting.
- A zinc-plated high-tensile steel U-bolt ensures rust-free attachment.
- Teelox[™] is approved for conventional and arm-over installations.

NPS	Pipe Center to Outlet A	Hole Dia. B	Take Out
1 1/4 x 1/2	1.98	1.19	1.19
1 1/4 x 3/4	2.05	1.19	1.19
1 1/4 x 1	2.13	1.19	1.19
1 1/2 x 1/2	1.98	1.19	1.19
1 1/2 x 3/4	2.05	1.19	1.19
1 1/2 x 1	2.13	1.19	1.19
2 x 1/2	2.26	1.19	1.47
2 x 3/4	2.33	1.19	1.47
2 x 1	2.41	1.19	1.47
2 1/2 x 1/2	2.57	1.19	1.78
2 1/2 x 3/4	2.64	1.19	1.78
2 1/2 x 1	2.72	1.19	1.78

Material: Cast Iron ASTM A126 Class A Minimum

Gasket: E.P.D.M. Rubber ASTM D-2000
U Bolt: Zinc Plated High-Tensile Steel

Dimensions: ANSI/ASME B1.20.1

Pressure Ratings: 175 psi

Coatings: ASTM B633, ASTM A153

Additional UL, ULC and FM where applicable

Specifications:

Torque 20 ft.-lbs. max.

Requirement:

Section 3 – Valves

Victaulic® Series UMC (Universal Manifold Check) **Assembly**

PRODUCT DESCRIPTION 1.0

Available Sizes

1½ – 8"/DN32 – DN200

Maximum Working Pressure

• Up to 300 psi/2068 kPa/20.6 bar

Application

- Floor control assemblies may be utilized to meet the zone separation requirements of multistory applications exceeding two stories in height or whenever separate control or zoning is specified.
- Shotgun riser assemblies may be utilized in vertical orientations on individual system risers.

Configurations

- Optional control valve: Series 705 Butterfly Valve or Series 728 Ball Valve
- Factory assembled right-handed/left-handed (field changeable if necessary)

Included Components

- Integrated Check Valve
- Series UTD (Universal Test Drain) with integrated Series ARV (Adjustable Relief Valve)
- · Quick Drain Hose
- Vane Type Flow Switch
- $1\frac{1}{4} 2$ "/DN32 DN50 UMC use saddle type 2" VSR flow switch
- 2½ 3"/73mm DN80 and 8"/DN200 UMC use saddle type VSR flow switch for corresponding valve size
- 4 6"/DN100-DN150 UMC use VSR-M flow switch with flange adapter
- 1 1/4 8"/DN32 DN200 System-side pressure gauge 400 psi/2750 kPa/27.5 bar
- 1 ¼ 3"/DN32-DN80 supply side ½" plugged port located on control valve (if using as a system riser, pressure gauge ordered separately)
- 4 8"/DN100 DN200 Supply-side pressure gauge 400 psi/2750 kPa/27.5 bar

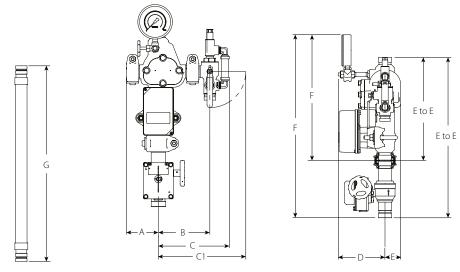
Available End Connections

• Victaulic Original Groove System (OGS) standard groove

2.0 CERTIFICATION/LISTINGS

ALWAYS REFER TO ANY NOTIFICATIONS AT THE END OF THIS DOCUMENT REGARDING PRODUCT INSTALLATION, MAINTENANCE OR SUPPORT.

3.0 SPECIFICATIONS - MATERIAL


Body: Ductile iron conforming to ASTM A536, grade 65-45-12

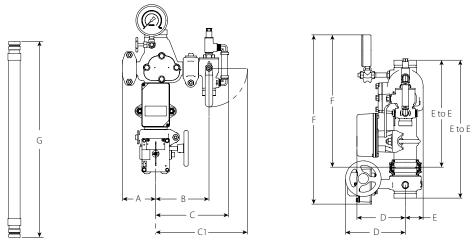
Clapper: Stainless Steel
Clapper Seal: EPDM
Shafts: Stainless Steel

Seat: Brass

Spring: Stainless Steel **Hose:** Stainless Steel

4.0 DIMENSIONS

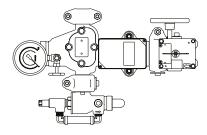
Si	ize		Dimensions											We	eight		
Nominal	Actual Outside Dia.	E to E with control valve	E to E without control valve	A	В	С	C-1		D without control valve	E	F with control valve	F without control valve	Series UTD Valve Size (Nominal)	Series UTD Test Orifice	G Quick Drain Hose Length	Approx. (Each) with control valve	Approx. (Each) without control valve
inches	inches						inches	5	,		,	,	inches	K-Factor	inches	lb	lb
DN	mm						mm						DN	S.I.	mm	kg	kg
1 1/4	1.660	20.50	13.13	3.63	5.88	8.25	10.00	6.00	6.00	2.00	23.38	16.00	1.00	2.8	24.00	32.0	24.0
DN32	42.4	521	333	92	149	210	254	152	152	51	594	406	25	4.0	610	14.5	10.9
1 ½	1.900	20.50	13.13	3.63	5.88	8.25	10.00	6.00	6.00	2.00	23.50	16.13	1.00	2.8	24.00	34.0	25.0
DN40	48.3	521	333	92	149	210	254	152	152	51	597	410	25	4.0	610	15.4	11.3

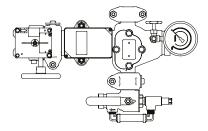

NOTES

- $\bullet \quad \text{When Series UTD Valve Size (Nominal) is } 1"/25 \text{ mm, flexible drain hose connection utilizes FireLock IGS}^{\text{\tiny{M}}} \text{ groove profile}$
- ½" system supply pressure gauge port located on the control valve for sizes 1 ½ 1 ½"/DN32 DN40

ictaulic

<u>victaulic.com</u> 2


4.0 DIMENSIONS (CONTINUED)

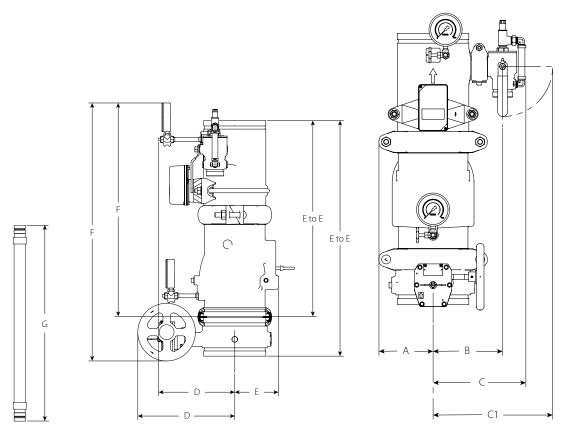

Si	ze		Dimensions											We	ight		
Nominal	Actual Outside Dia.	E to E with control valve	E to E without control valve	A	В	С	C-1	D with control valve	D without control valve	E	F with control valve	F without control valve	Series UTD Valve Size (Nominal)	Series UTD Test Orifice	G Quick Drain Hose Length	Approx. (Each) with control valve	Approx. (Each) without control valve
inches	inches						inches	5					inches	K-Factor	inches	lb	lb
DN	mm						mm						DN	S.I.	mm	kg	kg
2	2.375	17.50	13.13	3.63	5.88	8.25	10.00	6.38	6.00	2.00	21.13	16.38	1.00	2.8	24.00	36.0	25.0
DN50	60.3	445	333	92	149	210	254	162	152	51	537	416	25	4.0	610	16.3	11.3
2 1/2	2.875	17.38	13.50	4.25	6.75	9.25	11.50	7.50	6.13	2.25	21.25	16.63	1.25	4.2	24.00	39.0	28.0
	73.0	441	343	108	171	235	292	191	156	57	540	422	32	6.1	610	17.7	12.7
	3.000	17.38	13.50	4.25	6.75	9.25	11.50	7.50	6.13	2.25	21.25	16.63	1.25	4.2	24.00	39.0	28.0
DN65	76.1	441	343	108	171	235	292	191	156	57	540	422	32	6.1	610	17.7	12.7
3	3.500	17.63	13.75	4.38	7.13	9.63	11.88	7.75	6.38	2.38	21.13	16.50	1.25	4.2	24.00	44.0	31.0
DN80	88.9	448	349	111	181	244	302	197	162	60	537	419	32	6.1	610	20.0	14.1
4	4.500	19.50	14.63	5.75	8.75	11.63	14.88	8.75	7.00	3.00	22.75	17.63	2.00	5.6	36.00	65.0	52.0
DN100	114.3	495	371	146	222	295	378	222	178	76	578	448	51	8.1	914	29.5	23.6
	6.500	23.50	17.38	6.88	10.00	12.88	16.13	11.38	8.00	3.88	25.88	19.75	2.00	5.6	36.00	100.0	73.0
	165.1	597	441	175	254	327	410	289	203	98	657	502	51	8.1	914	45.4	33.1
6	6.625	23.50	17.38	6.88	10.00	12.88	16.13	11.38	8.00	3.88	25.88	19.75	2.00	5.6	36.00	100.0	73.0
DN150	168.3	597	441	175	254	327	410	289	203	98	657	502	51	8.1	914	45.4	33.1

NOTES

- ½" system supply pressure gauge port located on the control valve for sizes 2 3"/DN50 DN80 (gauge sold separately)
- Included System supply pressure gauge located on the control valve for sizes 4 6"/DN100 DN150
- When Series UTD Valve Size (Nominal) is 1"/25 mm, flexible drain hose connection utilizes FireLock IGS™ groove profile

Horizontal Install Left Hand with Control Valve

Horizontal Install Right Hand with Control Valve


30.72 15916 Rev A Updated 01/2022 © 2022 Victaulic Company. All rights reserved.

victaulic.com

3

4.0 DIMENSIONS (CONTINUED)

Si	ze					Di	mensi	ons								We	eight
Nominal	Actual Outside Dia.	E to E with control valve	with without without control control control control control								control	Series UTD Valve Size (Nominal)	Series UTD Test Orifice	G Quick Drain Hose Length	Approx. (Each) with control valve	without	
inches	inches						inche	s					inches	K-Factor	inches	lb	lb
DN	mm		mm								DN	S.I.	mm	kg	kg		
8	8.625	32.75	27.25	6.50	8.38	11.25	14.38	13.50	10.63	6.00	35.13	29.63	2.00	5.6	36.00	178.0	136.0
DN200	219.1	832	692	165	213	286	365	343	270	152	892	752	51	8.1	914	80.7	61.7

NOTE

System supply pressure gauge port is on the supply side of check valve

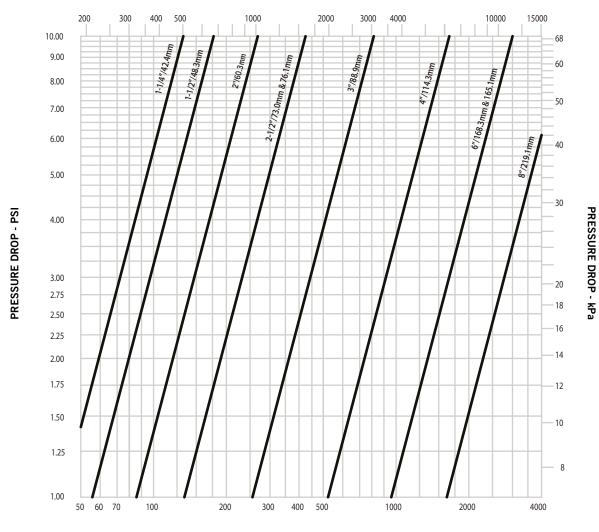
victaulic

victaulic.com 4

5.0 PERFORMANCE

;	Size	Equivalent Lengt	h of Sch. 40 Pipe1	Flow Cha	racteristics	
Nominal	Actual Outside Diameter	with control valve	without control valve	Cv/Kv Values with control valve	Cv/Kv Values without control valve	Maximum Working Pressure
inches	inches	feet	feet			psi
DN	mm	meters	meters	Full Open	Full Open	kPa
1 1/4	1.660	8.3	8.0	38.52	35.59	300
DN32	42.4	2.5	2.4	33	31	2068
1 ½	1.900	10.1	10.0	56.75	57.43	300
DN40	48.3	3.1	3.0	49	50	2068
2	2.375	21.1	15.8	71.43	83.14	300
DN50	60.3	6.4	4.8	62	72	2068
2½	2.875	19.6	15.8	112.43	125.84	300
	73.0	6.0	4.8	97	109	2068
	3.000	19.6	15.8	112.43	125.84	300
DN65	76.1	6.0	4.8	97	109	2068
3	3.500	20.0	13.3	199.32	241.43	300
DN80	88.9	6.1	4.0	172	209	2068
4	4.500	17.6	12.9	425.88	499.23	300
DN100	114.3	5.4	3.9	368	432	2068
	6.500	40.6	32.0	834.97	932.83	300
	165.1	12.4	9.8	722	807	2068
6	6.625	40.6	32.0	834.97	932.83	300
DN150	168.3	12.4	9.8	722	807	2068
8	8.625	60.8	45.8	1376.8	1556.57	300
DN200	219.1	18.5	13.9	1191	1346	2068

¹ Equivalent length of Sch 40 pipe calculated using the Hazen-Williams formula with a roughness coefficient of C=120


30.72 15916 Rev A Updated 01/2022 © 2022 Victaulic Company. All rights reserved.

victaulic.com 5

5.0 PERFORMANCE (CONTINUED)

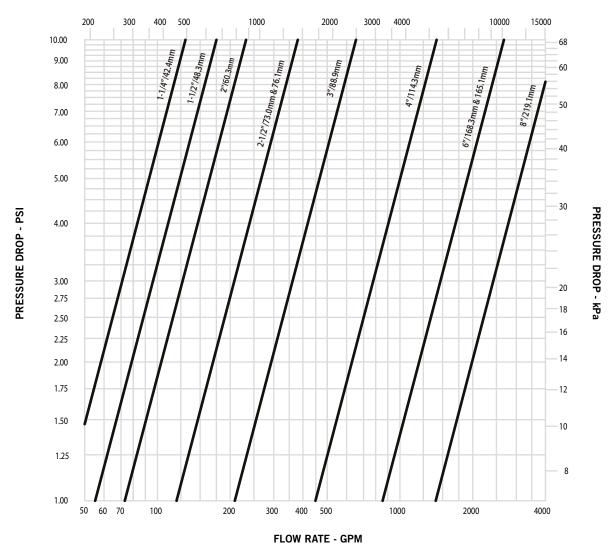
Series UMC without Control Valve

FLOW RATE - LPM

FLOW RATE - GPM

NOTE

Includes friction loss across flow switch


ictaulic

<u>victaulic.com</u> 6

5.0 PERFORMANCE (CONTINUED)

Series UMC with Control Valve

FLOW RATE - LPM

NOTE

Includes friction loss across flow switch

ictaulic

victaulic.com 7

6.0 NOTIFICATIONS

WARNING

- Read and understand all instructions before attempting to install, remove, adjust, or maintain any Victaulic piping products.
- Depressurize and drain the piping system before attempting to install, remove, adjust, or maintain any Victaulic piping products.
- Wear safety glasses, hardhat, and foot protection.

Failure to follow these instructions could result in death or serious personal injury and property damage.

7.0 REFERENCE MATERIALS

10.17: FireLock® Ball Valve

10.54: Victaulic FireLock™ Innovative Groove System I IGS™

10.64: Victaulic® FireLock™ Installation-Ready™ Rigid Couplings

10.81: FireLock® Butterfly Valve

30.71: Series UM Universal Manifold Assembly

30.73: Victaulic® Series UTD Universal Test and Drain

30.74: Victaulic® Series ARV Adjustable Relief Valve

I-100: Field Installation Handbook

I-UMC: Series UMC Universal Manifold Check Assembly

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Victaulic products for a particular end-use application, in accordance with industry standards and project specifications, as well as Victaulic performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recommendation, advice, or opinion from any Victaulic employee, shall be deemed to alter, vary, supersede, or waive any provision of Victaulic Company's standard conditions of sale, installation guide, or this disclaimer.

Intellectual Property Rights

victaulic.com

No statement contained herein concerning a possible or suggested use of any material, product, service, or design is intended, or should be constructed, to grant any license under any patent or other intellectual property right of Victaulic or any of its subsidiaries or affiliates covering such use or design, or as a recommendation for the use of such material, product, service, or design in the infringement of any patent or other intellectual property right. The terms "Patented" or "Patent Pending" refer to design or utility patents or patent applications for articles and/or methods of use in the United States and/or other countries.

Note

This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions. Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Installation

Reference should always be made to the Victaulic installation handbook or installation instructions of the product you are installing. Handbooks are included with each shipment of Victaulic products, providing complete installation and assembly data, and are available in PDF format on our website at www.victaulic.com.

Warranty

Refer to the Warranty section of the current Price List or contact Victaulic for details.

Trademarks

8

Victaulic and all other Victaulic marks are the trademarks or registered trademarks of Victaulic Company, and/or its affiliated entities, in the U.S. and/or other countries.

FireLock™ Alarm Check Valve

Series 751

Series 751

Series 751 European Trim

1.0 PRODUCT DESCRIPTION

Available Sizes

• $1\frac{1}{2} - 8\frac{1}{40} - 200 \,\text{mm}$

Pressure Class

- 1½ 6"/40 152.4 mm 300 psi/2068 kPa/20 Bar
- 8"/200 mm 232 psi/1600 kPa/16 bar. See section 5.0

Valve Configurations

- Bare
- Pre-trimmed
- Vic-Quick Riser: Pre-trimmed and includes:
 - Shut Off Valve (1 ½"/40 mm: Series 728 Ball Valve, 2" 8"/50 200 mm: Series 705 FireLock Butterfly Valve)
 - Drain Connection kit
- Fire-Pac Series 745 (refer to Victaulic <u>publication 30.23</u>)

Pipe Preparation

• Victaulic Original Groove System

Application/Media

• For use on fire protection systems only.

2.0 **CERTIFICATION/LISTINGS**

VdS

2831

ALWAYS REFER TO ANY NOTIFICATIONS AT THE END OF THIS DOCUMENT REGARDING PRODUCT INSTALLATION, MAINTENANCE OR SUPPORT.

3.0 SPECIFICATIONS - MATERIAL

Bill of Materials: Standard Trim, cULus, FM, CCC version

Body: Ductile iron, ASTM A-536 Grade 65-45-12

Clapper: Aluminum bronze UNS-C95500

Shaft: Stainless steel 17-4PH

Clapper Seal: EPDM Seat O-Rings: Nitrile

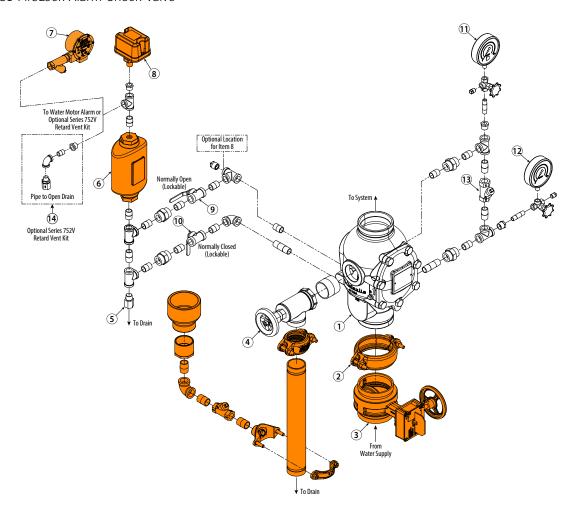
Clapper Spring: Stainless steel (302 Series)

Washers: PTFE

Cover Plate Bolts: Carbon steel, zinc plated

Cover Plate Gasket: Nitrile

Seal Plate: Aluminum Bronze (UNS-C95400)


Item	Description	Item	Description
1	Valve Body	8	Clapper Spring
2	Clapper	9	Washer
3	Clapper Seal	10	Shaft
4	Seal Ring	11	Clapper Shaft Retaining Plug
5	Seal Washer	12	Cover Plate
6	Seal Plate	13	Cover Plate Gasket
7	Screw, Self Sealing	14	Cover Plate Bolts

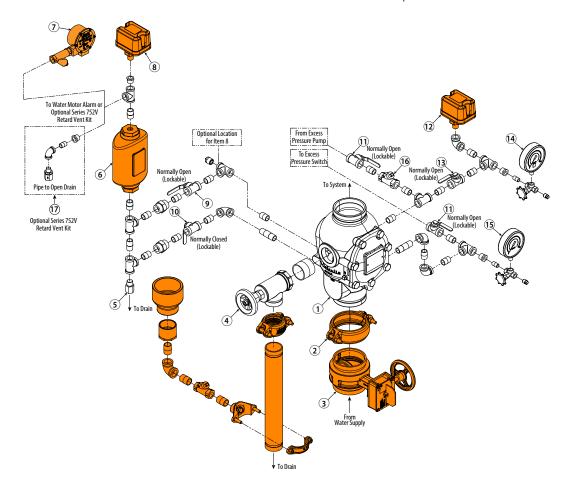
3.1 SPECIFICATIONS - MATERIAL

Standard Trim: cULus, FM, CCC version

Series 751 FireLock Alarm Check Valve

Item	Description	Item	Description
1	1 Series 751 FireLock Alarm Check Valve		Alarm Pressure Switch (Optional/Sold Separately)
2	2 FireLock Rigid Coupling (Optional/Sold Separately)		Alarm Line Ball Valve (Normally Open)
3	Water Supply Main Control Valve (Optional/Sold Separately)	10	Alarm Test Line Ball Valve (Normally Closed)
4	System Main Drain Valve	11	System Pressure Gauge/Gauge Valve Assembly (0-300 psi/0-2068 kPa)
5	Alarm Line Drain Restrictor (1/16-inch)	12	Water Supply Pressure Gauge/Gauge Valve Assembly (0-300 psi/0-2068 kPa)
6	Series 752 Retard Chamber Assembly (Optional/Sold Separately)	13	Swing Check Valve
7	Series 760 Water Motor Alarm Assembly (Optional/Sold Separately)	14	Series 752V Retard Vent Kit1 (Optional/Sold Separately)

The Series 752V Retard Vent Kit is required any time an air break is needed above the Series 752 VdS Retarding Chamber Assembly. In addition, the Series 752V Retard Vent Kit is required if multiple valves are tied into one water motor alarm and a check valve isolates each line.



<u>victaulic.com</u>

3.2 SPECIFICATIONS - MATERIAL

Standard Trim: cULus, FM, CCC version

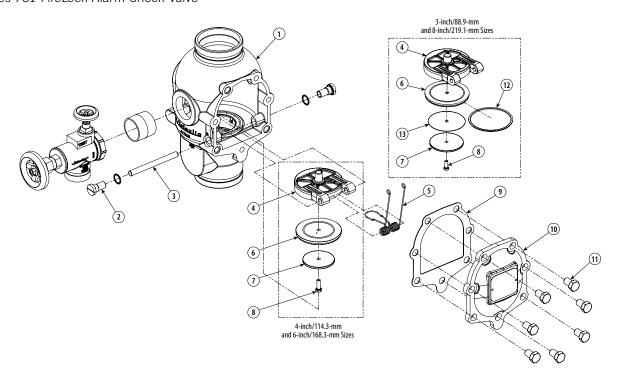
Series 751 FireLock Alarm Check Valve Trim for Use with Excess Pressure Pump

Item	Description	Item	Description
1	Series 751 FireLock Alarm Check Valve	10	Alarm Test Line Ball Valve (Normally Closed)
2	FireLock Rigid Coupling (Optional/Sold Separately – Comes Standard when VQR Assembly is Ordered)	11	Excess Pressure Pump Isolation Ball Valve (Normally Open)
3	Water Supply Main Control Valve (Optional/Sold Separately – Comes Standard when VQR Assembly is Ordered)	12	Excess Pressure Pump Pressure Switch (Sold Separately/Not Provided by Victaulic)
4	System Main Drain Valve	13	Excess Pressure Pump Pressure Switch Isolation Ball Valve (Normally Open)
5	Alarm Line Drain Restrictor (1/16-inch)	14	System Pressure Gauge (0-300 psi/0-2068 kPa)
6	Series 752 Retard Chamber Assembly (Optional/Sold Separately)	15	Water Supply Pressure Gauge (0-300 psi/0-2068 kPa)
7	7 Series 760 Water Motor Alarm Assembly (Optional/Sold Separately)		Swing Check Valve
8	Alarm Pressure Switch (Optional/Sold Separately)	17	Series 752V Retard Vent Kit ¹ (Optional/Sold Separately)
9	Alarm Line Ball Valve (Normally Open)		

The Series 752V Retard Vent Kit is required any time an air break is needed above the Series 752 VdS Retarding Chamber Assembly. In addition, the Series 752V Retard Vent Kit is required if multiple valves are tied into one water motor alarm and a check valve isolates each line.

4

victaulic.com

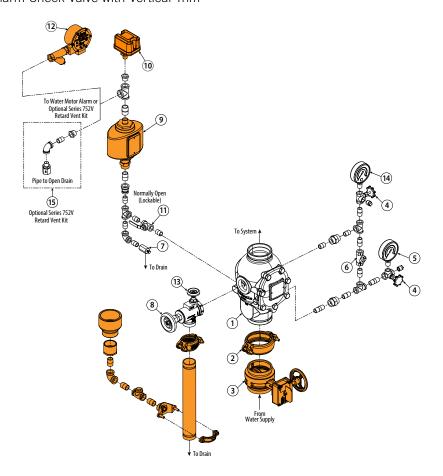

3.2	SPECIFICATIONS – MATERIAL (CONTINUED)
	Standard Trim Package
Opt	tional Accessories (specify choice):
	Series 752 Retard Chamber – Required when the Series 751 FireLock Alarm Check Valve is installed in a variable pressure installation in order to reduce the possibility of false alarms. (Refer to <u>30.01</u>).
	Series 752V Retard Vent Kit – Required when an electric pressure switch is installed on the retard chamber without a water motor alarm.
	Series 760 Water Motor Alarm – The Series 751 FireLock Alarm Check Valve is designed to activate a mechanical alarm when a sustained flow of water (such as an open sprinkler) causes the alarm check's clapper to lift from its seat. (Refer to 30.32).
	Alarm pressure switch – The Series 751 FireLock Alarm Check Valve is designed to allow the installation of pressure switches to activate electric alarms and control panels when a sustained flow of water (such as an open sprinkler) causes the alarm check's clapper to lift from its seat.
	Waterflow Detectors – Waterflow detectors are available for installation on the riser.
	Trim kit available for configuration with excess pressure pump.

3.3 SPECIFICATIONS - MATERIAL

Bill of Materials: European Trim, VdS, CE, LPCB, CNBOP, FM, EAC version

Series 751 FireLock Alarm Check Valve

Item	Description	Item	Description
1	Valve Body		Screw, Self Sealing
2	2 Clapper Shaft Retaining Bushing		Cover Plate Gasket
3	3 Shaft		Cover Plate
4	Clapper	11	Cover Plate Bolt
5	5 Clapper Spring		Seal Ring
6	6 Clapper Seal		Seal Washer
7	Seal Plate		



<u>victaulic.com</u> 6

3.4 SPECIFICATIONS - MATERIAL

European Trim: VdS, CE, LPCB, FM, EAC version

Series 751 FireLock Alarm Check Valve with Vertical Trim

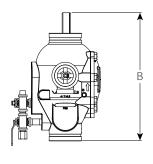
Item	Description	Item	Description
1	Series 751 FireLock European Alarm Check Valve	9	Series 752 VdS Retarding Chamber Assembly (Optional/Sold Separately) Alarm Pressure Switch
2	FireLock Rigid Coupling	10	Alarm pressure switch (Optional/Sold Separately)
3	Water Supply Main Control Valve	11	Alarm Line Ball Valve (Lockable – Normally Open) Series 760 European Water Motor Alarm Assembly (Optional/Sold Separately)
4	Gauge Valve	12	Series 760 Water Motor Alarm (Optional/Sold Separately)
5	Water Supply Pressure Gauge (0-25 Bar)	13	System Test Valve
6	Swing Check Valve	14	System Pressure Gauge (0-25 Bar)
7	Restricted Orifice/Alarm Line Drain	15	Series 752V Retard Vent Kit ¹ (Optional/Sold Separately)
8	System Main Drain Valve		

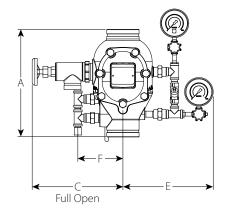
¹ The Series 752V Retard Vent Kit is required any time an air break is needed above the Series 752 VdS Retarding Chamber Assembly. In addition, the Series 752V Retard Vent Kit is required if multiple valves are tied into one water motor alarm and a check valve isolates each line.

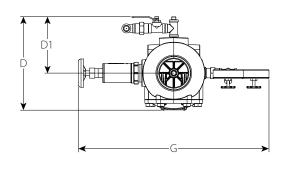
, ictaulic°

30.01 2218 Rev P Updated 03/2021 © 2021 Victaulic Company. All rights reserved.

<u>victaulic.com</u> 7


3.4	SPECIFICATIONS – MATERIAL (CONTINUED)
	Standard Trim Package
Opt	ional Accessories (specify choice):
	Series 752 Retard Chamber – Required when the Series 751 FireLock Alarm Check Valve is installed in a variable pressure installation in order to reduce the possibility of false alarms. (Refer to $\underline{30.01}$).
	Series 752V Retard Vent Kit – Required when an electric pressure switch is installed on the retard chamber without a water motor alarm.
	Series 760 Water Motor Alarm – The Series 751 FireLock Alarm Check Valve is designed to activate a mechanical alarm when a sustained flow of water (such as an open sprinkler) causes the alarm check's clapper to lift from its seat. (Refer to 30.32).
	Waterflow Detectors – Waterflow detectors are available for installation on the riser.




4.0 DIMENSIONS

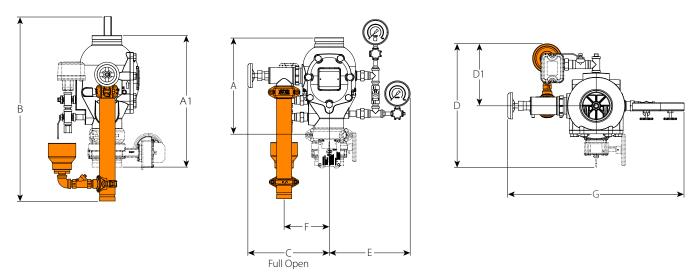
Standard Trim Dimensions: cULus, FM, CCC Version

Standard trim and trim for use with excess pressure pump (without drain connection kit and water supply main control valve options).

NOTES

- The "A" dimension is the actual takeout dimension of the valve body.
- For systems with the optional Series 752 Retard Chamber Assembly, add 12 inches/305 mm to the "B" dimension to account for the additional height.

Size					Dime	nsions				Approx Weight Each	
Nominal	Actual Outside Diameter	A	В	С	D	D1	E	F	G	Without Trim	With Trim
inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	lbs.	lbs.
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg
1 ½ DN40	1.900 48.3	9.00 229	11.75 298	10.00 254	11.25 286	7.00 178	11.00 279	5.00 127	21.00 533	14.2 6.4	31.0 14.0
2	2.875	9.00	11.75	10.00	11.25	7.00	11.00	5.00	21.00	14.6	31.0
DN50	60.3	229	298	254	286	178	279	127	533	6.6	14.1
2 ½	2.875	12.50	15.00	11.25	11.75	7.50	11.75	7.50	23.00	34.4	52.0
	73.0	318	381	286	298	191	298	191	548	15.6	23.6
	3.000	12.50	15.00	11.25	11.75	7.50	11.75	7.50	23.00	34.4	52.0
DN65	76.1	318	381	286	298	191	298	191	584	15.6	23.6
3	3.500	12.50	15.00	11.25	11.75	7.50	11.75	7.50	23.00	35.3	52.0
DN80	88.9	318	381	286	298	191	298	191	584	16.0	23.6
4	4.500	15.00	18.25	13.00	12.75	7.75	13.00	6.75	26.00	49.0	80.0
DN100	114.3	381	464	330	324	197	330	171	660	22.2	36.3
	6.625	16.00	19.00	13.50	14.75	9.00	13.75	6.75	27.25	69.0	91.0
165.1mm	168.3	406	483	343	375	229	349	171	692	31.3	41.3
6	6.500	16.00	19.00	13.50	14.75	9.00	13.75	6.75	27.25	69.0	95.0
DN150	165.1	406	483	343	375	229	349	171	692	31.3	43.1
8	8.625	17.50	18.75	14.75	17.25	10.00	14.75	6.75	29.50	142.0	182.0
DN200	219.1	445	476	375	438	254	375	171	749	64.4	82.6


victaulic.com 9

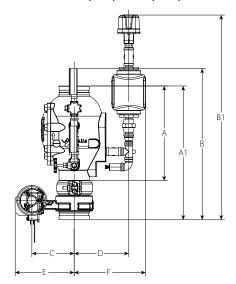
4.0 DIMENSIONS

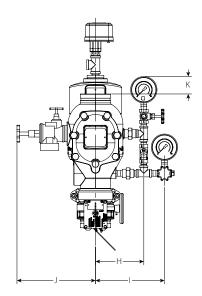
Standard Trim Dimensions: cULus, FM, CCC Version

Standard trim and trim for use with excess pressure pump (with drain connection kit and water supply main control valve options).

A 4-inch/114.3 mm Series 751 *FireLock* Alarm Check Valve with optional drain connection kit and water supply main control valve is shown below.

NOTES


- The "A" dimension is the actual takeout dimension of the valve body.
- The "A1" dimension is the actual takeout dimension of the valve body with optional water supply main control valve.
- For systems with the optional Series 752 Retard Chamber Assembly, add 12 inches/305 mm to the ·"B" dimension to account for the additional height. The "D" and ·"D1" dimensions are not fixed measurements. The drip cup of the drain connection kit option can be rotated to provide more clearance at the back of the trim.
- Components shown as dotted lines denote optional equipment.
- The recommended drain connection kit option (shaded in orange) is shown for reference and takeout dimensions.


Si	ze		Dimensions									Approx Weight Each	
Nominal	Actual Outside Diameter	A	A1	В	С	D	D1	E	F	G	Without Trim	With Trim	
inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	lbs.	lbs.	
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	
1 ½	1.900	9.00	16.25	24.50	9.25	14.00	7.50	11.25	5.75	20.50	16.7	43.0	
DN40	48.3	229	413	622	235	356	191	286	146	521	7.6	19.5	
2	2.875	9.00	13.75	24.50	9.25	14.00	7.50	11.25	5.75	20.50	17.0	43.0	
DN50	60.3	229	349	622	235	356	191	286	146	521	7.7	19.5	
2 ½	2.875	12.50	16.50	26.25	11.25	16.50	9.00	11.75	6.50	23.00	41.0	65.0	
	73.0	318	419	667	286	419	229	298	165	584	18.7	29.5	
	3.000	12.50	16.50	26.25	11.25	16.50	9.00	11.75	6.50	23.00	41.0	65.0	
DN65	76.1	318	419	667	286	419	229	298	165	584	18.7	29.5	
3	3.500	12.50	16.50	26.25	11.25	16.50	9.00	11.75	6.50	23.00	41.0	65.0	
DN80	88.9	318	419	667	286	419	229	298	165	584	18.7	29.5	
4	4.500	15.00	19.75	25.50	13.00	18.00	9.25	13.00	7.50	26.00	59.0	95.0	
DN100	114.3	381	502	648	330	457	235	330	191	660	26.7	43.0	
	6.625	16.00	22.13	25.25	13.50	20.75	9.25	13.75	7.75	27.25	80.0	116.0	
165.1mm	168.3	406	562	641	343	527	235	349	197	692	36.2	52.6	
6	6.500	16.00	22.13	25.25	13.50	20.75	9.25	13.75	7.75	27.25	80.0	116.0	
DN150	165.1	406	562	641	343	527	235	349	197	692	36.2	52.6	
8	8.625	17.50	23.00	26.75	14.75	24.00	10.50	14.50	9.25	29.25	122.0	158.0	
DN200	219.1	445	584	679	375	610	267	368	235	743	55.3	71.6	

4.0 DIMENSIONS (CONTINUED)

European Trim Dimensions: VdS, CE, LPCB, FM, EAC version

Si	ize	Dimensions								Weight				
Nominal	Actual Outside Diameter	A ²	A1	В	B1	С	D	E	F	Н	ı	J	K	Approx. Each
inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	lbs.
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
3	3.500	12.50	16.50	17.13	28.75	5.50	7.63	7.50	10.13	6.63	9.75	10.88	0.63	75.8
DN80	88.9	318	419	435	730	140	194	191	257	168	248	276	16	34.4
4	4.500	15.00	19.88	22.50	30.50	6.25	8.13	8.75	10.63	7.13	10.25	11.63	2.50	100.4
DN100	114.3	381	505	572	775	159	206	222	270	181	260	295	64	45.5
6	6.625	16.00	22.13	24.63	32.13	8.13	9.38	10.75	11.88	7.50	10.63	12.00	2.50	132.5
DN150	168.3	406	562	625	816	206	238	273	302	191	270	305	64	60.1
8	8.625	17.50	23.00	23.25	30.13	9.38	8.50	12.00	11.00	9.25	12.13	13.38	0.25	199.7
DN200	219.1	445	584	591	765	238	216	305	279	235	308	340	6	90.6

² The "A" dimension is the measurement from the top of the valve body to the bottom of the valve body (takeout dimension).

NOTE

• Overall height "B" is greatest height if optional retard chamber is not installed.

victaulic.com 11

5.0 PERFORMANCE

Standard Trim: cULus, FM, CCC Version

Frictional Resistance

The chart below expresses the frictional resistance of Series 751 *FireLock* Alarm Check Valve in equivalent feet of straight pipe.

Nominal Size	Actual Outside Diameter	Equivalent Length of Pipe
inches	inches	feet
mm	mm	meters
1 ½	1.900	3.00
DN40	48.3	0.910
2	2.875	9.00
DN50	60.3	2.740
21/2	2.875	8.00
	73.0	2.438
	3.000	8.00
DN65	76.1	2.438
3	3.500	17.00
DN80	88.9	5.182
4	4.500	21.00
DN100	114.3	6.401
6	6.625	22.00
DN150	168.3	6.706
	6.500	22.00
	165.1	6.706
8	8.625	50.00
DN200	219.1	15.240

European Trim: VdS, CE, LPCB, FM, EAC version

Frictional Resistance

The chart below expresses the frictional resistance of Series 751 *FireLock* Alarm Check Valve in equivalent meters of straight pipe.

Nominal Size DN	Actual Outside Diameter	Equivalent Length of Pipe meters
inches	inches	feet
DN80	88.9	5.182
3	3.500	17.00
DN100	114.3	6.401
4	4.500	21.00
DN150	168.3	6.706
6	6.625	22.00
DN200	219.1	15.240
8	8.625	50.00

5.0 PERFORMANCE (CONTINUED)

Maximum Working Pressure

Standard Trim:

Si	ze	cULus	FM	CCC
Nominal inches	Actual Outside Diameter inches	psi kPa	psi kPa	psi kPa
DN	DN	bar	bar	bar
1 ½ DN40	1.900 48.3	300 2068 21	300 2068 21	-
2 DN50	2.375 60.3	300 2068 21	300 2068 21	-
2½	2.875 73.0	300 2068 21	300 2068 21	-
DN65	3.000 76.1	300 2068 21	300 2068 21	-
3 DN80	3.500 88.9	300 2068 21	300 2068 21	232 1600 16
4 DN100	4.500 114.3	300 2068 21	300 2068 21	232 1600 16
6 DN150	6.625 168.3	300 2068 21	300 2068 21	232 1600 16
	6.500 165.1	300 2068 21	300 2068 21	232 1600 16
8 DN200	8.625 219.1	232 1600 16	232 1600 16	232 1600 16

European Trim:

S	Size		EAC	VdS	LPCB	CE
Nominal inches DN	Actual Outside Diameter inches DN	psi kPa bar	psi kPa bar	psi kPa bar	psi kPa bar	psi kPa bar
3	3.500	232	232	232	232	232
DN80	88.9	1600	1600	1600	1600	1600
		16	16	16	16	16
4	4.500	232	232	232	232	232
DN100	114.3	1600	1600	1600	1600	1600
		16	16	16	16	16
6	6.625	232	232	232	232	232
DN150	168.3	1600	1600	1600	1600	1600
		16	16	16	16	16
	6.500	232	232	232	232	232
	165.1	1600	1600	1600	1600	1600
		16	16	16	16	16
8	8.625	232	232	232	232	232
DN200	219.1	1600	1600	1600	1600	1600
		16	16	16	16	16

6.0 NOTIFICATIONS

WARNING

- Read and understand all instructions before attempting to install any Victaulic products.
- Always verify that the piping system has been completely depressurized and drained immediately prior to installation, removal, adjustment, or maintenance of any Victaulic products.
- . Wear safety glasses, hardhat, and foot protection.

Failure to follow these instructions could result in death or serious personal injury and property damage.

- These products shall be used only in fire protection systems that are designed and installed in accordance with current, applicable
 National Fire Protection Association (NFPA 13, 13D, 13R, etc.) standards, or equivalent standards, and in accordance with applicable
 building and fire codes. These standards and codes contain important information regarding protection of systems from freezing
 temperatures, corrosion, mechanical damage, etc.
- . The installer shall understand the use of this product and why it was specified for the particular application.
- . The installer shall understand common industry safety standards and potential consequences of improper product installation.
- It is the system designer's responsibility to verify suitability of materials for use with the intended fluid media within the piping system and external environment.
- The material specifier shall evaluate the effect of chemical composition, pH level, operating temperature, chloride level, oxygen level, and flow rate on materials to confirm system life will be acceptable for the intended service.

Failure to follow installation requirements and local and national codes and standards could compromise system integrity or cause system failure, resulting in death or serious personal injury and property damage.

7.0 REFERENCES

10.64: Style 009N Firelock EZ™ Rigid Coupling

10.81: Firelock™ Butterfly Valve with Weatherproof Actuator Series 705 Submittal

I-751: Firelock™ Alarm Check Valve Series 751 Installation, Maintenance, and Testing Manual

I-751-NXT.KIT: Firelock™ European Fire Protection Valves Series 751,764,768 and 769 Alarm Kit Trim Instructions (Europe Only)

I-751.PST: Firelock™ Alarm Check Valve Series 751 Installation Poster

I-751.VDS: Firelock™ European Alarm Check Valve Stations Series 751 Installation, Maintenance, and Testing Manual

I-751-VDS-ADD: Firelock™ European Alarm Check Valve Station (VDS) Series 751 Wall Chart for Placing the System in Service

I-751.VDS-KIT: Firelock™ European Alarm Check Valve Stations Series 751 Kit Installation Instructions

<u>I-760: Firelock™ Water Motor Alarm Series 760 Installation Manual</u>

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Victaulic products for a particular end-use application, in accordance with industry standards and project specifications, and the applicable building codes and related regulations as well as Victaulic performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recommendation, advice, or opinion from any Victaulic employee, shall be deemed to alter, vary, supersede, or waive any provision of Victaulic Company's standard conditions of sale, installation guide, or this disclaimer.

Intellectual Property Rights

No statement contained herein concerning a possible or suggested use of any material, product, service, or design is intended, or should be constructed, to grant any license under any patent or other intellectual property right of Victaulic or any of its subsidiaries or affiliates covering such use or design, or as a recommendation for the use of such material, product, service, or design in the infringement of any patent or other intellectual property right. The terms "Patented" or "Patent Pending" refer to design or utility patents or patent applications for articles and/or methods of use in the United States and/or other countries.

Note

This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions. Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Installatio

Reference should always be made to the Victaulic installation handbook or installation instructions of the product you are installing. Handbooks are included with each shipment of Victaulic products, providing complete installation and assembly data, and are available in PDF format on WeChat.

Warranty

Refer to the Warranty section of the current Price List or contact Victaulic for details.

Trademarks

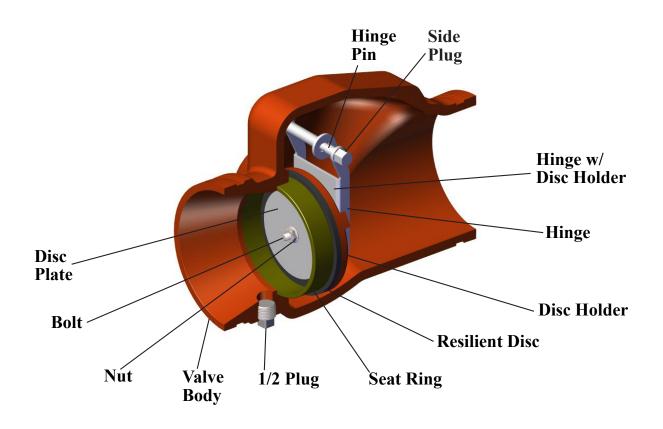
Victaulic and all other Victaulic marks are the trademarks or registered trademarks of Victaulic Company, and/or its affiliated entities, in the U.S. and/or other countries.

30.01 2218 Rev P Updated 03/2021 © 2021 Victaulic Company. All rights reserved.

CHECK VALVE

The Kennedy Valve Figure 726 Grooved End Check Valve is a lightweight unit that is intended to be easily installed with approved IPS grooved couplings. They may be installed either with the flow in a vertical position (flow up) or horizontally Upon request valves can have a 1/2" NPT connection on the inlet side for installation of a 1/2" ball drip.

- UL/FM Listed


SIZES & WEIGHT

- 2-1/2" 15 lbs.
- 3" 20 lbs.
- 4" 25 lbs.
- 6" 50 lbs.
- 8" 68 lbs. (requires lifting lug)

WORKING PRESSURE

Working Pressure - 300 PSI

BUTTERFLY VALVES 2-1/2"-8"

Designed for years of trouble free reliability, Kennedy UL-FM butterfly valves are constructed of durable ductile iron for a lightweight superior product. We utilize stainless steel upper and lower shafts as well as EPDM encapsulated discs. Our fusion bonded coated bodies offer a superior long-lasting coating. The valves are slow operating with low torque leading to excellent high cycle life. Our butterfly valves are always rated to 300psi and all are fully hydrostatically tested before they leave Elmira, NY.

GROOVED BUTTERFLY VALVES

- G300 2-1/2" 6"
- 01G 8"

Long Body BFV

- G300E 2-1/2" 6"
- 02G 8"
- Long Body BFV are USC Approved with EPDM Disc

Working Pressure

- UL/FM 300 PSI

Features

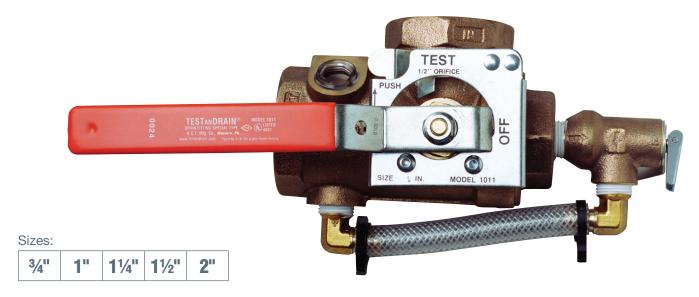
- Outdoor Rated
- NSF Certified (Long Body Only)
- Lightweight
- Standard Grooves

WAFER BUTTERFLY VALVES

- W300 2-1/2" 6"
- 01W 8"

Working Pressure

- UL/FM 300 PSI


Features

- Outdoor Rated
- Integral Gearbox (2-1/2" 6")
- Lightweight
- Short Lay Length
- Does NOT require washer for installation with grooved flange adapter.

Model 1011A TESTANDRAIN®

Sectional Floor Control Test and Drain Valve for Systems Requiring Pressure Relief Valve

The AGF **Model 1011A TESTANDRAIN**® provides the test and express drain functions for wet fire sprinkler systems on multi-story installations requiring pressure relief (NFPA 13 and NFPA 13R). The **Model 1011A** features a **Model 7000 Pressure Relief Valve** with drain pipe.

The **Model 1011A** is available in a full range of sizes (¾" to 2") with NPT connections (BSPT available). The **Model 7000 Pressure Relief Valve** (UL/FM) features a flushing handle and a 175 PSI factory rating (other pressure ratings available).

- Complies with NFPA 13 and NFPA 13R Requirements
- Compact, Single-Handle Ball Valve
- Tamper-Resistant Test Orifice and Sight Glasses
- 300 PSI rated.
- Specifiable orifice sizes: 3/8" (2.8K), 7/16" (4.2K), 1/2" (5.6K), 17/32" (8.0K), 5/8" (11.2K, ELO), 3/4" (14.0K, ESFR), and K25
- Relieves Excess System Pressure caused by Surges or Temperature Changes
- Shipped with Relief Valve and Bypass Drain Ports Plugged to Expedite Pressure Testing
- Locking Kit Available

Repair kits are available for all **TESTANDRAIN**® valves. Kit includes: Adapter Gasket (1), Ball (1), Valve Seats (2), Stem Packing (1), and Stem Washer (1). *Valve and orifice size must be specified when ordering.*

NOTE: It is important to note that the pressure rating of the relief valve indicates an operating range of pressure for both opening and closing of the valve. Standard relief valves are required to OPEN in a range of pressure between 90% and 105% of their rating. The valves are required to CLOSE at a pressure above 80% of that rating. The relief valve should be installed where it is easily accessible for maintenance. Care should be taken that the relief valve CANNOT be isolated from the system when the system is operational. A relief valve should NEVER have a shutoff valve or a plug downstream of its outlet.

Model 1011A TESTAN DRAIN®

Model 1011A 300 PSI Bronze Ball Valve, Model 7000 Pressure Relief Valve Factory Rated at 175 PSI with other setting available

Dimensions

SIZE	Α	В	С	D	Е	F	G	Н
3/4"	79/16"	1½"	23/16"	35/8"	33/8"	1 13/16"	4 9/16"	63/8"
	(191 mm)	(37.5 mm)	(57 mm)	(93 mm)	(86 mm)	(46 mm)	(117 mm)	(162.5 mm)
1"	79/16"	11/2"	23/16"	35/8"	33/8"	1 13/16"	4 9/16"	63/8"
	(191 mm)	(37.5 mm)	(57 mm)	(93 mm)	(86 mm)	(46 mm)	(117 mm)	(162.5 mm)
11/4"	715/16"	1 11/16"	29/16"	41/4"	35/8"	1 15/16"	59/16"	71/2"
	(201 mm)	(43 mm)	(65 mm)	(108 mm)	(91 mm)	(51 mm)	(141 mm)	(192 mm)
1½"	8 ¹⁵ / ₁₆ "	1 13/16"	31/4"	5½16"	37/8"	25/8"	81/4"	107/8"
	(227 mm)	(45 mm)	(81.5 mm)	(127 mm)	(99 mm)	(67 mm)	(207 mm)	(274 mm)
2"	8 ¹⁵ / ₁₆ "	113/16"	31/4"	5½16"	37/8"	25/8"	81/4"	107/8"
	(227 mm)	(45 mm)	(81.5 mm)	(127 mm)	(99 mm)	(67 mm)	(207 mm)	(274 mm)

The Model 1011A provides the following...

From the 2013 Edition of NFPA 13

Chapter 8.16.2.4.1* Provisions shall be made to properly drain all parts of the system.

Chapter 8.16.2.4.2 Drain connections, interior sectional or floor control valve(s) –

& 8.16.2.4.3 shall be provided with a drain connection having a minimum size as shown in Table 8.16.2.4.2.

Chapter 8.16.2.4.4 Drains shall discharge outside or to a drain capable of handling the

Chapter A.8.17.4.2 (Wet Pipe System) test connection is permitted to terminate into a drain capable of accepting full flow... using an approved sight test

connection containing a smooth bore corrosion-resistant orifice giving a flow equivalent to one sprinkler...

Chapter 8.17.4.2.2 The test connection valve shall be accessible.

Chapter 8.17.4.2.4 shall be permitted to be installed in any location... downstream of

the waterflow alarm.

Chapter 8.17.4.3.1 (Dry Pipe System) a trip test connection not less than 1" in

diameter, terminating in a smooth bore corrosion-resistant orifice,

to provide a flow equivalent to one sprinkler...

Chapter 8.17.4.3.2 The trip test connection... with a shutoff valve and plug not less

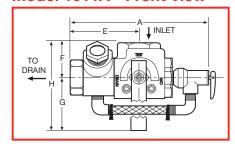
than 1", at least one of which shall be brass.

Chapter 7.1.2 - a wet pipe system shall be provided with a listed relief valve set

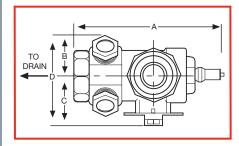
to operate at 175 PSI or 10 PSI in excess of the maximum system

pressure, whichever is greater.

Chapter 8.16.1.2.3* A listed relief valve of not less than $\frac{1}{2}$ " in size shall be provided on


the discharge side of the pressure-reducing valve set to operate at

a pressure not exceeding rated pressure of the system.


Chapter A.8.16.1.2.3 - consideration should be given to piping the discharge from the

(pressure relief) valve

Model 1011A - Front View

Model 1011A - Plan View

Orifice Sizes

3/8", 7/16", 1/2", 17/32", 5/8" ELO*, 3/4" ESFR*, and K25**

Materials

Approvals

UL and ULC Listed: (EX4019 & EX4533) FM Approved NYC-BSA No. 720-87-SM

USA Patent # 4741361 and Other Patents Pending

AGF Manufacturing Inc.

100 Quaker Lane, Malvern, PA 19355

Phone: 610-240-4900 Fax: 610-240-4906

www.testandrain.com

Job Name:	
Architect:	
Engineer:	
Contractor:	

Model 3011 INSPECTOR'STEST®

Remote Inspector's Test

For Single Story and Other Applications Including Systems Requiring Pressure Relief Valve

Size:

1"

The AGF **Model 3011 Inspector'sTEST**® family of valves are designed to perform the remote inspector's test function on single story systems and other applications with the benefit of locating the orifice indoors. The Inspector'sTEST is available in four different models (M3011BV, M3011SG, M3011A, and M3011ASG) with optional orifice sizes (3/8" 2.8K, 7/16" 4.2K, 1/2" 5.6K, 17/32" 8.0K, and 5/8" 11.2K ELO).

The **Model 3011A** and **3011ASG** feature a **Model 7000 Pressure Relief Valve** rated at 175 PSI with drainage piping designed to relieve excess system pressure caused by surges or temperature changes. Both models solve the difficult problem of providing the relief valve with a drainage piping outlet while complying with NFPA 13 requiring installation of a pressure relief valve on all grided systems and downstream of all pressure reducing valves.

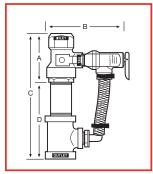
To expedite system testing every Inspector's TEST model is shipped semi-assembled with relief valve and bypass drain ports plugged.

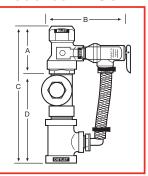
- Complies with NFPA 13
- Compact, Single-Handle Ball Valve
- Tamper-Resistant Test Orifice
- Tamper-Resistant Sight Glass

- 300 PSI rated ball valve.
- 175 PSI rated pressure relief valve
- Specifiable orifice sizes

NOTE: It is important to note that the pressure rating of the relief valve indicates an operating range of pressure for both opening and closing of the valve. Standard relief valves are required to OPEN in a range of pressure between 90% and 105% of their rating. The valves are required to CLOSE at a pressure above 80% of that rating. The relief valve should be installed where it is easily accessible for maintenance. Care should be taken that the relief valve CANNOT be isolated from the system when the system is operational. A relief valve should NEVER have a shutoff valve or a plug downstream of its outlet.

Reliability, Versatility, Code Compatibility




Model 3011 INSPECTOR'S TEST

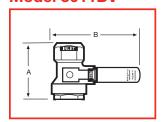
300 PSI Bronze Ball Valve

Model 3011A

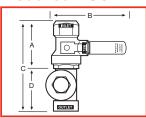
Model 3011ASG

Orifice Sizes

3/8", 7/16", 1/2", 17/32", and 5/8" ELO


Approvals

UL and ULC Listed: [EX4019(N) & EX4533(N)] **FM** Approved NYC-BSA No. 720-87-SM


Materials

Handle	Steel
Stem	Rod Brass
Ball	C.P. Brass
Body	Bronze
Valve Seat	Virgin Teflon®
Relief Valve	Bronze
Bypass Fittings	Brass
Bypass Tubing	Nylobraid
Sight Glass	Bronze & Glass

Model 3011BV

Model 3011SG

Dimensions

SIZE	Α	В	С	D
3011A	31/16"	4 ¹¹ / ₁₆ "	77/8"	4 7/8"
	(75 mm)	(118 mm)	(200 mm)	(124 mm)
3011BV	31/16" (75 mm)	4 11/16" (118 mm)	_	_
3011ASG	3½16"	4 ¹¹ / ₁₆ "	95/16"	61/4"
	(75 mm)	(118 mm)	(237 mm)	(159 mm)
3011SG	31/16"	411/16"	63/16"	31/8"
	(75 mm)	(118 mm)	(157 mm)	(79 mm)

From the 2013 Edition of NFPA 13

Models 3011A, 3011BV, 3011ASG, and 3011SG, depending on the variant chosen, provide some or all requirements listed below:

Chapter 8.16.2.4.1* Provisions shall be made to properly drain all parts of the system.

Chapter 8.16.2.4.2 Drain connections, interior sectional or floor control valve(s) -

& 8.16.2.4.3 shall be provided with a drain connection having a minimum size as shown in Table 8.16.2.4.2.

Chapter 8.16.2.4.4 Drains shall discharge outside or to a drain capable of handling the flow of the drain.

Chapter 8.16.2.4.6 The test connection shall be permitted to be used as main drain connection.

(Wet Pipe System) test connection is permitted to terminate into a drain capable of accepting full flow... using an Chapter A.8.17.4.2 approved sight test connection containing a smooth bore corrosion-resistant orifice giving a flow equivalent to

one sprinkler...

Chapter 8.17.4.2.2 The test connection valve shall be accessible.

Chapter 8.17.4.2.4 shall be permitted to be installed in any location... downstream of the waterflow alarm.

Chapter 7.1.2 - a gridded wet pipe system shall be provided with a relief valve set to operate at 175 PSI or 10 PSI in excess of the maximum system pressure, whichever is greater.

Chapter 8.16.1.2.3* A relief valve of not less that ½" in size shall be provided on the discharge side of the pressure-reducing valve set to operate at a pressure not exceeding 175 psi.

Chapter A8.16.1.2.3 - consideration should be given to piping the discharge from the (pressure relief) valve

Chapter 8.17.4.3.1 (Dry Pipe System) a trip test connection not less than 1" in diameter, terminating in a smooth bore

corrosion-resistant orifice, to provide a flow equivalent to one sprinkler...

Chapter 8.17.4.3.2 The trip test connection... with a shutoff valve and plug not less than 1", at least one of which shall be brass.

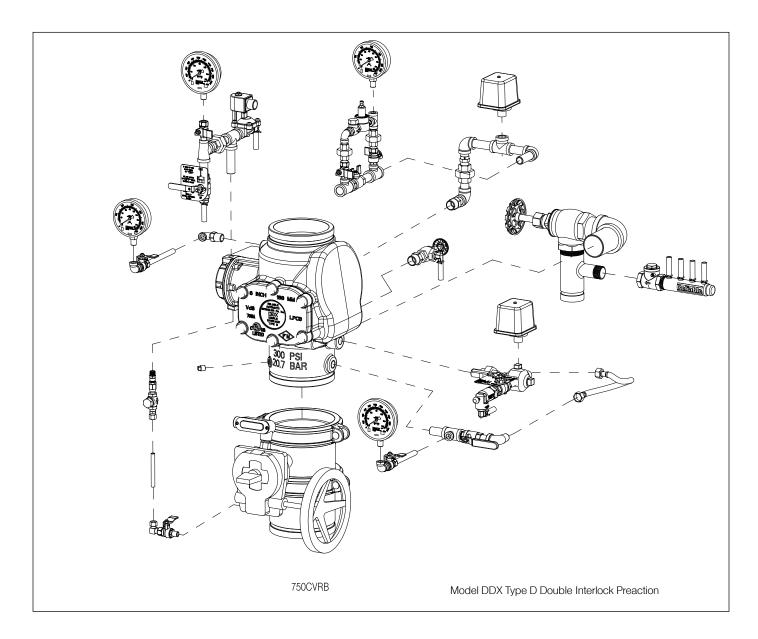
USA Patent # 4971109 and Other Patents Pending

AGF Manufacturing Inc.

100 Quaker Lane, Malvern, PA 19355

Phone: 610-240-4900 Fax: 610-240-4906 www.testandrain.com

Job Name:_	
Architect:	
Engineer:	
Contractor:	



Model DDX Double Interlock Preaction System – Type D 2" (50 mm), 2½" (65 mm), 3" (80 mm), 76 mm, 4" (100 mm), 6" (150 mm), 165 mm & 8" (200 mm)

Instructions for Installation, Operation, Care, and Maintenance

7 to 10 psi (0.5 to 0.7 bar) Pneumatic Supervising Pressure with Electric/Electric Actuation Controlled by a Cross-Zoned Releasing Control Panel

- Available with 175 psi (12.1 bar) or 300 psi (20.7 bar) Rated Solenoid Valve
- Externally Resettable Clapper
- One Main Drain

General

The Reliable Model DDX Type D Double Interlock Preaction system is designed for water sensitive areas that require protection from inadvertent water flow into the sprinkler system piping, but where a mechanical backup for the electric release is not required. Typical applications for this type of system are libraries and computer server rooms.

To release the valve and flow water into a Type D Double Interlock Preaction System, two events must take place: a fire detection device must operate, and the low pressure switch must be operated by the loss of system air or nitrogen pressure due to sprinkler operation (see note 1 below). These two signals must coexist at the releasing control panel, which only then will energize the normally closed solenoid valve (175 psi (12.1 bar) or 300 psi (20.7 bar) rated), causing the water flow into the system.

These systems utilize fire detection devices and system air pressure as separate zones (inputs) to a cross-zoned releasing control panel. The solenoid releasing valve remains closed until energized by the releasing control panel. This will occur only when both a fire detection device is operated and the low air pressure switch has detected sufficient loss of system air pressure generally resulting from the operation of a fire sprinkler.

In the event that the system piping is ruptured, or a sprinkler is accidentally opened, the low air pressure switch will operate and an alarm will sound. The Model DDX Deluge Valve, however, will not release water since the solenoid valve remains closed due since the detection system has not activated.

Conversely, in the event of a false alarm from the detection system, the Model DDX Deluge Valve will not release water provided air pressure in the system is maintained and the low pressue switch is not activated. The requirement for both detector operation and loss of system pressure before the Model DDX Type D Double Interlock Preaction system releases water assures maximum protection against inadvertent water flow.

At the heart of the Reliable Type D Double Interlock Preaction System is the Model DDX Deluge Valve. This deluge valve is a hydraulically operated, straight-through-design, differential latching clapper-type (see Fig. 1). System maintenance is simplified since the deluge valve can be reset extermally without removing the cover plate. This feature provides a significant system-restoration time advantage. The Model DDX Deluge Valve has an intermediate chamber and thereby does not require an in-line air check valve. Subsequently, the deluge valve only requires a single drain connection.

The Reliable Model DDX Type D Double Interlock Preaction System trim set provides all of the necessary equipment for connections to the Model DDX Deluge Valve pushrod chamber inlet and outlet ports, a 11/4" (30 mm) main drain on 2" (50 mm), 21/2" (65 mm), 76 mm and 3" (80 mm) valve sizes or a 2" (50 mm) main drain on 4" (100 mm), 165 mm, 6" (150 mm) and 8" (200 mm) valve sizes, alarm devices, air supply, and required pressure gauges. This trim set is available in individual (loose) parts, in time-saving, segmented assembled kit forms or fully assembled to the Model DDX Deluge Valve (with or without a control valve).

Listings & Approvals:

(Only when used with Reliable Trim Sets.)

- Reliable's Type D Double Interlock Preaction Systems 2" (50 mm), 2½" (65 mm), 76 mm and 3" (80 mm), 4" (100 mm), 165 mm, 6" (150 mm) and 8" (200 mm) are Factory Mutual Approved Refrigerated Area Sprinkler Systems for use in refrigerated rooms or buildings. Refrigerated area sprinkler systems are FM Approved as complete systems. Systems are FM Approved for use with thermal detectors and Class A detector wiring only.
- Reliable's Type D Double Interlock Preaction Systems 2" (50 mm), 2½" (65 mm), 76 mm, 3" (80 mm), 4" (100 mm), 165 mm, 6" (150 mm) and 8" (200 mm) are Underwriters Laboratories, Inc. Listed and UL certified for Canada (cULus) in the Special System Water Control Valve-Double Interlock Type (VLJH) category.

Note: Wherever the word "air" is used in this bulletin as a reference to the pneumatic pressure source it shall also mean "air or nitrogen."

System Operation

When set correctly for service, the Model DDX Deluge Valve is hydraulically established to separate the supply water from the sprinkler system piping. The Reliable Model DDX Deluge Valve is shown in both closed and open positions in Fig. 1. In the closed position, the supply pressure acts on the underside of the clapper and also on the pushrod through the pushrod chamber inlet restriction. The resultant force due to the supply pressure acting on the pushrod is multiplied by the mechanical advantage of the lever and is more than sufficient to hold the clapper closed against normal supply pressure surges.

Whenever the detection system is activated and a low system air pressure condition coexist, the solenoid valve is energized open which vents the pushrod chamber to atmosphere through the chamber outlet. Since the pressure can not be replenished through the inlet restriction as rapidly as it is vented, the pushrod chamber pressure falls instantaneously. When the pushrod chamber pressure approaches approximately on-third of the supply pressure, the upward force of the supply pressure acting beneath the clapper overcomes the lever applied force thereby opening the clapper.

Once the clapper has opened, the lever acts as a latch, preventing the clapper from returning to the closed position. Water from the supply flows through the Deluge Valve into the sprinkler system piping. Water also flows through the alarm outlet to the alarm devices.

Resetting the clapper of the Model DDX Deluge Valve is accomplished using the convenient external reset knob on the rear of the valve. The external reset feature of the Model DDX Deluge Valve provides a means for simple, economical system testing, which is one essential facet of a good maintenance program. The external reset feature does not, however, eliminate another important facet of good maintenance, namely, periodic cleaning and inspection of the internal valve parts.

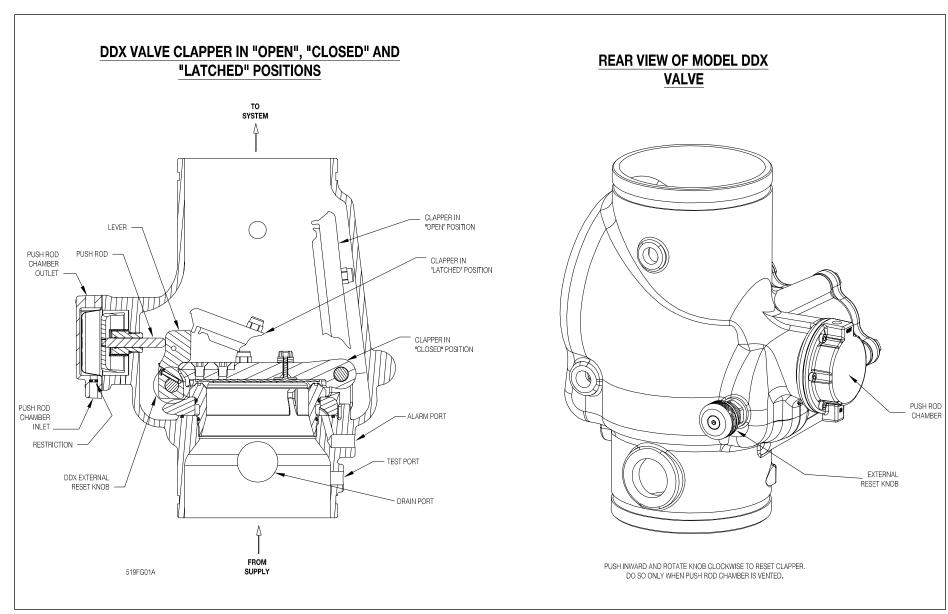


Fig. 1

A valve body drain is provided in the event that water builds up due to condensate from the air supply system or water left inside form system testing. After closing the main supply valve, the condensate drain can be opened slightly until the water inside the vale body and main pipe column has drained. See the section titled "Draining Excess/Condensate Water from the System" in this bulletin for the detailed procedure.

The Model B Manual Emergency Station is included in the Reliable Type D Double Interlock Preaction System trim sets. It consists of an aluminum nameplate mechanically attached to a ball valve. The valve handle in its OFF position is guarded against accidental turning to the ON position (and system discharge) by a nylon cable tie provided with each trim kit. The cable tie is inserted after the system has been restored for operation. The nylon cable tie is designed to allow, in case of an emergency, forceful turning of the valve handle to the ON position. As an alternative to the Model B Hydraulic Manual Emergency Station, the Model A Hydraulic Manual Emergency Pull Box (see Reliable Bulletin 506) is also available and can be provided as an option.

Whenever ambient temperature conditions are high, the water temperature in the Model DDX Deluge Valve pushrod chamber could possibly increase, thereby increasing the pressure in the chamber to values exceeding the rated pressure of the system. In an indoor installation where standard room temperatures are exceeded, a pressure relief kit may be needed. Pressure relief kit, P/N 6503050001, can be installed into the pushrod chamber's releasing line to limit the pressure to 250 psi (17.2 bar).

Reliable Model DDX Deluge Valve with associated Type D Double Interlock Preaction Trims sizes 2" (50 mm), 2½" (65 mm), 76 mm, 3" (80 mm), 4" (100 mm), 165 mm, 6" (150 mm) and 8" (200 mm) are rated for use at a minimum water supply pressure of 20 psi (1.4 bar) and a maximum water supply pressure of 250 psi (17.2 bar) for 2" (50mm), 2½" (65mm), 3" (80mm), 76mm and 8" (200mm) valve sizes and 300 psi (20.7 bar) for 4" (100mm), 6" (150mm) and 165mm valve sizes. Water supplied to the inlet of the valve and to the pushrod chamber must be maintained between 40°F (4°C) and 140°F(60°C).

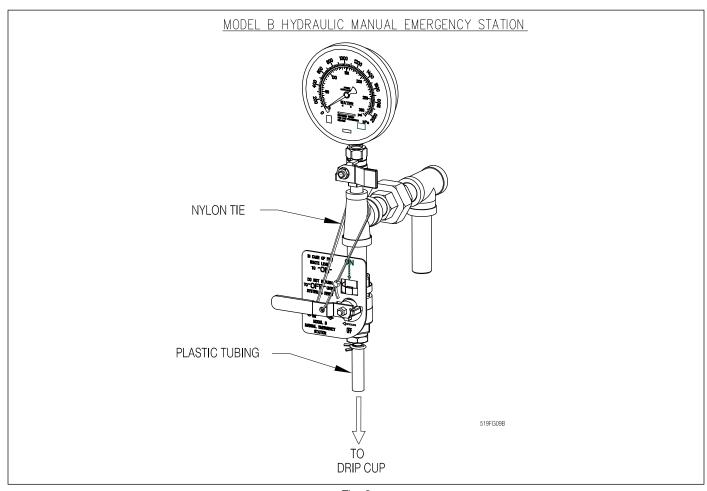


Fig. 2

Pressurizing Line Connection

The water supply for the pushrod chamber must be provided a dedicated connection to the water supply piping. Pressurizing lines for multiple Model DDX Deluge Valve pushrod chambers must never be manifolded together. Each Model DDX Deluge Valve must have its own pushrod chamber pressurizing line connection.

This connection must be made on the supply side of the water supply control valve. This can be accomplished by:

- Using a tapped connection directly below or next to the main water supply control valve using a welded outlet or the appropriate mechanical fittings. A grooved-end outlet coupling is one way to achieve this; or
- Using a water supply control valve that has an available threaded (NPT) supply-side tap design to allow for a direct water supply connection to the Model DDX Deluge Valve's pushrod chamber.

Caution: Reliable's DDX valve is designed with an inlet restriction built into the pushrod chamber. It is important not to introduce additional restrictions into the direct water supply connection or the discharge from the pushrod chamber by installing additional valves or improperly installing the copper lines used in the trim of the valve.

Hydrostatic Testing of DDX Valves and DDX Systems

As required by NFPA 13, fire sprinkler systems with working pressures up to and including 150 psi are to be hydrostatically tested at a water pressure of 200 psi. Fire sprinkler systems with working pressures above 150 psi are required to be hydrostatically tested at 50 psi above the system working pressure. In addition to the hydrostatic tests described above, dry pipe and double interlock preaction systems require an additional low pressure air test.

In some cases, hydrostatic testing (in accordance with the NFPA 13 requirements noted above) will result in pressures that exceed the working pressure of the valve and trim kit for the two-hour test period. The valve and applicable trim kit have been tested, approved and listed under these conditions and as such, hydrostatic testing in accordance with NFPA 13 is acceptable. In addition, the clapper can remain in the closed position and the trim kit need not be isolated, as each has been designed to withstand hydrostatic testing as required by NFPA 13.

Hydrostatically testing the valve and trim to pressures higher than their rating is limited to the hydrostatic test as referenced by NFPA 13. It does not address the occurrence(s) of a "water hammer" effect, which can indeed damage the valve. A "water hammer" in the water supply piping of the valve can create pressures in excess of the rated pressure and should be avoided by all necessary means. This condition may be created from improper fire pump settings, underground construction work, or an improper venting of trapped air in the water supply piping.

System Design Considerations

The automatic sprinklers, releasing devices, electric releasing control equipment, fire detection devices, manual pull stations, and signaling devices which are utilized with the Type D Double Interlock Preaction System must be UL or ULC Listed or FM Approved, as applicable.

Factory Mutual requires that detection devices in refrigerated areas be of the fixed temperature type. In addition, they must have a temperature rating lower than that of the sprinklers and preferably as low as possible for the given ambient conditions.

The Deluge Valve, and all interconnecting piping must be located in a readily visible and accessible location and in an area that can be maintained above 40°F (4°C). **Note:** Heat Tracing is not permitted.

Pendent sprinklers, other than dry pendents, used on preaction systems shall be installed on return bends per NFPA 13.

The solenoid valve must be operated and the system supervised by a listed releasing control panel.

System Air Pressure Requirements

In accordance with NFPA 13, Double Interlock Preaction Systems require a minimum of 7 psi (0.5 bar) pneumatic pressure to supervise the sprinkler system. The Reliable Model A Pressure Maintenance Device is used to maintain the system pneumatic pressure between 7 and 10 psi (0.5 and 0.7 bar) where a dry nitrogen gas supply or a clean, dependable and continuous (24 hours a day, 7 days a week) compressed air source is available.

To adjust the system pneumatic pressure between 7 and 10 psi (0.5 and 0.7 bar) refer to Reliable Bulletin 251. The low air pressure alarm switch is factory set to operate between 5 and 6 psi (0.3 and 0.4 bar) on decreasing pressure. If necessary, adjustments can be made by following the manufacturer's adjustment procedure as described in the installation and maintenance instructions.

Note: The dew point of the air supply must be maintained below the lowest ambient temperature to which the double interlock preaction system piping will be exposed. Introduction of moisture into the system piping that is exposed to freezing temperatures can create ice blockage, which could prevent proper operation of the sprinkler system. As a minimum, the air supply of air should be taken from the refrigerated area at the lowest temperature. The air supply system must be carefully designed to prevent plugging by frost deposits. Special requirements such as those in FME&R Installation Guidelines for Refrigerated Storage may need to be incorporated.

Each Type D Double Interlock Preaction system is provided with a Reliable Model A Pressure Maintenance Device for individual monitoring of pneumatic pressure and proper operation of the system. The Reliable Model A Pressure Maintenance Device <u>requires</u> a tank mounted air compressor.

System Electrical Requirements

All releasing and detection devices in Reliable's Model DDX Type D Double Interlock Preaction System may be operated and supervised by the PFC-4410-RC Releasing Control Panel. An emergency manual pull station should be provided near the sprinkler riser to facilitate setup of the system.

The power supply, the standby emergency power supply, battery charger, and the rectifier circuitry are all contained within the Potter PFC-4410-RC Releasing Control Panel. Batteries that provide ninety hours of standby power are required for Factory Mutual Approved systems.

The Potter PFC-4410-RC Releasing Control Panel can utilize either 120VAC or 220VAC.

Note:

In order for the solenoid valve to maintain a warranty it must remain sealed as it came from the factory. If there are concerns about the valve's internal components, immediate replacement is recommended.

Standard Solenoid Valve Specifications:

Skinner Model 73218BN4UNLVN0C111C2 Rated working pressure: 175 psi (12.1 bar)

Voltage: 24 VDC Power: 10 Watts

Current: 0.41 Amps Holding Enclosure Coil: NEMA 4X Pipe Size: ½" NPT Female

Cv Factor: 4.0

Alternate Solenoid Valve Specifications:

Skinner Model 73212BN4TNLVN0C322C2 Rated working pressure: 300 psi (20.7 bar)

Voltage: 24 VDC Power: 22 Watts

Current: 0.83 Amps Holding Enclosure Coil: NEMA 4X Pipe Size: ½" NPT Female

Cv Factor: 2.8

Type D Double Interlock Preaction Systems Engineering Specification

2" (50 mm), 2½" (65 mm), 76 mm, 3" (80 mm), 4" (100 mm), 165 mm, 6" (150 mm) and 8" (200 mm)

Model DDX Deluge Valve

Preaction System shall be a Double Interlock Preaction System utilizing a [2" (50 mm)][2½" (65 mm)][76 mm] [3" (80 mm)] [4" (100 mm)][165 mm][6" (150 mm)][8" (200 mm)] [cULus Listed] [Factory Mutual Approved] Reliable Model DDX Deluge Valve. Deluge valve shall be a [2" (50 mm)][2½" (65 mm)][76 mm] [3" (80 mm)][4" (100 mm)][165 mm][6" (150 mm)][8" (200 mm)] [cULus Listed] [Factory Mutual Approved] hydraulically operated, differential latching-clapper type valve. Deluge Valve construction shall be of lightweight, ductile iron construction with either a "screw in" stainless steel seat and clapper assembly or drop in bronze seat and clapper assembly. Stainless steel or Bronze seat shall have O-ring seals to resist leakage and corrosion. Clapper facing shall be pressure actuated, providing a limited compression seat for the sealing force between the clapper rubber facing and the valve seat. Deluge valve shall have

an external reset knob for resetting the clapper without requiring the removal of the valve face plate. Pushrod chamber design shall consist of a stainless steel piston/ pushrod and spring assembly with diaphragm seal secured to the casting through a pushrod guide constructed of a synthetic engineering plastic to resist corrosion. Casting shall have a bleeder hole located on the pushrod chamber for air/water leakage indication. Trip ratio shall be approximately a 3:1 force differential. Deluge valve shall be of the straight through design to minimize friction loss. Inlet restriction orifice shall be factory installed into the inlet port of the deluge valve pushrod cover plate and not be a separate part of the deluge valve trim. End connection style to be [2" (50 mm)] [2½" (65 mm)][76 mm] [3" (80 mm)][4" (100 mm)][165 mm] [6" (150 mm)][8" (200mm)] grooved, per ANSI/AWWA C606 or flanged per ASME B16.5 or ISO 7005. Deluge valve shall have a rated working pressure of 250 psi (17.2 bar) for 2" (50mm), 2½" (65mm), 3" (80mm), 76mm and 8" (200mm) valve sizes and 300 psi (20.7 bar) for 4" (100mm), 6" (150mm) and 165mm valve sizes and shall be factory hydrostatic tested at 500 psi (34.5 bar) for 2" (50mm), 21/2" (65mm), 3" (80mm), 76mm and 8" (200mm) valve sizes and 600 psi (41.4 bar) for 4" (100mm), 6" (150mm) and 165mm valve sizes.

Deluge valve to be [2" (50 mm)][2½" (65 mm)][76 mm] [3" (80 mm)][4" (100 mm)][165 mm][6" (150 mm)][8" (200 mm)] Reliable Model DDX Deluge Valve (Bulletin 519).

Valve trim shall be Type D electric/electric release trim consisting of the following components:

- Hydraulic trim to be galvanized and brass components.
 All trims and components to be listed/Approved with the Deluge Valve, including associated pressure gauges, 1¼" or 2" drain connection, alarm devices, alarm test and pushrod chamber connections.
- Electrical two-way, normally closed, pilot operated solenoid valve [cULus] [FM Approved] for its intended use. The solenoid valve shall be constructed of a brass body with stainless steel sleeve tube, springs, stop and plunger, and with ½" female NPT end connections. Solenoid valve shall have a maximum working pressure of [175 psi (12.1 bar)] [300 psi (20.7 bar)] and a maximum ambient temperature rating of 150°F (66°C). Power consumption of the integrated coil shall be limited to [10 watts for the 175 psi (12.1 bar) rated] [22 watts for the 300 psi (20.7 bar) rated] and require 24 VDC from a releasing Control Panel listed for such service. Solenoid shall be a Skinner ½" normally closed solenoid valve [73218BN4UNLVNOC111C2 (175 psi (12.1 bar) rated)].
- Low air pressure switch to indicate loss of air pressure in system piping. Pressure switch shall be [cULus Listed] [FM Approved] and of the bellows activated type enclosed in a weatherproof NEMA 4/4X rated enclosure incorporating tamper proof screws. There shall be two sets of SPDT (form C) contacts rated 10.0 A @ 125/250 VAC and 2.5 A @ 6/12/24 VDC. The pressure switch shall have a maximum service pressure rating of 250 psi (17.2 bar) and shall be factory adjusted to operate at a pressure of 4 to 8 psi (0.27 to 0.55 bar) with adjustment up to 15 psi (1.03 bar). Switch shall be provided with a ½" NPT male pressure connection. Low air supervisory switch shall be Potter PS10-2.

- Pressure alarm switch to indicate water flow in system. Pressure switch shall be [cULus Listed] [FM Approved] and of the bellows activated type enclosed in a weather proof NEMA 4/4X rated enclosure incorporating tamper proof screws. There shall be two sets of SPDT (form C) contacts rated 10.0 A @ 125/250 VAC and 2.5 A @ 6/13/24 VDC. The pressure switch shall have a maximum service pressure rating of 250 psi (17,2 bar) and shall be factory adjusted to operate at a pressure of 4 to 8 psi (0,27 to 0,55 bar) with adjustment up to the 15 psi (1,03 bar). Switch shall be provided with a 1/2" NPT male pressure connection. Pressure alarm switch shall be Potter PS10-2.
- Pressure maintenance device for maintaining a constant pneumatic system pressure regardless of pressure fluctuations in the compressed air (or nitrogen) source. The pressure maintenance device shall consist of galvanized trim and brass parts, including a strainer, a field adjustable air pressure regulator and associated pressure gauge. The pressure regulator shall have an adjustable outlet pressure range of 5 to 100 psi (0.34 to 6.8 bar). The pressure maintenance device shall have a working pressure of 175 psi (12.1 bar). Recommended supervisory pressure shall be 7 to 10 psi (0.5 to 0.7 bar). Pressure maintenance device shall be Reliable Model A.

Double Interlock Preaction System shall be Reliable Double Interlock Type D Preaction System, Bulletin 750.

Pneumatic Supervisory Pressure Supply Options

Note: See Reliable Bulletins 254 and 251 for complete information on air and nitrogen regulating equipment.

Owner's Air supply

Supervisory air supply shall be provided by an owner supplied air system in conjunction with a listed automatic pressure maintenance device, capable of maintaining a constant system pressure regardless of pressure fluctuations in the compressed air source.

Compressed Air Supply

Supervisory air supply shall be provided by an automatic tank-mounted air compressor sized for the capacity of the double interlock preaction system piping, and be capable of restoring normal air pressure in the system within the time limits specified by NFPA 13. Unit shall include a motor mounted, oil-less, piston compressor, pressure gauge, pressure switch, check valve, drain valve and safety relief valve. Single-phase motor shall have internal thermal protection.

Nitrogen

Nitrogen cylinders provided by an approved source shall provide the nitrogen supply. The nitrogen cylinder pressure shall be regulated and supervised through the use of nitrogen regulating device and low-pressure trim kit. This device shall consist of a brass, single stage pressure regulator, equipped with high pressure inlet and low pressure outlet gauges, and ¼" copper connection tubing with galvanized ¾" x ¼" reducer bushing. This kit shall include a low-pressure switch with associated galvanized connection trim. Assembly shall be a Reliable Nitrogen Regulating Device. This device is to be used in conjunction with the Reliable Model A Pressure Maintenance Device.

Optional System Accessories System Control Valve

Preaction system control valve shall be a slow close, [cULus Listed] indicating butterfly type valve with a pre-wired supervisory tamper switch assembly. The valve shall be rated for a working pressure of [300 psi (20.7 bar)]. System control valve shall be for a [2" (50 mm)] Gruvlok AN7722-3A Butterfly Valve or [2½" (65 mm)][3" (80 mm)][4" (100 mm)][6" (150 mm][8" (200 mm] - Reliable BFG-300 Butterfly Valve.

Detection System

To initiate actuation of the preaction system's deluge valve, a supplemental electric detection system shall be provided [Insert applicable product specification].

Releasing/Control Panel

A releasing/control panel shall be used to operate the preaction system. The releasing/control panel shall be a conventional, microprocessor-controlled panel containing two initiating device circuits, and waterflow and supervisory inputs. Output circuits shall include alarm, waterflow, supervisory, and releasing circuits. Mode of operation shall be set for cross zoned operation, requiring both a detection device input and a low air pressure switch input (sprinkler operation) to energize the solenoid valve, causing the deluge valve to operate. Releasing/control panel shall be equipped with a local tone alarm to annunciate loss of AC power, system trouble, circuit trouble, and low auxiliary DC power supply. Panel shall be [cULus Listed] [FM Approved] and be capable of providing power for compatible detectors and auxiliary devices used. Audible alarms shall be able to be silenced at releasing panel. Auxiliary DC power supply shall consist of (2) 12-volt lead acid batteries of the same amperehour rating, providing [60 hours - cULus Listed] [90 hours - FM Approved]. Dry contacts shall be provided for remote annunciation of alarm, trouble, and supervisory panel signals. Main power supply to be a dedicated a 120 VAC / 60 Hz circuit.

Technical Data

Reliable Double Interlock Type D Preaction Systems, with associated trim, size 2" (50 mm), $2\frac{1}{2}$ " (65 mm), 76 mm, 3" (80 mm), 4" (100 mm), 165 mm, 6" (150 mm), 8" (200 mm) are rated for use at minimum water supply pressure of 20 psi (1.4 bar) and maximum supply pressure of 250 psi (17.2 bar) for 2" (50mm), $2\frac{1}{2}$ " (65mm), 3" (80mm), 76mm and 8" (200mm) valve sizes and 300 psi (20.7 bar) for 4" (100mm), 6" (150mm) and 165mm valve sizes. Water supplied to the inlet of the valve and to the pushrod chamber must be maintained between 40° F (4° C) and 140° F (60° C).

The following list of technical bulletins pertains to valves and devices that may be used in this preaction system:

Deluge Valve Reliable 519 Hydraulic Emergency Station Reliable 506 (Model A) Mechanical Sprinkler Alarm Reliable 612/613 Pressure Maintenance Device Reliable 251 Nitrogen Regulating Device Reliable 254 Releasing/Control Panel Potter #5403550 Low Air Pressure Supervisory Switch Potter 5400928 Waterflow Pressure Alarm Switch Potter 5400928

Model DDX Deluge Valve Description

- 1. Rated working pressure:
 - Valve & System 250 psi (17.2 bar) for 2" (50mm), 2½" (65mm), 3" (80mm), 76mm and 8" (200mm) valve sizes and 300 psi (20.7 bar) for 4" (100mm), 6" (150mm) and 165mm valve sizes.
- 2. Factory tested to a hydrostatic pressure of 500 psi (34.5 bar) for 2" (50mm), 21/2" (65mm), 3" (80mm), 76mm and 8" (200mm) valve sizes and 600 psi (41.7 bar) for 4" (100mm), 6" (150mm) and 165mm valve sizes. (Valve only)
- 3. End and trim connections:
 - ANSI/AWWA C606 grooved inlet and outlet

Nominal	Outlet Diam-	Groove	Groove	Outlet Face
Pipe Size	eter	Diameter	Width	to Groove
2"	2.375"	2.250"	11/32"	5/8"
(50 mm)	(60 mm)	(57 mm)	(9.0 mm)	(16 mm)
21/2"	2.875"	2.720"	11/32"	5/8"
(65 mm)	(73 mm)	(69 mm)	(9.0 mm)	(16 mm)
76 mm	3.000"	2.845"	11/32"	5/8"
76111111	(76 mm)	(72 mm)	(9.0 mm)	(16 mm)
3"	3.500"	3.344"	11/32"	5/8"
(80 mm)	(89 mm)	(85 mm)	(9.0 mm)	(16 mm)
4"	4.500"	4.334"	3/8"	5/8"
(100 mm)	(114 mm)	(110 mm)	(9.5 mm)	(16 mm)
165 mm	6.500"	6.330"	3/8"	5/8"
165 mm	(165 mm)	(161 mm)	(9.5 mm)	(16 mm)
6"	6.625"	6.455"	3/8"	5/8"
(150 mm)	(168 mm)	(164 mm)	(9.5 mm)	(16 mm)
8"	8.625"	8.441"	7/16"	3/4"
(200 mm)	(219 mm)	(214 mm)	(11 mm)	(19 mm)

- Threaded openings Per ANSI B 2.1
- Flange Dimensions

Flange Type:	Nominal Pipe Size	Bolt Circle Diameter	Bolt Hole Diameter	Flange Outside Diameter		Number of Bolts
ASME B16.5	4"	7½"	³ / ₄ "	9"	15/,"	8
Class 150	(100mm)	(191mm)	(19mm)	(229mm)	(24mm)	
ISO 7005-2	4"	73/32"	³ / ₄ "	9"	¹⁵ / ₁₆ "	8
PN16	(100mm)	(180mm)	(19mm)	(229mm)	(24mm)	
ASME B16.5	6"	9½"	7/;"	11"	15/,"	8
Class 150	(150mm)	(241mm)	(22mm)	(279mm)	(24mm)	
ISO 7005-2	6"	9 ⁷ /,"	²⁹ / ₃₂ "	11"	15/,"	8
PN16	(150mm)	(240mm)	(23mm)	(279mm)	(24mm)	
ASME B16.5	8"	11¾"	7/"	13½"	1"	8
Class 150	(200mm)	(298mm)	(22mm)	(343mm)	(25.4mm)	
ISO 7005-2	8"	115//"	²⁹ / ₃₂ "	13½"	1"	12
PN16	(200mm)	(295mm)	(23mm)	(343mm)	(25.4mm)	

4. Valve Color:

Valve Size	Color
2" (50 mm)	Black or Red
2½" (65 mm)	Black or Red
76 mm	Red
3" (80 mm)	Black or Red
4" (100 mm)	Black or Red
165 mm	Red
6" (150 mm)	Black or Red
8" (200 mm)	Black or Red

5. Face to face dimensions:

Valve Size:	End Connection:	End to End:
2" (50mm), 2½" (65mm), 76mm & 3" (80mm)	Groove/ Groove	12½" (318mm)
	Groove/ Groove	14" (356mm)
4" (100mm)	Flange/ Groove	16" (406mm)
	Flange/ Flange	16" (406mm)
	Groove/ Groove	16" (406mm)
6" (150mm) & 165mm	Flange/ Groove	19" (483mm)
	Flange/ Flange	19" (483mm)
8" (200mm)	Groove/ Groove	19 ³ / ₈ " (492mm)
0 (20011111)	Flange/ Flange	21¼" (540mm)

6. Valve shipping weight:

Valve Size:	End Connection:	Weight:
2" (50mm), 2½" (65mm), 76mm & 3" (80mm)	Groove/ Groove	34 lbs (15 kg)
	Groove/ Groove	64 lbs (29 kg
4" (100mm)	Flange/ Groove	79 lbs (36 kg)
	Flange/ Flange	92 lbs (42 kg)
	Groove/ Groove	95 lbs (43 kg)
6" (150mm) & 165mm	Flange/ Groove	122 lbs (56 kg)
	Flange/ Flange	138 lbs (69 kg)
011 (000mm)	Groove/ Groove	148 lbs (67 kg)
8" (200mm)	Flange/ Flange	197 lbs (90 kg)

7. Trim shipping weight:

Trim Configuration	2" (50 mm), 2½" (65 mm), 3" (80 mm) & 76 mm	4" (100 mm), 6" (150 mm), 8" (200 mm) & 165 mm
Type D Double Interlock	47 lbs (21 kg)	52 lbs (24 kg)

8. Friction loss (Expressed in equivalent length of Schedule 40 pipe, based on Hazen & Williams formula:

Valve Size:	Equivalen	Cv		
valve Size.	C = 120	C = 100	CV	
2" (50mm)	4.4 ft (1.3 m)	3.1 ft (1.0 m)	101	
21/2" (65mm)	6.0 ft (1.8 m)	4.3 ft (1.3 m)	236	
76mm	7.7 ft (2.3 m)	5.5 ft (1.7 m)	241	
3" (80mm)	12.6 ft (3.8 m)	9.0 ft (2.7 m)	254	
4" (100mm)	14 ft (4.3 m)	10 ft (3.0 m)	469	
165mm	29.4 ft (9.0 m)	20.9 ft (6.4 m)	886	
6" (150mm)	29.4 ft (9.0 m)	20.9 ft (6.4 m)	886	
8" (200mm)	53.5 ft (16.3 m)	38.1 ft (11.6 m)	1516	

9. Installation position: Vertical

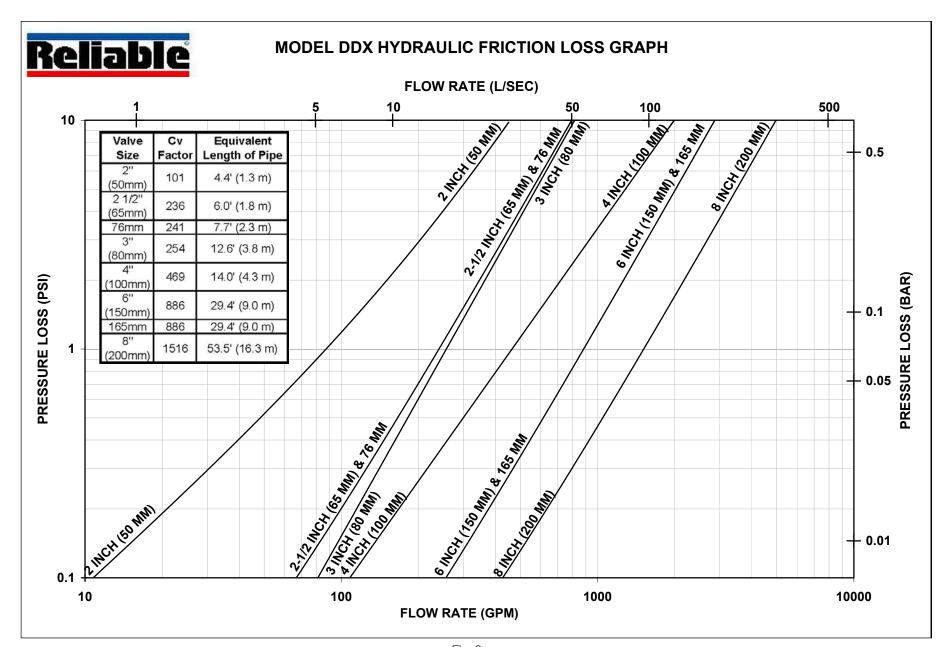


Fig. 3

Trim Descriptions

The Type D Double Interlock Preaction Trims for the Reliable Model DDX Deluge Valve are arranged for rapid, easy, and compact attachment, and serve as connection points to Reliable Model C Mechanical Alarms and other devices.

The Double Interlock Type D Preaction System trim configurations can be ordered as individual parts, in time-saving segmentally assembled kit forms, or fully assembled to the Model DDX Deluge Valve (with or without a control valve).

The Model B Hydraulic Manual Emergency Station is a standard item of all Deluge Valve trim sets. It consists of an aluminum nameplate mechanically attached to a ball valve. The valve handle in its OFF position is guarded against accidental turning to the ON position (and system discharge) by a nylon cable tie provided with each trim kit. The cable tie is inserted, after the system has been restored for operation. The nylon cable tie is designed to allow, in case of an emergency, forceful turning of the valve handle to the ON position. As an alternative to the Model B Hydraulic Manual Emergency Station, the Model A Hydraulic Manual Emergency Pull Box (see Bulletin 506) is also available and can be provided as an option.

Resetting Model DDX Type D Double Interlock Preaction System

- 1. Close the valve controlling water supply to the Deluge Valve and close the air or nitrogen supply to the sprinkler system.
- 2. Close the pushrod chamber supply valve.
- 3. Open main drain valve and drain system.
- 4. Open all drain valves and vents at low points throughout the system, closing them when flow of water has stopped. Open the Model B Manual Emergency Station to relieve pressure in the pushrod chamber of the Deluge Valve.
- 5. With the alarm line valve open, push in the plunger of ball drip valve, forcing the ball from its seat, and drain the alarm line.
- 6. With the Model B Manual Emergency Station open, push in and rotate the Deluge Valve's external reset knob counterclockwise (when facing the valve), until you hear a distinct noise indicating that the clapper has reset. **Note:** The reset knob can be rotated only while pressure in the pushrod chamber is vented to atmospheric conditions (0 psig).
- 7. Inspect and replace any portion of the detection system and/or sprinkler system subjected to fire conditions.
- 8. Open the pushrod chamber supply valve and allow water to fill the pushrod chamber. Close the Model B Manual Emergency Station.
- 9. Bleed all air from the actuation piping: Open the solenoid valve by operating a detector or an electric manual emergency station. While water is flowing through the solenoid valve, cause it to close using the release control panel reset.
- 10. Close the alarm line valve. Open the air or nitrogen supply quick fill valve to restore 10 psi (0.7 bar) supervisory pressure in the sprinkler system, then set the pneumatic supply to automatic operation. Note: To build supervisory air pressure in the sprinkler system, it may be necessary to temporarily close the main drain valve until air pressure has built up to the recommended level.

- 11. Open the alarm line valve. Verify the main drain valve is open. Open slightly the main valve controlling water supply to the Model DDX Deluge Valve, closing the main drain valve when water flows. Observe if water leaks through the ball drip valve into the drip cup. If no leak occurs, the Deluge Valve clapper is sealed. Open slowly and verify the main valve controlling water supply is fully opened and properly monitored.
- 12. Verify that the pushrod chamber supply valve and alarm line valve are open. The pushrod chamber supply valve must remain open when the Deluge Valve has been reset, to maintain water pressure in the pushrod chamber.
- 13. Verify that the Model B Manual Emergency Station is secured in the OFF position with the appropriate nylon tie.

Inspection and Testing

- 1. Water supply Confirm that valves controlling water supply to the Deluge Valve are opened fully and properly monitored.
- 2. Alarm line Confirm that the alarm line valve is open and remains in this position.
- 3. Other trim valves Confirm that the pushrod chamber supply valve is open, as well as all pressure gauge valves. The main drain valve, condensate drain valve, and alarm test valve should be closed.
- 4. Ball drip valve Push in on the plunger to be sure ball check is off its seat. If no water appears, the Deluge Valve water seat is tight. Inspect the bleed hole on the underside of the pushrod chamber for leakage.
- 5. Dry pilot trim Inspect air pressure for conformance to Table A.
- 6. Releasing device Check outlet of the releasing device (i.e., solenoid valve and hydraulic manual emergency station) for leakage. Also verify that tubing drain lines from releasing devices are not pinched or crushed which could prevent proper releasing of the Deluge Valve.
- 7. Testing alarms Open the alarm test valve permitting water from the supply to flow to the electric sprinkler alarm switch and to the mechanical sprinkler alarm (water motor). After testing, close this valve securely. Push in on the plunger of ball drip valve until all water has drained from the alarm line.
- 8. Operational test Open the Model B Manual Emergency Station. Alternatively, operate the electrical detection system and deplete pneumatic pressure from the sprinkler system.

Note: AN OPERATIONAL TEST WILL CAUSE THE DELUGE VALVE TO OPEN AND FLOW WATER INTO THE SPRINKLER SYSTEM.

9. Secure the Model B Manual Emergency Station in the OFF position with nylon tie after Deluge Valve is reset.

Testing Detection System Without Operating Deluge Valve

- Close the valve controlling water supply to the deluge valve and open the main drain valve.
- 2. Verify that valve supplying hydraulic pressure to the piston/pushrod chamber is open, allowing water to enter the pushrod chamber.
- 3. Operate the electrical detection system and deplete pneumatic pressure from the sprinkler system.
- 4. Operation of the detection combined with loss of pneumatic pressure must result in a sudden drop of water pressure in the pushrod chamber, as indicated by the pressure gauge on the hydraulic release trim.
- 5. Reset the valve per the reset instructions.

Maintenance

The owner is responsible for maintaining the fire protection system in proper operating condition. Any system maintenance or testing that involves placing a control valve or detection/control system out of service may eliminate the fire protection that is provided by the fire protection system.

The Reliable Model DDX valve and associated equipment shall periodically be given a thorough inspection and test. NFPA 25, "Inspection, Testing, and Maintenance of Water Based Fire Protection Systems," provides minimum maintenance requirements. System components shall be tested, operated, cleaned, and inspected at least annually, and parts replaced as required. Replace any components found to be corroded, damaged, worn, or non-operable. Increase the frequency of inspections when the valve is exposed to corrosive conditions or chemicals that could impact materials or operation of the assembly.

If face plate is removed during maintenance, torque face plate bolts to the following values during re-installation:

- 35 ft-lbs. (47 N-m) for 2" through 4" valves
- 70 ft-lbs. (95 N-m) for 6"-8" valves

Troubleshooting

- 1. Mechanical sprinkler alarm not operating: This is most likely caused by a clogged screen in the strainer of the water motor. Proceed as follows: Remove plug from the strainer. Remove and clean the screen. Replace the screen and the plug, and then tighten securely (Ref. Bulletin 613).
- 2. Water leaking from Ball Drip. This can be caused by either a water column on top of the clapper or a supply water leakage.
 - a. Leakage due to water column. This condition is caused by leakage past the clapper seal assembly. Be sure the clapper seal and seat are free of any type of de-bris or damage. If necessary, follow steps below to replace the seal assembly and/or seat.
 - b. Supply water leakage. This condition is caused by leakage past the lower seat O-ring. Follow steps below for inspection and/or replacement of lower seat O-ring.

Repair Procedures - Model DDX Deluge Valve

The following section provides instructions to correct both conditions:

- 1. Disable detection system.
- 2. Shut down the valve controlling the water supply to the Deluge Valve and open the main drain valve. Open the condensate drain valve. Close the pushrod chamber supply valve and open the Model B Manual Emergency Station.
- 3. Remove the Deluge Valve front (handhold) cover and inspect the seat, clapper, and seal assembly for damage. If inspection indicates damage to the seal assembly, replace as follows:
- 4. Remove the bumpstop nuts and remove the seal assembly. Install a new seal assembly and thread the bumpstop nuts onto the threaded studs of the seal assembly. Tighten finger tight plus $\frac{1}{4}$ to $\frac{1}{2}$ turn.
- 5. If inspection indicates damage to the clapper, proceed to step 6.
- 6. At the rear of the valve, disconnect the condensate drain trim section starting with the elbow connector. Then remove the ¼" globe valve, followed by the ¾"x¼" reducing bushing. Remove the retaining rings from the clapper hinge pin, push the hinge through the condensate drain opening and remove the clapper subassembly. Install a new clapper subassembly in the reverse order making sure the clapper spacers are in their proper position.
- 7. If the seat is damaged, or it is suspected that the leakage is through the seat O-rings, proceed to step 8.
- 8. Using Reliable P/N 6881603000 Seat Wrench for 2" (50mm), 21/2" (65mm), 76mm and 3" (80mm) valve sizes, Reliable P/N 6881604000 for 4" (100mm) valve size, Reliable P/N 6881606000 for the 6" (150mm) and 165mm valve sizes or Reliable P/N 6881608000 Seat Wrench for 8" (200mm) valve size, remove the seat by unscrewing. This will loosen the seat-clapper-mounting ring subassembly. Reach into the valve and grasp the seat and remove it from the valve. Then remove the clapper-mounting ring subassembly from the valve. Visually examine all components of the seat-clapper-mounting ring subassembly and replace any component that appears damaged. New O-rings should always be used for reassembly.
- Reassembly: clean the bore of the valve body. Lubricate the bore with O-ring grease. Lubricate and install the O-rings onto the seat. Lubricate and install the mounting ring O-ring into the body (8" (200mm) valve size only). Insert the clapper-mounting-ring subassembly into the handhold opening of the Deluge Valve using caution to not damage or dislodge the mounting ring O-ring (8" (200mm) valve size only). Align the mounting ring so that the Lever is near the pushrod and the mounting ring "ears" are between the tabs of the valve body. Insert the seat into the valve body and through the clapper-mounting ring subassembly. Start to tread the seat into the body by hand, then tighten the seat with the seat wrench until it bottoms out on the mounting ring. Verify that the seat-clapper-mounting ring subassembly is in the fully down position between the tabs of the body, and check to see that the lever lines up with the pushrod. Reassemble the handhold cover and set up the Model DDX Deluge Valve as per the section "Resetting Model DDX Type D Double Interlock Preaction System."

Pushrod Chamber Maintenance - Model DDX Deluge Valve

A small bleed hole is located on the underside of the pushrod chamber. Water leakage from the bleed hole can be caused by a ruptured pushrod diaphragm:

- a) Disable detection system.
- b) Shut down the valve controlling water supply to the Deluge Valve. Relieve the inlet pressure by opening the main drain valve. Close the pushrod chamber supply valve and open the Model B Manual Emergency Station.
- c) Remove the trim at the unions nearest to the pushrod chamber cover.
- d) Take the pushrod chamber cover off by removing the six retaining screws.
- e) Visually inspect the pushrod chamber cover and piston to determine what could have damaged the diaphragm and then correct. Install a new diaphragm.

Note: The diaphragm has two different surfaces; it is not bi-directional and will fail if installed backwards. Roll the diaphragm so that the smooth surface (the pressure side) conforms to the inside of the pushrod chamber cover and the fabric side engages the pushrod.

- f) Reassemble the six retaining screws with an installation torque of 15 foot-pounds in a star pattern.
- g) Set up the Model DDX Deluge Valve as per the section "Resetting Model DDX Type D Double Interlock Preaction System."

Draining Excess/Condensate Water from the System

- 1. Notify the owner and monitoring company that maintenance is being performed on the system.
- 2. Close the main water control valve.
- 3. Open the Main Drain Valve.
- 4. Open the Condensate Drain Valve until all water has drained.
- 5. Close Condensate Drain Valve.
- 6. Partially open the Main Water Control Valve.
- 7. Slowly close the Main Drain Valve.
- 8. Fully open the Main Water Control Valve.
- 9. Notify the owner and monitoring company that the system has been returned to service.

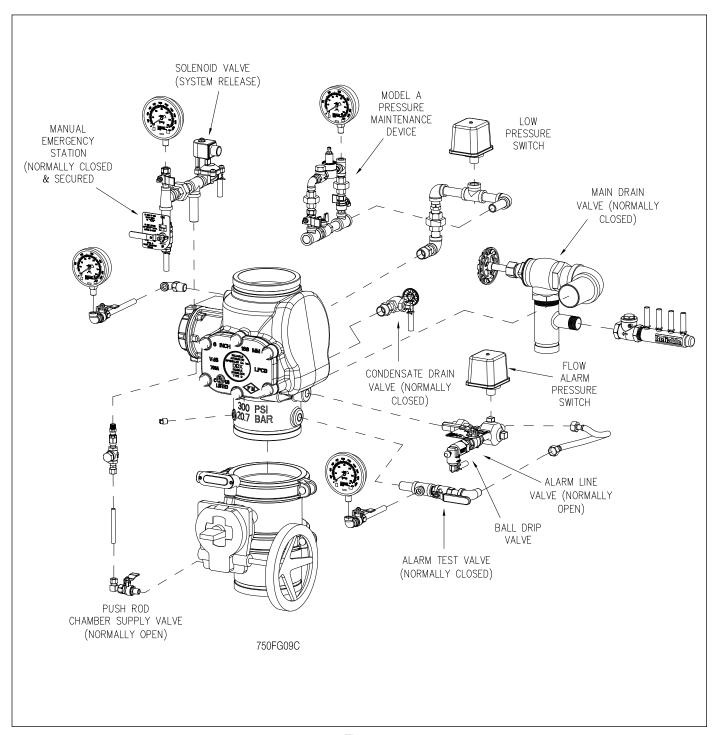


Fig. 4

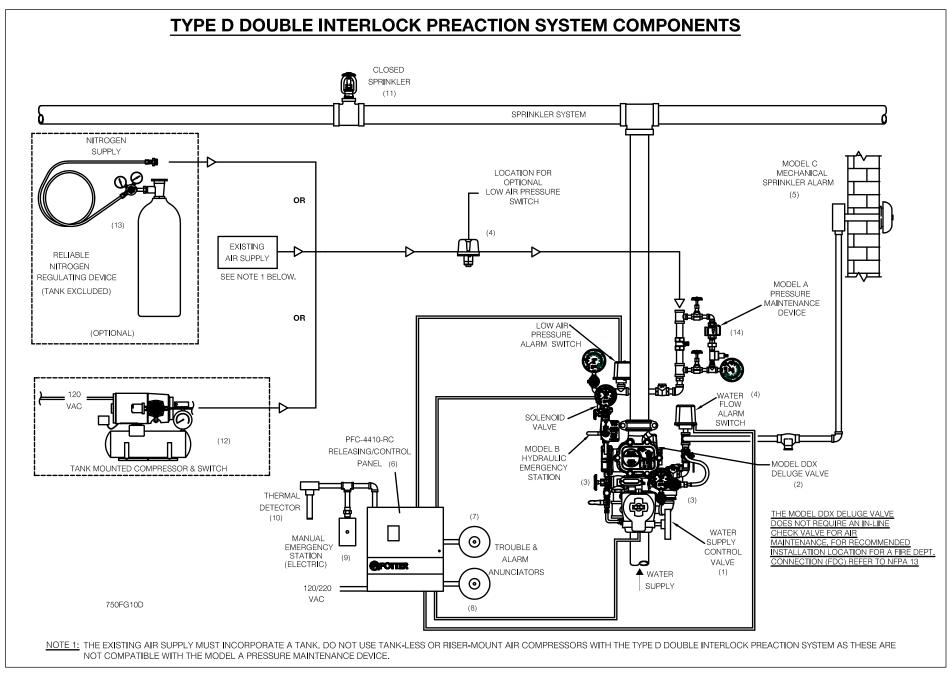


Fig. 6

Section 4 – Electrical Components

VANE TYPE WATERFLOW ALARM SWITCH WITH RETARD

Specifications subject to change without notice.

Ordering Information									
Nominal	Pipe Size	Model	Part Number						
2"	DN50	VSR-2	1144402						
2 1/2"	DN65	VSR-2 1/2	1144425						
3"	DN80	VSR-3	1144403						
3 1/2"	-	VSR-3 1/2	1144435						
4"	DN100	VSR-4	1144404						
5"	-	VSR-5	1144405						
6"	DN150	VSR-6	1144406						
8"	DN200	VSR-8	1144408						

Optional: Cover Tamper Switch Kit, stock no. 0090148 Replaceable Components: Retard/Switch Assembly, stock no. 1029030 UL, CUL and CSFM Listed, FM Approved, LPCBApproved, For CE Marked (EN12259-5)/VdS Approved model use VSR-EU

Service Pressure: 450 PSI (31 BAR) - UL

Flow Sensitivity Range for Signal:

4-10 GPM (15-38 LPM) - UL

Maximum Surge: 18 FPS (5.5 m/s)

Contact Ratings: Two sets of SPDT (Form C) 10.0 Amps at 125/250VAC

> 2.0 Amps at 30VDC Resistive 10 mAmps min. at 24VDC

Conduit Entrances: Two knockouts provided for 1/2" conduit.

Individual switch compartments suitable

for dissimilar voltages.

Environmental Specifications:

 NEMA 4/IP54 Rated Enclosure suitable for indoor or outdoor use with factory installed gasket and die-cast housing when used with appropriate conduit fitting.

• Temperature Range: 40°F - 120°F, (4.5°C - 49°C) - UL

· Non-corrosive sleeve factory installed in saddle.

Service Use:

NFPA-13 Automatic Sprinkler One or two family dwelling NFPA-13D Residential occupancy up to four stories NFPA-13R National Fire Alarm Code NFPA-72

WARNING

- Installation must be performed by qualified personnel and in accordance with all national and local codes and ordinances.
- Shock hazard. Disconnect power source before servicing. Serious injury or death could result.
- Risk of explosion. Not for use in hazardous locations. Serious injury or death could result.

CAUTION

Waterflow switches that are monitoring wet pipe sprinkler systems shall not be used as the sole initiating device to discharge AFFF, deluge, or chemical suppression systems. Waterflow switches used for this application may result in unintended discharges caused by surges. trapped air, or short retard times.

Important: This document contains important information on the installation and operation of the VSR waterflow switches. Please read all instructions carefully before beginning installation. A copy of this document is required by NFPA 72 to be maintained on site.

General Information

The Model VSR is a vane type waterflow switch for use on wet sprinkler systems. It is UL Listed for use on a steel pipe; schedules 5 through 40, sizes 2" - 6" and is UL Listed and FM Approved for use on steel pipe; schedules 10 through 40, sizes 2" thru 8" (50 mm thru 200 mm). LPC approved sizes are 2" thru 8" (50 mm thru 200 mm). See Ordering Information chart.

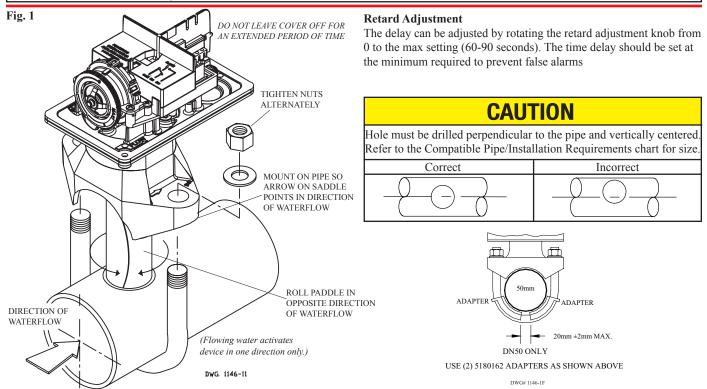
The VSR may also be used as a sectional waterflow detector on large systems. The VSR contains two single pole, double throw, snap action switches and an adjustable, instantly recycling pneumatic retard. The switches are actuated when a flow of 10 GPM (38 LPM) or more occurs downstream of the device. The flow condition must exist for a period of time necessary to overcome the selected retard period.

Enclosure

The VSR switches and retard device are enclosed in a general purpose, die-cast housing. The cover is held in place with two tamper resistant screws which require a special key for removal. A field installable cover tamper switch is available as an option which may be used to indicate unauthorized removal of the cover. See bulletin number 5401103 for installation instructions of this switch.

VSR VANE TYPE WATERFLOW ALARM SWITCH WITH RETARD

Installation (see Fig. 1)


These devices may be mounted on horizontal or vertical pipe. On horizontal pipe they shall be installed on the top side of the pipe where they will be accessible. The device should not be installed within 6" (15 cm) of a fitting which changes the direction of the waterflow or within 24" (60 cm) of a valve or drain.

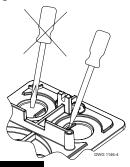
NOTE: Do not leave cover off for an extended period of time.

Drain the system and drill a hole in the pipe using a hole saw in a slow speed drill (see Fig. 1). Clean the inside pipe of all growth or other material for a distance equal to the pipe diameter on either side of the hole. Roll the vane so that it may be inserted into the hole; do not bend or crease it. Insert the vane so that the arrow on the saddle points in the direction of the waterflow. Take care not to damage the non-corrosive bushing in the saddle. The bushing should fit inside the hole in the pipe. Install the saddle strap and tighten nuts alternately to required torque (see the chart in Fig. 1). The vane must not rub the inside of the pipe or bind in any way.

A CAUTION

Do not trim the paddle. Failure to follow these instructions may prevent the device from operating and will void the warranty. Do not obstruct or otherwise prevent the trip stem of the flow switch from moving when water flows as this could damage the flow switch and prevent an alarm. If an alarm is not desired, a qualified technician should disable the alarm system.

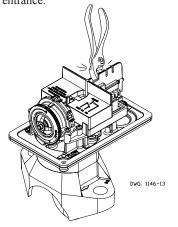
							Compat	ible Pip	e/ Install	ation Re	equirem	ents						
Model	Nominal Pipe		Nominal Pipe O.D.		Pipe Wall Thickness										Hole Size		U-Bolt Nuts	
		Size			Lightwall		Schedule 10 (UL)		Schedule 40 (UL)		BS-1387 (LPC)		DN (VDS)]		Torque	
	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	ft-lb	n-m
VSR-2	2	DN50	2.375	60.3	.065	1.651	0.109	2.77	0.154	3.91	0.142	3.6	0.091	2.3	1.25 + .125/- .062 - 2.00 ± .125	33.0 ± 2.0	20	27
VSR-2 1/2	2.5	-	2.875	73.0	.084	2.134	0.120	3.05	0.203	5.16	-	-	-	-				
VSR-2 1/2	-	DN65	3.000	76.1	-	-	-	-	-	-	0.142	3.6	0.102	2.6				
VSR-3	3	DN80	3.500	88.9	.083	2.108	0.120	3.05	0.216	5.49	0.157	4.0	0.114	2.9		50.8 ± 2.0		
VSR-3 1/2	3.5	-	4.000	101.6	-	-	0.120	3.05	0.226	5.74	-	-	-	-				
VSR-4	4	DN100	4.500	114.3	.084	2.134	0.120	3.05	0.237	6.02	0.177	4.5	0.126	3.2				
VSR-5	5	-	5.563	141.3	-	-	0.134	3.40	0.258	6.55	-	-	-	-				
VSR-6	6	DN150	6.625	168.3	.115	2.921	0.134	3.40	0.280	7.11	0.197	5.0	0.157	4.0				
VSR-8	8	DN200	8.625	219.1	-	-	0.148	3.76	0.322	8.18	0.248	6.3	0.177	4.5]			


NOTE: For copper or plastic pipe use Model VSR-CF.

VSR VANE TYPE WATERFLOW ALARM SWITCH WITH RETARD

Fig. 2

To remove knockouts: Place screwdriver at inside edge of knockouts, not in the center.



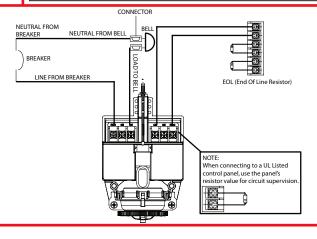
NOTICE

Do not drill into the base as this creates metal shavings which can create electrical hazards and damage the device. Drilling voids the warranty.

Fig. 3

Break out thin section of cover when wiring both switches from one conduit entrance

Fig. 4 **Switch Terminal Connections Clamping Plate Terminal**


An uninsulated section of a single conductor should not be looped around the terminal and serve as two separate connections. The wire must be severed, thereby providing supervision of the connection in the event that the wire become dislodged from under the terminal. Failure to sever the wire may render the device inoperable risking severe property damage and loss of life.

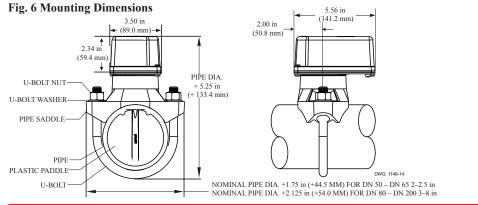
Do not strip wire beyond 3/8" of length or expose an uninsulated conductor beyond the edge of the terminal block. When using stranded wire, capture all strands under the clamping plate.

Fig. 5 **Typical Electrical Connections**

Notes:

- 1. The Model VSR has two switches, one can be used to operate a central station, proprietary or remote signaling unit, while the other contact is used to operate a local audible or visual annunciator.
- 2. For supervised circuits, see "Switch Terminal Connections" drawing and warning note (Fig. 4).

Testing


The frequency of inspection and testing for the Model VSR and its associated protective monitoring system shall be in accordance with applicable NFPA Codes and Standards and/or the authority having jurisdiction (manufacturer recommends quarterly or more frequently).

If provided, the inspector's test valve shall always be used for test purposes. If there are no provisions for testing the operation of the flow detection device on the system, application of the VSR is not recommended or advisable.

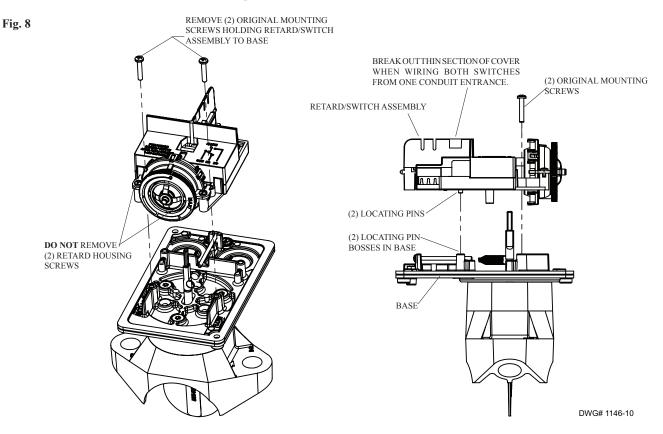
A minimum flow of 10 GPM (38 LPM) is required to activate this device.

NOTICE

Advise the person responsible for testing of the fire protection system that this system must be tested in accordance with the testing instructions.

VSR VANE TYPE WATERFLOW ALARM SWITCH WITH RETARD

Maintenance


Inspect detectors monthly. If leaks are found, replace the detector. The VSR waterflow switch should provide years of trouble-free service. The retard and switch assembly are easily field replaceable. In the unlikely event that either component does not perform properly, please order replacement retard switch assembly stock #1029030 (see Fig. 8). There is no maintenance required, only periodic testing and inspection.

Retard/Switch Assembly Replacement (See Fig. 8)

NOTICE

The Retard/Switch Assembly is field-replaceable without draining the system or removing the waterflow switch from the pipe

- 1. Make sure the fire alarm zone or circuit connected to the waterflow switch is bypassed or otherwise taken out of service.
- 2. Disconnect the power source for local bell (if applicable).
- 3. Identify and remove all wires from the waterflow switch.
- 4. Remove the (2) mounting screws holding retard/switch assembly to the base. **Do not** remove the (2) retard housing screws.
- 5. Remove the retard assembly by lifting it straight up over the tripstem.
- 6. Install the new retard assembly. Make sure the locating pins on the retard/switch assembly fit into the locating pin bosses on the base.
- 7. Re-install the (2) original mounting screws.
- 8. Reconnect all wires. Perform a flow test and place the system back in service.

Removal of Waterflow Switch

- To prevent accidental water damage, all control valves should be shut tight and the system completely drained before waterflow detectors are removed or replaced.
- Turn off electrical power to the detector, then disconnect wiring.
- · Loosen nuts and remove U-bolts.
- Gently lift the saddle far enough to get your fingers under it. With your fingers, roll the vane so it will fit through the hole while continuing
 to lift the waterflow detector saddle.
- · Lift detector clear of pipe.

Section 5 – Hanger & Seismic Materials

3.3.11

HDI, HDI-L, HDI+ and HDI-L+ Drop-in Anchor 3.3.11

3.3.11.1 Product description

HDI+, HDI-L+ and HDI drop-in anchors are internally threaded, flush mounted expansion anchors for use in concrete.

Product features

HDI+, HDI-L+ and HDI

- Anchor, setting tool and Hilti drill bit form a matched tolerance system to provide reliable fastenings
- Allows shallow embedment without sacrificing performance
- Lip allows accurate flush surface setting, independent of hole depth for the HDI-L+
- Ideal for repetitive fastenings with threaded rods of equal length
- HDI+ and HDI-L+ have an innovative stepped plug that reduces number of hammer blows by up to 50%

 HDI+ and HDI-L+ can be installed with the new HDI+ Setting Tool system (stop drill bit and machine setting tool) for improved productivity

Guide specifications

Expansion anchor shall be drop-in, shell or flush type. Carbon steel anchors are zinc plated in accordance with ASTM B633, SC 1, Type III. Stainless steel anchors are manufactured from AISI Type 303 stainless steel. Anchors shall be Hilti HDI+ (HDI-L+) (HDI) anchors as supplied by Hilti.

3.3.11.1	Product description
3.3.11.2	Material specifications
3.3.11.3	Technical data
3.3.11.4	Installation instructions
3.3.11.5	Ordering information

3.3.11.2 Material specifications

HDI+, HDI-L+ and HDI anchors are manufactured from mild carbon steel. Anchor bodies are zinc plated in accordance with ASTM B633, SC 1, Type III.

HDI stainless steel anchors are manufactured from AISI Type 303 stainless steel.

3.3.11.3 Technical data

Table 1 - Hilti HDI+, HDI-L+ and HDI specifications¹

Setting Information	Symbol	Units	HD	+ and HDI	-L+	Н	DI
Setting information	Symbol	Oills	1/4	3/8	1/2	5/8	3/4
Insert thread	d	UNC	1/4-20	3/8-16	1/2-13	5/8-11	3/4-10
Nominal bit diameter	d _{bit}	in.	3/8	1/2	5/8	27/32	1
Nominal embedment Anchor length Hole depth	h _{nom} ℓ h _o	in. (mm)	1 (25)	1-9/16 (40)	2 (51)	2-9/16 (65)	3-3/16 (81)
Useable thread length	ℓ_{th}	in. (mm)	7/16 (11)	5/8 (15)	11/16 (17)	7/8 (22)	1-3/8 (34)
Installation torque	T _{inst}	ft-lb (Nm)	4 (5)	11 (15)	22 (30)	37 (50)	80 (109)
Minimum slab thickness	h	in. (mm)	3 (76)	3-1/8 (79)	4 (102)	5-1/8 (130)	6-3/8 (162)

¹ HDI+ and HDI-L+ are available in 1/4-, 3/8- and 1/2-in. The HDI is available in 5/8- and 3/4-in.

Combined shear and tension loading

$$\left(\frac{N_d}{N_{rec}}\right)^{5/3} + \left(\frac{V_d}{V_{rec}}\right)^{5/3} \le 1.0$$

Listings/Approvals

FM (Factory Mutual)

Pipe Hanger Components for Automatic Sprinkler Systems HDI+ 3/8, HDI-L+ 3/8, HDI+1/2, HDI-L+ 1/2, HDI 5/8 and HDI 3/4

UL LLC

UL 203 Pipe Hanger Equipment for Fire Protection Services HDI+ 3/8, HDI-L+ 3/8, HDI+1/2, HDI-L+ 1/2, HDI 5/8 and HDI 3/4

3.3.11 HDI, HDI-L, HDI+ and HDI-L+ Drop-in Anchor

Table 2 - Hilti HDI+, HDI-L+ and HDI carbon steel allowable loads in concrete (lb)1,2

	Nominal	$f'_{c} = 1$	2,000	$f_{c} =$	4,000	f' c =	6,000
Anchor type	anchor diameter in.	Tension	Shear	Tension	Shear	Tension	Shear
	1/4	500	450	570	625	790	700
HDI+	3/8	635	965	920	1,250	1,260	1,500
	1/2	945	1,500	1,605	1,940	1,950	2,500
HDI	5/8	1,875	2,500	2,920	3,250	3,715	3,750
וטח	3/4	2,500	3,875	4,065	5,000	5,565	5,500

Table 3 - Hilti HDI+, HDI-L+ and HDI carbon steel ultimate loads in concrete (lb)1

	Nominal	f'_c =	2,000	$f_{c}^{\dagger} = 1$	4,000	f'_c = (6,000
Anchor type	anchor diameter in.	Tension	Shear	Tension	Shear	Tension	Shear
	1/4	1,995	1,800	2,270	2,500	3,150	2,800
HDI+	3/8	2,540	3,850	3,685	5,000	5,035	6,000
	1/2	3,780	6,000	6,425	8,500	7,810	10,000
HDI	5/8	7,500	10,000	11,685	13,000	14,865	15,000
וטח	3/4	10,000	15,500	16,260	20,000	22,250	22,000

¹ The shear tests were conducted with SAE Grade 5 bolts with minimum yield strength of 85 ksi and minimum tension strength of 120 ksi. Shear testing for the 1/4-in. models were conducted with SAE Grade 8 bolts with minimum yield strength of 120 ksi and minimum tension strength of 150 ksi in 6,000 psi concrete. High-strength bolts were used to force concrete failure modes. When using steel bolts with a lower tensile strength, steel failure must be considered.

Table 4 - Hilti HDI+, HDI-L+ and HDI carbon steel allowable loads in lightweight concrete and lightweight concrete poured over metal deck (lb)^{1,2,3,4}

	Nominal		Lightweight concrete poured over metal deck					
Anchor	anchor diameter	Lightweigh	nt concrete	Uppe	r flute	Lowe	r flute	
type	in.	Tension	Shear	Tension	Shear	Tension	Shear	
	1/4	465	340	530	335	375	250	
HDI+	3/8	720	940	810	1,010	500	500	
	1/2	1,035	1,700	1,035	1,755	625	750	
HDI	5/8	1,465	2,835			875	875	
וטח	3/4	2,075	3,680			1,250	1,000	

¹ The shear tests were conducted with SAE Grade 5 bolts with minimum yield strength of 85 ksi and minimum tension strength of 120 ksi. Shear testing for the 1/4-in. models were conducted with SAE Grade 8 bolts with minimum yield strength of 120 ksi and minimum tension strength of 150 ksi in 6,000 psi concrete. High-strength bolts were used to force concrete failure modes. When using steel bolts with a lower tensile strength, steel failure must be considered.

Table 5 - Hilti HDI stainless steel allowable loads in concrete (lb)^{1,2,3}

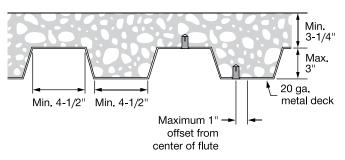

r				
Nominal	$f_{c}^{\dagger} = 1$	4,000	f' c =	6,000
anchor diameter				
in.	Tension	Shear	Tension	Shear
1/4	480	600	740	600
3/8	1,040	1,230	1,460	1,230
1/2	1,840	2,760	2,410	2,760
5/8	2,630	4,510	3,770	4,510
3/4	3,830	5,580	5,030	5,580

Table 6 - Hilti HDI stainless steel ultimate loads in concrete (lb)^{1,2}

Nominal	f'_c =	4,000	f' c =	6,000
anchor diameter in.	Tension	Shear	Tension	Shear
1/4	1,930	2,400	2,950	2,400
3/8	4,170	4,920	5,850	4,920
1/2	7,350	11,040	9,630	11,040
5/8	10,540	18,040	15,100	18,040
3/4	15,340	22,320	20,130	22,320

¹ Stainless steel models available in HDI version only.

Figure 1 - Installation of Hilti HDI drop-in anchor in the soffit of concrete over metal deck floor and roof assemblies W – deck

² Allowable loads calculated with a factor of safety of 4.

² Minimum compressive strength of structural lightweight concrete is 3,000 psi.

³ See figure 1 for typical details.

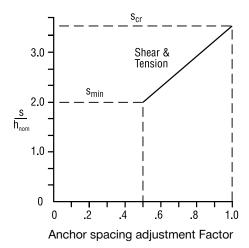
⁴ Allowable loads calculated with a factor of safety of 4.

² Shear testing conducted with 18-8 stainless steel bolts.

³ Allowable loads calculated with a factor of safety of 4.

3.3.11

HDI, HDI-L, HDI+ and HDI-L+ Drop-in Anchor 3.3.11

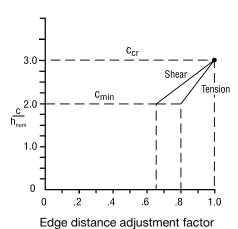

Anchor spacing and edge distance guidelines

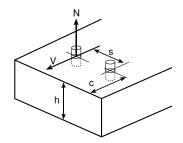
Anchor spacing adjustment factors

s = Actual Spacing

$$s_{min} = 2.0 h_{nom}$$

$$s_{cr} = 3.5 h_{nom}$$




Edge distance adjustment factors

c = Actual edge distance

$$c_{min} = 2.0 h_{nom}$$

$$c_{cr} = 3.0 h_{nom}$$

Influence of anchor spacing and edge distance $f_{\rm A}$ and $f_{\rm B}$

in. (mm) in. 1/4 (6.4) 1	(mm)
1/4 (6.4) 1	(0=)
	(25)
3/8 (9.5) 1-9/16	(40)
1/2 (12.7) 2	(51)
5/8 (15.8) 2-9/16	(65)
3/4 (19.1) 3-3/16	(81)

h_{nom} = nominal embedment depth

Table 7 - Load adjustment factors for Hilti HDI drop-in anchors in concrete

Load adjustment factors for anchor spacing $f_{_{\rm A}}$						Load adjustment factors for edge distance $f_{\scriptscriptstyle\mathrm{R}}$												
Tension/shear loads				Tension $f_{_{RN}}$					Shear $f_{\scriptscriptstyle{\mathrm{RV}}}$									
Spac	ing s		Ancl	hor dian	neter		Edge dis	stance c		Ancl	hor dian	neter			Ancl	hor dian	neter	
in.	(mm)	1/4	3/8	1/2	5/8	3/4	in.	(mm)	1/4	3/8	1/2	5/8	3/4	1/4	3/8	1/2	5/8	3/4
2	(51)	.50					2	(51)	.80					.65				
2-1/2	(64)	.67					2-1/2	(64)	.90					.83				
3	(76)	.83	.50				3	(76)	1.0	.80				1.0	.65			
3-1/2	(89)	1.0	.58				3-1/2	(89)		.85					.73			
4	(102)		.69	.50			4	(102)		.91	.80				.85	.65		
4-1/2	(114)		.79	.58			4-1/2	(114)		.98	.85				.96	.74		
5	(127)		.90	.67	.50		5	(127)		1.0	.90	.80			1.0	.83	.65	
5-1/2	(140)		1.0	.75	.55		5-1/2	(140)			.95	.83				.91	.70	
6	(152)			.83	.61	.50	6	(152)			1.0	.87				1.0	.77	
7	(178)			1.0	.74	.57	6-1/2	(165)				.91	.80				.84	.65
8	(203)				.87	.67	7	(178)				.95	.84				.91	.72
9	(229)				1.0	.77	8	(203)				1.0	.90				1.0	.83
10	(254)					.88	9	(229)					.96					.94
11	(279)					.98	10	(254)					1.0					1.0
12	(305)					1.0												
$s_{min} = 2.0 h_{nom}$ $s_{cr} = 3.5 h_{nom}$ $f_{A} = 0.33 \frac{s}{h_{nom}} - 0.17$				$c_{min} = 2.0 h_{nom}$ $c_{cr} = 3.0 h_{nom}$ $f_{RN} = 0.2 \frac{c}{h_{nom}} + 0.4$					$c_{min} = 2.0 h_{nom}$ $c_{cr} = 3.0 h_{nom}$ $f_{RV} = 0.35 \frac{c}{h_{nom}} - 0.05$									
				> s > s _m	n						> c > c _{min}	ı				orc _{cr} > c		

3.3.11 HDI, HDI-L, HDI+ and HDI-L+ Drop-in Anchor

3.3.11.4 Installation instructions

Manufacturer's Printed Installation Instructions (MPII) are included with each product package. They can also be viewed or downloaded at www.hilti.com. Because of the possibility of changes, always verify that downloaded MPII are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the MPII.

3.3.11.5 Ordering information¹

HDI+, HDI-L+ and HDI

Carbon steel

Description	Description	Anchor thread size	Qty / box
HDI+ 1/4	HDI-L+ 1/4	1/4	100
HDI+ 3/8	HDI-L+ 3/8	3/8	50
HDI+ 1/2	HDI-L+ 1/2	1/2	50
HDI 5/8	-	5/8	25
HDI 3/4	_	3/4	25

HDI-SS anchors

Stainless steel

Description	Anchor thread size	Qty / box
HDI 1/4 SS303	1/4	100
HDI 3/8 SS303	3/8	50
HDI 1/2 SS303	1/2	50
HDI 5/8 SS303	5/8	25
HDI 3/4 SS303	3/4	25

Setting tools for HDI and HDI-SS anchors

Description	Anchor thread size	
HST 5/8 Setting Tool	5/8	
HST 3/4 Setting Tool	3/4	

Setting Tools for HDI+ and HDI-L+

Anchor thread size	Description
	HST 1/4 Setting tool
1/4	HSD-MM 1/4 (TE-C-24D6 1/4 Setting tool)
	HDI+ Setting Tool includes a TE-CX 3/8x1 carbide bit
	HST 3/8 Setting tool
3/8	HSD-MM 3/8 (TE-C-24SD10 3/8 Setting tool)
	HDI+ Setting Tool includes a TE-CX 1/2x1-9/16 carbide bit
	HST 1/2 Setting tool
	, 0
1/2	HSD-MM 1/2 (TE-C-24SD12 1/2 Setting tool)
	HDI+ Setting Tool includes a TE-CX 5/8x2 carbide bit

1 All dimensions in inches

The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 19.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines.

US&CA: https://submittals.us.hilti.com/PTGVol2/

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST.

US: 877-749-6337 or HNATechnicalServices@hilti.com

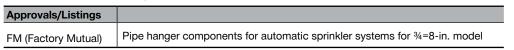
CA: 1-800-363-4458, ext. 6 or CATechnicalServices@hilti.com

3.3.14 HDI-P DROP-IN ANCHORS

PRODUCT DESCRIPTION

HDI-P Drop-in Anchors

Anchor System	Features and Benefits
HDI-P Drop-in Anchor	Optimized anchor length to allow reliable fastenings in hollow core panels, precast plank and post tensioned slabs
A ALBERTANA DE LA CONTRACTION	Shallow drilling enables fast installation
	Lip provides flush installation, consistent anchor depth and easy rod alignment
	HSD-G 3/8 setting tool with hand guard leaves mark on flange when anchor is set properly to enable inspection and verification of proper expansion



concrete

Fire sprinkler listings

MATERIAL SPECIFICATIONS

The HDI-P is manufactured from mild carbon steel, which is zinc plated for corrosion protection in accordance with ASTM B633, SC 1, Type III.

DESIGN DATA IN CONCRETE USING ALLOWABLE STRESS DESIGN

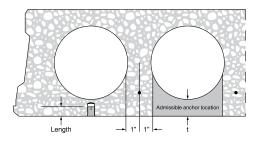
Technical data

Table 1 - Hilti HDI-P loads in normal-weight concrete and hollow core concrete panels

			Nom.			Ult	imate lo	ads, lb (l	kN)					Allo	wable lo	ads, lb (kN)³				
Nominal anchor	Length dia. in. (mm) in.		chor Length			f' c =	= 4,000	osi conc	rete		Hollow	core ^{1,2}		f'_c :	= 4,000	osi conc	rete		Hollow	core ^{1,2}	
diameter						Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	Sh	ear	Ten	sion	She	ear
1/4	5/8	(15.9)	3/8	1,430	(6.4)	1,870	(8.3)	1,550	(6.9)	2,275	(10.1)	285	(1.3)	375	(1.7)	310	(1.4)	455	(2.0)		
3/8	3/4	(19.1)	1/2	1,900	(8.5)	3,000	(13.3)	2,100	(9.3)	4,000	(17.8)	380	(1.7)	600	(2.7)	420	(1.9)	800	(3.6)		
1/2	1	(25.4)	5/8	3,000	(13.3)	6,075	(27.0)	3,110	(13.8)	5,495	(24.5)	600	(2.7)	1215	(5.4)	620	(2.8)	1,100	(4.9)		

- The Admissible Anchor Location must be established to prevent damage to the prestressed cable during the drilling process. Verify the location and height of the cable with the hollow core plank supplier to confirm Admissible Anchor Location.
- Minimum compressive strength of hollow core panels is 7,000 psi at the time of installation. The minimum thickness "t" is 1-3/8 inches.
- Allowable loads calculated with a 5:1 factor-of-safety.

INSTALLATION INSTRUCTIONS


Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.hilti.com (Canada). Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

ORDERING INFORMATION

HDI-P anchor

Description	Bit diameter	Qty / box
HDI-P 1/4	3/8	100
HDI-P 3/8	1/2	100
HDI-P 1/2	5/8	50

Figure 1 - Installation of Hilti **HDI-P** in hollow core concrete

Setting tools for HDI-P anchors

Description
HST-P 1/4 Hand Setting Tool
HST-P 3/8 Hand Setting Tool
HSD-G 3/8 Hand Setting Tool with hand guard
HST-P 1/2 Hand Setting Tool

INSTALLATION INSTRUCTIONS

Manufacturer's Printed Installation Instructions (MPII) are included with each product package. They can also be viewed or downloaded at www.hilti.com. Because of the possibility of changes, always verify that downloaded MPII are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the MPII.

ORDERING INFORMATION¹

HDI+, HDI-L+ and HDI

Carbon steel

Description	Description	Anchor thread size	Qty / box
HDI+ 1/4	HDI-L+ 1/4	1/4	100
HDI+ 3/8	HDI-L+ 3/8	3/8	50
HDI+ 1/2	HDI-L+ 1/2	1/2	50
HDI 5/8	-	5/8	25
HDI 3/4	-	3/4	25

HDI-SS anchors

Stainless steel

Description	Anchor thread size	Qty / box
HDI 1/4 SS303	1/4	100
HDI 3/8 SS303	3/8	50
HDI 1/2 SS303	1/2	50
HDI 5/8 SS303	5/8	25
HDI 3/4 SS303	3/4	25

Setting tools for HDI and HDI-SS anchors

Description	Anchor thread size	
HST 5/8 Setting Tool	5/8	
HST 3/4 Setting Tool	3/4	

Setting Tools for HDI+ and HDI-L+

Anchor thread size	Description
	HST 1/4 Setting tool
1/4	HSD-MM 1/4 (TE-C-24D6 1/4 Setting tool)
	HDI+ Setting Tool includes a TE-CX 3/8x1 carbide bit
	HST 3/8 Setting tool
3/8	HSD-MM 3/8 (TE-C-24SD10 3/8 Setting tool)
	HDI+ Setting Tool includes a TE-CX 1/2x1-9/16 carbide bit
	HST 1/2 Setting tool
1/2	HSD-MM 1/2 (TE-C-24SD12 1/2 Setting tool)
	HDI+ Setting Tool includes a TE-CX 5/8x2 carbide bit

¹ All dimensions in inches

SPLIT RING HANGERS

HINGED EXTENSION SPLIT CLAMP

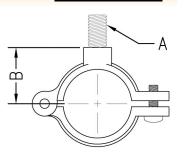
FIG. 508R

Function: Designed for non-insulated stationary pipe lines in either a horizontal or

vertical position. The hinged design allows for a quick installation.

Malleable iron **Material:**

Plain or electro-galvanized Finish:


Approvals: Complies with Federal Specification A-A-1192A (Type 12) and

Manufacturers' Standardization Society ANSI/MSS SP-58 (Type 12)

which supersedes ANSI/MSS SP-69.

Ordering: Specify figure number, pipe size, and finish.

Pipe Size		Bolt Thread	Wax. Rec. Load			c. Load	Wt. Each		
		Α			lbs.	kN	lbs.	kg	
3/8	(10)	3/8	13/16	(20.64)	180	(0.80)	.13	(.06)	
1/2	(15)	3/8	7/8	(22.23)	180	(0.80)	.14	(.06)	
3/4	(20)	3/8	1	(25.40)	180	(0.80)	.16	(.07)	
1	(25)	3/8	11/8	(28.58)	180	(0.80)	.18	(80.)	
11/4	(32)	3/8	1 ⁵ / ₁₆	(33.34)	180	(0.80)	.22	(.10)	
11/2	(40)	3/8	17/16	(36.51)	180	(0.80)	.38	(.17)	
2	(50)	3/8	111/16	(42.86)	180	(0.80)	.44	(.20)	
21/2	(65)	1/2	21/8	(53.98)	300	(1.33)	.45	(.20)	
3	(80)	1/2	2 ⁷ / ₁₆	(61.91)	300	(1.33)	.55	(.25)	
4	(100)	1/2	3	(76.20)	300	(1.33)	.95	(.43)	

BEAM CLAMPS

THREADED ACCESSORIES

CPVC STRAPS

CENTER LOAD BEAM CLAMPS

PIPE SHIELDS, INSULATION, & SADDLES

THREADED ACCESSORIES

FIG. 20 & 21

CONTINUOUS THREADED ROD

Iviateri. ROD SIZE

Function: Useful in applications where stud lengths cannot be predetermined.

Material: Carbon steel (Type 304 or 316 Stainless Steel upon request)

Plain (Fig. 20) or electro-galvanized Finish (Fig. 21) (Hot dipped

galvanized upon request)

Ordering: Specify figure number, rod size, length, material, and finish.

			Pa	ckaging				Max. Re	c. Load		Wt.	Per
Rod Size	Feet Per Bundle							(343°C)	750°F (399°C)		Foot	
OIZC	6ft.	(1.83)	10ft.	(3.05)	12ft.	(3.66)	lbs.	kN	lbs.	kN	lbs.	kg
1/4 -20	300	(91.44)	500	(152.4)	600	(182.88)	240	(1.07)	188	(0.84)	.12	(.05)
3/8-16	150	(45.72)	250	(76.2)	240	(73.15)	730	(3.25)	572	(2.54)	.29	(.13)
1/2-13	72	(21.95)	120	(36.58)	144	(43.90)	1350	(6.01)	1057	(4.70)	.54	(.25)
⁵ / ₈ -11	48	(14.63)	80	(24.38)	96	(29.26)	2160	(9.61)	1692	(7.52)	.83	(.38)
3/4 -10	30	(9.14)	50	(15.24)	60	(18.29)	3230	(14.37)	2530	(11.25)	1.25	(.57)
⁷ / ₈ -9	24	(7.32)	40	(12.19)	48	(14.63)	4480	(19.93)	3508	(15.61)	1.65	(.75)
1-8	12	(3.66)	20	(6.10)	24	(7.32)	5900	(26.24)	4620	(20.55)	2.25	(1.02)

THREADED ACCESSORIES

DOMESTIC BEAM CLAMP FIG. 350, 353, 354, 355, 356, & 357

Function: Designed for attaching hanger rod to the top flange of a beam or bar

joist, where the flange thickness does not exceed ³/₄" (19.05mm). The open U design permits rod adjustment. The universal design of the ³/₈" Fig. 353 allows it to be used in an inverted position on the bottom

flange of a beam as well.

Material: Malleable iron with hardened steel cup point set screw and locknut **Finish:** Plain or electro-galvanized (Hot dipped galvanized with electro-

galvanized hardware upon request)

Underwriters' Laboratories Listed in the U.S. (UL), Canada (CUL), for Approvals:

sizes $\frac{3}{8}$ " to $\frac{7}{8}$ " only. Factory Mutual Approved for rod sizes $\frac{3}{8}$ " and ¹/₂" only. Complies with Federal Specifications A-A-1192A (Type 19) and Manufacturers' Standardization Society ANSI/MSS SPSP-58

(Type 19) which supersedes ANSI/MSS SP-69. Fig. 353 sized for ³/₈" rod can be used in an inverted position (bottom of beam) and follows the same U.S. (UL), Canada (CUL), and Factory Mutual Approvals. Used in this manner the ³/₈" Fig. 353 also complies with Federal Specifications A-A-1192A (Type 23) and Manufacturers' Standardization Society ANSI/MSS SPSP-58 (Type 23) which supersedes ANSI/MSS SP-

69. (Approvals are only valid for beam clamps with locknut).

Buy American Act compliant.

Specify figure number, rod size, material, and finish. **Ordering:**

Thread Size NOTE: When a torque wrench is unavailable the setscrew should be tightened Rec. Torque

(19.05)

Set Screw Torque

in-lbs.

N-m

60

(6.8)

1/2

125

(14.1)

Nominal

Caution should be taken not to over tighten the set screw

				eiscrew snoui		ca
so it contac	ts the I-l	beam and t	hen an additi	$fonal^{1}/_{4} to^{1}/_{2}$	turn.	

Figure	Rod		В		С		D	E		E Max. Pipe Size					. Rec. oad	Wt. Each	
Numbers	Size A										•	lbs.	kN	lbs.	kg		
* 350	1/4	7/8	(22.23)	11/2	(38.10)	15/8	(41.28)	1/2	(12.70)	N/A	N/A	250	(1.11)	.34	(.15)		
Δ 353	3/8	7/8	(22.23)	11/2	(38.10)	15/8	(41.28)	1/2	(12.70)	4	(100)	400	(1.78)	.33	(.15)		
354	1/2	1	(25.40)	11/2	(38.10)	111/16	(42.86)	1/2	(12.70)	8	(200)	500	(2.22)	.34	(.15)		
355	5/8	11/16	(26.99)	11/2	(38.10)	17/8	(47.63)	5/8	(15.88)	8	(200)	600	(2.67)	.39	(.18)		
356	3/4	1 ⁵ / ₁₆	(33.34)	13/4	(44.45)	23/8	(60.33)	5/8	(15.88)	8	(200)	800	(3.56)	.63	(.29)		
357	7/8	15/ ₁₆	(33.34)	13/4	(44.45)	23/8	(60.33)	5/8	(15.88)	8	(200)	1200	(5.34)	.60	(.27)		

^{* &}lt;sup>1</sup>/₄" Fig. 350 Not UL or FM approved.

 $[\]Delta$ ³/₈" Fig. 353 Reversible design approved for bottom beam use.

THREADED ACCESSORIES

FIG. 141 & 141F

NFPA SWIVEL RING HANGER

Function: Designed for the suspension of non-insulated stationary pipe lines. The knurled

insert nut that allows a vertical adjustment after installation, is tapped to NFPA reduced rod size standards. Captured knurled insert nut present on pipe sizes $\frac{1}{2}$ " (15mm) to 2" (50mm). The capture is permanent in the bottom portion of the

band, allowing the hanger to be opened during installation if desired, but preventing the knurled insert nut from falling completely out. Fig. 141F has a layer

of felt which separates the pipe from the hanger to reduce vibration and sound.

Material: Carbon steel

Finish: Pre-galvanized (Fig. 141) or pre-galvanized with felt lining (Fig. 141F)

Approvals: Underwriters' Laboratories Listed in the U.S. (UL), Canada (CUL), for use with

standard steel pipe sizes $\frac{3}{4}$ " (20mm) to 8" (200mm) and CPVC pipe size $\frac{3}{4}$ " (20mm) to 4" (100mm). Factory Mutual Approved for steel pipe sizes \(^3\)/4" (20mm) to 8" (200mm). Complies with Federal Specifications A-A-1192A (Type 10), and

Manufacturers' Standardization Society ANSI/MSS SP-58 (Type 10) which

supersedes ANSI/MSS SP-69.

Specify figure number and pipe size. **Ordering:**

NOTE: If ordering Fig. 141F felt lined hangers for pipe sizes of $3^{1}/_{2}$ " (90mm) or under, order the next largest size to allow for the thickness of the felt lining. Metric knurl insert nuts available upon request.

Dine	Size	Rod		В		Adj.		D		E		ec. Load	Wt. Each	
Pipe	SIZE	Size		Ь		С		U				kN	lbs.	kg
1/2	(15)	3/8	17/8	(47.63)	17/16	(36.51)	23/4	(69.85)	31/16	(77.79)	300	(1.33)	.10	(.05)
3/4	(20)	3/8	111/16	(42.86)	11/8	(28.58)	21/2	(63.50)	31/16	(77.79)	300	(1.33)	.10	(.05)
1	(25)	3/8	15/8	(41.28)	1	(25.40)	21/2	(63.50)	33/16	(80.96)	300	(1.33)	.10	(.05)
11/4	(32)	3/8	115/16	(49.21)	11/16	(26.99)	213/16	(71.44)	39/16	(90.49)	300	(1.33)	.11	(.05)
11/2	(40)	3/8	21/8	(53.98)	11/16	(26.99)	31/8	(79.38)	37/8	(98.43)	300	(1.33)	.11	(.05)
2	(50)	3/8	27/16	(61.91)	11/8	(28.58)	35/16	(84.14)	43/8	(111.13)	300	(1.33)	.14	(.06)
21/2	(65)	3/8	31/16	(77.79)	15/8	(41.28)	315/16	(100.01)	53/8	(136.53)	525	(2.34)	.19	(.09)
3	(80)	3/8	311/16	(93.66)	17/8	(47.63)	49/16	(115.89)	65/16	(160.34)	525	(2.34)	.23	(.10)
31/2	(90)	3/8	33/4	(95.25)	17/8	(47.63)	45/8	(117.48)	65/8	(168.28)	525	(2.34)	.25	(.11)
4	(100)	3/8	43/16	(106.36)	17/8	(47.63)	51/16	(128.59)	7 ⁵ / ₁₆	(185.74)	650	(2.89)	.30	(.14)
5	(125)	1/2	4 ⁵ / ₈	(117.48)	1 ⁵ / ₈	(41.28)	55/8	(142.88)	83/8	(212.73)	1000	(4.45)	.50	(.23)
6	(150)	1/2	55/8	(142.88)	21/4	(57.15)	61/2	(165.10)	913/16	(249.24)	1000	(4.45)	.58	(.26)
8	(200)	1/2	6 ¹³ / ₁₆	(173.04)	27/16	(61.91)	715/16	(201.61)	121/4	(311.15)	1000	(4.45)	.90	(.41)

RISER CLAMP

Function: Designed for supporting and stabilizing vertical

pipe runs. The PVC coating on Fig. 553 protects the pipe from the metal surface of the clamp. This product is not intended for use with hanger rods. Clamp is designed for standard iron pipe

O.D. and must be considered when sizing other

types of piping.

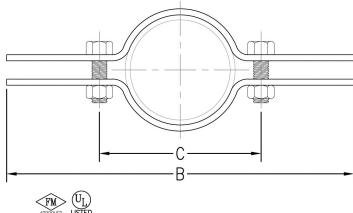
Carbon steel (Type 304 or 316 Stainless Steel **Material:**

upon request)

Finish: Plain (Fig. 550), electro-galvanized (Fig. 551),

or plain with PVC coating (Fig. 553), or (Hot dipped galvanized with electro-galvanized

hardware upon request)


Approvals: Underwriters' Laboratories Listed in the U.S.

(UL) and Factory Mutual Approved for sizes $^{3}/_{4}$ " (20mm) to 8" (200mm) only. Complies with Federal Specification A-A-1192A (Type 8) and Manufacturers' Standardization Society ANSI/ MSS SP-58 (Type 8) which supersedes ANSI/

MSS SP-69.

Ordering: Specify figure number, pipe size, material, and

finish.

Installation practice for Model 550 Riser Clamps:

When possible the clamp should be placed under a coupling, hub, or welded lugs on steel pipe. Bolt torques should be per industry standards.

_							May D	ec. Load	Wt. Each		
	ipe ize		В		С	Bolt Size	lbs.	kN	lbs.		
	-	9	(220 60)	01/ (63.50)		3/ v 11/				(49)	
1/2	(15)	-	(228.60)	21/2	(63.50)	3/8 x 1 ¹ / ₄	220	(0.98)	1.05	(.48)	
3/4	(20)	87/8	(225.43)	23/8	(60.33)	3/8 x 11/4	220	(0.98)	1.05	(.48)	
1	(25)	83/4	(222.25)	21/4	(57.15)	³ / ₈ x 1 ¹ / ₄	220	(0.98)	1.05	(.48)	
11/4	(32)	91/4	(234.95)	23/4	(69.85)	$^{3}/_{8} \times 1^{1}/_{4}$	250	(1.11)	1.10	(.50)	
11/2	(40)	10	(254.00)	31/2	(88.90)	3/8 x 11/4	250	(1.11)	1.17	(.53)	
2	(50)	101/4	(260.35)	33/4	(95.25)	3/8 x 11/4	300	(1.33)	1.20	(.54)	
21/2	(65)	11 ¹ / ₈	(282.58)	45/8	(117.48)	³ / ₈ x 1 ¹ / ₂	400	(1.78)	1.89	(.86)	
3	(80)	113/4	(298.45)	51/4	(133.35)	3/8 x 11/2	500	(2.22)	1.99	(.90)	
31/2	(90)	12 ¹ / ₂	(317.50)	6	(152.40)	³ / ₈ x 1 ¹ / ₂	600	(2.67)	2.17	(.98)	
4	(100)	13	(330.20)	61/2	(165.10)	1/2 x 1 ³ / ₄	750	(3.34)	2.21	(1.00)	
5	(125)	14 ¹ / ₄	(361.95)	73/4	(196.85)	¹ / ₂ x 1 ³ / ₄	1500	(6.67)	3.24	(1.47)	
6	(150)	15 ³ / ₈	(390.53)	87/8	(225.43)	1/2 x 1 ³ / ₄	1600	(7.12)	3.89	(1.76)	
8	(200)	18 ¹ / ₂	(469.90)	12	(304.80)	5/8 x 2	2500	(11.12)	7.60	(3.45)	
10	(250)	201/2	(520.70)	14	(355.60)	5/8 x 2	2500	(11.12)	11.10	(5.03)	
12	(300)	221/2	(571.50)	16	(406.40)	5/8 x 2 ¹ / ₂	2700	(12.01)	16.50	(7.48)	
14	(350)	251/8	(638.18)	185/8	(473.08)	5/8 x 3	2700	(12.01)	17.70	(8.03)	
16	(400)	26 ¹ / ₄	(666.75)	203/4	(527.05)	³ / ₄ x 3 ¹ / ₂	2900	(12.90)	30.40	(13.79)	
18	(450)	277/8	(708.03)	223/8	(568.33)	3/ ₄ x 3 ¹ / ₂	2900	(12.90)	33.30	(15.10)	
20	(500)	30	(762.00)	241/2	(622.30)	³ / ₄ x 3 ¹ / ₂	2900	(12.90)	36.30	(16.47)	
24	(600)	35	(889.00)	291/2	(749.30)	7/8 x 3 ¹ / ₂	2900	(12.90)	48.68	(22.08)	
30	(750)	423/8	(1076.33)	353/8	(898.52)	⁷ / ₈ x 3 ¹ / ₂	2900	(12.90)	60.16	(27.29)	

	Recommended Torque For Pipe Clamp Hardware												
Bolt Size	Bolt Size 1/4"-20 5/16"-18 3/8"-16 1/2"-13 5/8"-11 3/4"-10 & Larger												
ft-lbs.	6	11	19	50	65	75							
N-m (8) (15) (26) (68) (88) (102)													

Section 6 – Specialties

WATER MOTOR ALARMS

WARNING: Cancer and Reproductive Harm-

www.P65Warnings.ca.gov

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

1. DESCRIPTION

The Viking water motor alarm is a mechanical device actuated by a flow of water. It is designed to sound a continuous alarm while a sprinkler system operates. An alarm is a required component of every sprinkler system having more than 20 sprinklers.

A. Features

- 1. The water motor alarm is tapped 3/4" NPT on the inlet and 1" NPT on the drain outlet.
- 2. The water motor alarm package includes a drive shaft 16-3/4" (425 mm) long for walls 14" (356 mm) thick or less. A special extension shaft is available for walls up to 30-1/4" (768 mm) thick.
- 3. The package also includes the required 3/4" (20 mm) NPT strainer for installation on the alarm line.
- 4. Rated water working pressures: 300 PSI (20.7 bar)

B. Accessories: (order separately)

- 1. Extension Mounting Cup: Viking Part Number 05957B, Material: 14-Gauge Cold Rolled Steel, UNS-G10080, coated with black E-coat. The extension mounting cup is required when the wall thickness is less than 3" (76.2 mm). Refer to "INSTALLATION" instructions. See Figure 1.
- 2. Closure Plate: Viking Part Number 05820B, Material: 16-Gauge Galvanized Steel, UNS-G10080. The closure plate is required when the Water Motor Alarm gong is mounted on an irregularly surfaced wall. It serves to prevent birds from entering the inside of the gong. The closure plate also serves as a mounting plate for sheet metal walls. Refer to "INSTALLATION" instructions. See Figure 1.
- 3. Special Extension Shaft: Viking Part Number 03312B, Material: Stainless Steel, UNS-S30400. The extension shaft is required when the Water Motor Alarm is installed on walls from 14" (356 mm) to 30-1/4" (768 mm) thick.

2. LISTINGS AND APPROVALS

:(UL)us cULus Listed - VPLX

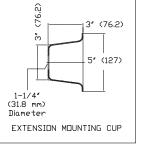
FM Approved - Water Motor Gongs

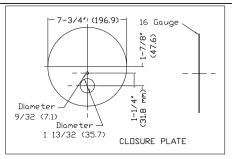
LPCB Approved

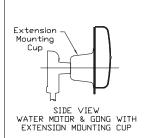
CE - Standard EN 12259-4, EC-certificate of conformity 1725-CPD-H0001 New York City Board of Standards and Appeals - Calendar No. 219-76-SA

3. TECHNICAL DATA

Specifications


Available since 1991


Shipping Weight: Model F-2: 11 lbs. (5.0 kg) Water working pressure: Rated to 300 psi (20.7 bar)


Material Standards (See Figure 3) Viking E-coat Spec: SPF02 W01

Ordering Information Viking Part No. 07862

(76.2) 3" (76.2) ň

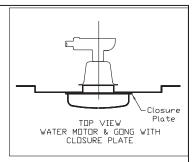
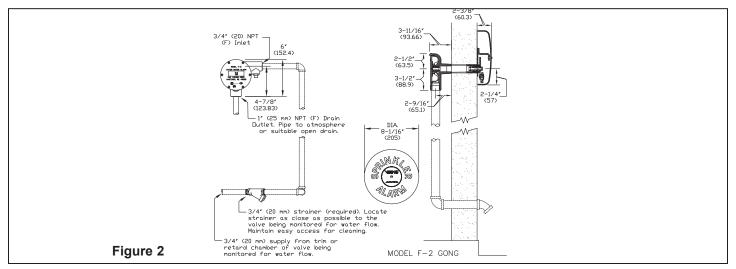


Figure 1: Accessories


WATER MOTOR ALARMS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

4. INSTALLATION

Locate the water motor on an exterior wall as close as practical to the valve being monitored for water flow. A 3/4" (20 mm) strainer (included) is required on the alarm line as close as possible to the alarm outlet of the valve being monitored for water flow (or outlet of the retard chamber, if used). The location must be easily accessible for cleaning.

- 1. Cut a 1-7/16" (36.5 mm) minimum to 1-5/8" (41.3 mm) maximum diameter hole in the building wall to accommodate the 3/4" (20 mm) galvanized spacer pipe. (Note: Spacer pipe is NOT included in Water Motor Alarm Package). The hole through the wall must be level or pitched slightly downward toward the water motor.
- 2. Measure the wall thickness.
- 3. Cut and thread the spacer pipe to a length equal to: The wall thickness minus 1" (25.4 mm). If the extension mounting cup is used, add an additional 3" (76 mm) to the spacer pipe.
- 4. Cut the drive shaft (10) to a length equal to: The total wall thickness plus 2-3/4" (70 mm). If extension mounting cup is used, add an additional 3" (76 mm).
- 5. File the drive shaft to provide a 3/32" (2.4 mm) x 450 chamfer on both corners of both ends. File off all burrs and insert the drive shaft into the hole of the striker arm shaft.
- 6. Slide the spacer pipe over the shaft and thread the end of the spacer pipe into the gong support assembly coupling (12).
- 7. Slide the closure plate (if used) over the free end of the spacer pipe, up to the back of the gong. If desired, the closure plate may be fastened to the gong support by using the 9/32" (7.14 mm) diameter hole in the gong support. Use only a flat or round headed fastener that will not interfere with striker arm movement.
- 8. Position the support assembly on the exterior wall surface by sliding the free threaded end of the spacer pipe into the hole from outside the building.
- 9. On the inside surface of the wall: Slide the wall plate provided (9), over the free threaded end of the spacer pipe. (If an extension mounting cup is used, place it over the end of the spacer pipe with the flared end toward the wall before sliding the wall plate into position).
- 10. Remove the plastic thread protectors from the threaded openings in the body of the water motor.
- 11. Attach the water motor assembly by threading the body (3) onto the free threaded end of the spacer pipe. The chamfered ends of the drive shaft allow it to slide into position as the water motor body is threaded onto the spacer pipe. When the assembly is properly tightened, the water motor should be positioned with the 1" (25 mm) NPT drain outlet facing downward and the 3/4" (20 mm) NPT alarm line inlet horizontal. See Figures 2 and 3.
- 12. Attach the gong, the flat washer, and the gong label (16, 17, and 18) to the gong support installed on the exterior surface of the wall, with the 5/16-18 x 12" (13 mm) screw (19). Note: The flat washer must be installed between the gong and the gong support (17).
- 13. With galvanized, brass, or other approved corrosion-resistant piping, not less than 3/4" (20 mm) diameter, connect the water motor inlet to the alarm outlet of the waterflow detecting device. A 3/4" (20 mm) strainer (included) is required on the alarm line as close as possible to the alarm outlet of the waterflow detecting device (or outlet of the retard chamber if used). The location must be easily accessible for cleaning.
- 14. The drain outlet of the impeller housing must discharge to an open drain. Care shall be taken to keep the drain line clean at all times.
- 15. A water motor drain line that:
 - a. Has too many fittings, and/or
 - b. Has a very short length of pipe between the 1" (25 mm) outlet and the first elbow in the water motor drain pipe, and/or
 - c. Is very long may result in slow drainage and reduced water motor speed. This condition can be remedied by increasing the drain pipe diameter, increasing the length of pipe to the first elbow, and/or pitching the pipe toward the discharge location.

WATER MOTOR ALARMS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

5. OPERATION (See Figure 3)

When a sprinkler system is activated, water flows from the alarm outlet of the valve, through the 3/4" (20 mm) strainer and alarm line piping, into the inlet of the water motor. From the 1/8" inlet orifice, the water flows through a nozzle (4), which restricts the flow into a pressurized stream directed onto the impeller (7). Force from the water stream turns the impeller and drive shaft (10), causing the striker arm (20) to rotate. The striker (25) impacts against the gong (16), producing a continuous alarm. A minimum of 5 PSI (.34 bar) is required at the nozzle to cause a continuous alarm. When properly installed, the Water Motor Alarm produces the required 90 decibel output. After passing through the water motor, the water is discharged through a 1" (25 mm) drain outlet in the bottom of the impeller housing. The discharged water must be piped through the wall to atmosphere or to a suitable open drain.

6. INSPECTIONS, TESTS AND MAINTENANCE

Weather-resistant materials are used in the construction of the water motor alarm. At regular intervals, examine and test the water motor to ensure that the nozzle and drain line are clean and free of obstruction, and that the alarm functions properly. Also, at regular intervals and before disassembly of the water motor, clean and inspect the alarm line strainer located at the alarm outlet of the water-flow detecting device, or the outlet of the retard chamber, if used. (Note: Some retard chambers may be equipped with a strainer built in). For minimum maintenance and inspection requirements, refer to NFPA 25. In addition, the Authority Having Jurisdiction may have additional maintenance, testing, and inspection requirements that must be followed. Before proceeding with disassembly of the water motor alarm, notify the Authority Having Jurisdiction and occupants of the area covered by the system affected. Take all appropriate precautions. The water motor alarm will be disabled during disassembly.

A. Water Motor Disassembly (See Figure 3)

- 1. Isolate the water motor alarm by closing the alarm line valve in the trim of the waterflow detecting device. (Refer to appropriate technical data for the system used.)
- 2. Remove pipe plug (5).
- 3. Remove all round head machine screws (1) from the water motor cover.
- 4. Separate the cover (2) and the gasket (6) from the housing (3).
- 5. Remove the impeller (7).
- 6. Inspect and, if necessary, carefully clean the nozzle (4) with a wire or pipe cleaner brush.
- 7. Flush the nozzle way and drain line with water or compressed air.

B. Water Motor Re-Assembly

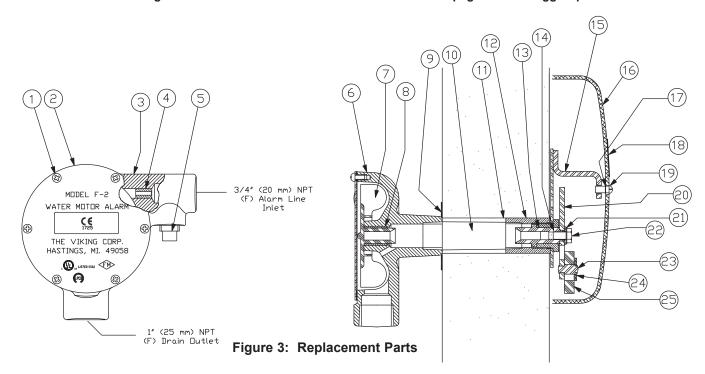
- 1. Re-install the pipe plug (5).
- 2. Re-install the impeller (7).
- 3. Replace cover gasket (6) and attach cover (2) by using round head machine screws (1).
- 4. Open the alarm line valve.
- 5. Test the water motor alarm.
- 6. When test is complete and water motor alarm operation is satisfactory, place the alarm line valve in the proper "alarm" position. Reset and return the affected systems to service.

7. AVAILABILITY

The Viking Water Motor Alarm is available through a network of domestic and international distributors. See the Viking Corp. Web site for closest distributor or contact The Viking Corporation.

8. GUARANTEES

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.



WATER MOTOR ALARMS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

ITEM NO.	PART NUMBER	DESCRIPTION	MATERIAL	NO. REQ'D
1	*	Screw, R. H. Self-tap #10-24 x 3/8" lg.	Zinc Plated Steel	6
2	07867	Cover	Steel	1
3	*	Housing	Cast Iron	1
4	*	Nozzle	Brass	1
5	01925S	1/2" Pipe Plug	Cast Iron	1
6	02550B	Cover Gasket	Cellulose/Nitrile/Glass Blend	1
7	02547C	Impeller	Delrin	1
8	*	Bearing	Brass: Sintered Bronze	1
9	05603A	Wall Plate	Galvanized Steel	1
10	05604B	Drive Shaft	Stainless Steel	1
11		3/4" Pipe (C.O.J.) not furnished	Galvanized Steel	1
12	*	Coupling	Brass	1
13	02556B	Striker Arm Shaft	Celcon Glass Filled	1
14	*	Bearing	Brass	1
15	*	Gong Support	Stainless Steel	1
16	05821C	Gong	Aluminum	1
17	02766A	Flat Washer, 11/32" ID x 11/16" ID x 1/16"	Stainless Steel	1
18	05768A	Gong Label	Aluminum (F-2)	1
19		Screw, B.H. Slotted, 5/16-18 x 1/2" lg.	Stainless Steel	1
20	*	Striker Arm	Stainless Steel	1
21		Flat Washer, 11/32" ID x 11/16" OD x 1/16"	Stainless Steel	1
22		Screw, H.H. Self-tap 5/16-18 x 1/2" lg.	Zinc Plated Steel	1
23	*	Striker Pin	Stainless Steel	1
24	*	Striker Arm Washer	Stainless Steel	1
25	*	Striker	Canvas Phenolic	1
	placement part			
*Indicates re	placement part	only available in a Sub-Assembly listed below		
		SUB-ASSEMBLI	ES	
1-8	07863	Motor Assembly		
20, 23-25	02558B	Striker Arm Assembly		
12-15, 20-25	05606C	Support Assembly		

High-performance intumescent firestop sealant FS-ONE MAX

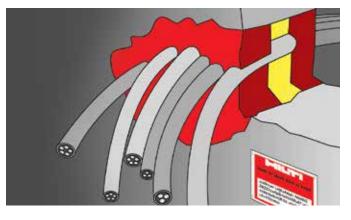
Applications

- For effectively sealing most common through penetrations in a variety of base materials
- For use on concrete, masonry and drywall
- Mixed and multiple penetrations
- Metal pipe penetrations: copper, steel and EMT
- Insulated metal pipe penetrations: steel and copper
- Plastic pipe penetrations: closed or vented

Advantages

- US-produced: "Buy American" compliant
- One product for a variety of common through penetrations
- Cost-effective, easy-to-use solution
- Water-based and paintable
- Industry-leading VOC results
- Ethylene glycol-free





Mold and mildew

Technical data	
Chemical basis	Water-based acrylic dispersion
Approx. Density	84.3 lb/ft ³
Color	Red
Application temperature range	41 - 104 °F
Approx. cure time¹)	4 mm/3 days
Temperature resistance range	-4 to 212 °F
Mold and mildew performance	Class 0 (ASTM G21-96)
Mold and mildew resistance	Yes
Surface burning characteristics UL 723 (ASTM E84)	Flame spread: 0 Smoke development: 10
Tested in accordance with	UL 1479, ASTM E814, ASTM E84, CAN/ ULC-S115, ASTM G21, ASTM E90
California State fire marshal approval	CSFM Listing 4485-1200:0108 for FS-ONE MAX Intumescent Firestop Sealant
Expansion ratio (unrestricted, up to)	1:5

¹⁾ at 75°F/24°C, 50% relative humidity

Order Designation	Package Content	Item number
FS-ONE MAX 20oz foil (3 case + disp)	1x Foil pack dispenser manual CS 270-P1, 75x Firestop sealant FS-ONE MAX 20 oz foil	3530252
FS-ONE MAX 10oz tube (1 case)	12x Firestop sealant FS-ONE MAX 10 oz cartridge	3530249
FS-ONE MAX 5 gallon (18 pails)	18x Firestop sealant FS-ONE MAX 5 gallon pail	3530263
FS-ONE MAX 20oz foil (1 case)	25x Firestop sealant FS-ONE MAX 20 oz foil	3530250
FS-ONE MAX 20oz foil (3 cases)	75x Firestop sealant FS-ONE MAX 20 oz foil	3530251
FS-ONE MAX 20oz Foil-Pallet	600x FSONE-MAX 20 oz foil, 290x Bulk Shipping Condition	3534713
FS-ONE MAX 10 oz cartridge		2101531
FS-ONE MAX 5 gallon pail		2101533

Section 7 – Hydraulic Calculations

Associated Fire Protection PO Box 28022 Raleigh, NC 27611 919-553-4021

Job Name : CAPE FEAR MOB

Drawing : FP-4

Location : 225 BRIGHTWATER DRIVE

Remote Area : 1

Contract : EDW-1588

Data File : RA#1 - 3RD FLOOR SHELL.WXF

Page 1 Date 11.20.23

HYDRAULIC CALCULATIONS for

JOB NAME CAPE FEAR MOB Location 225 BRIGHTWATER DRIVE

Drawing # FP-4 **Contract #** EDW-1588

Date 11.20.23

DESIGN

Remote area # 1

Remote area location 3RD FLOOR SHELL **Occupancy classification** LIGHT HAZARD

Density .10 - Gpm/SqFt

Area of application 1513 - SqFt

Coverage/sprinkler 225 MAX - SqFt

Type of sprinkler calculated SSQRU

Sprinklers calculated 12

Sprinklers calculated 12 In-rack demand N/A - GPM Hose streams 100 - GPM

Total water required (including hose streams) 384.02 - GPM @ 100.083 - Psi

Type of system WET

Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date 9.6.23

Location BRIGHTWATER DRIVE

Source of info HYDRANT

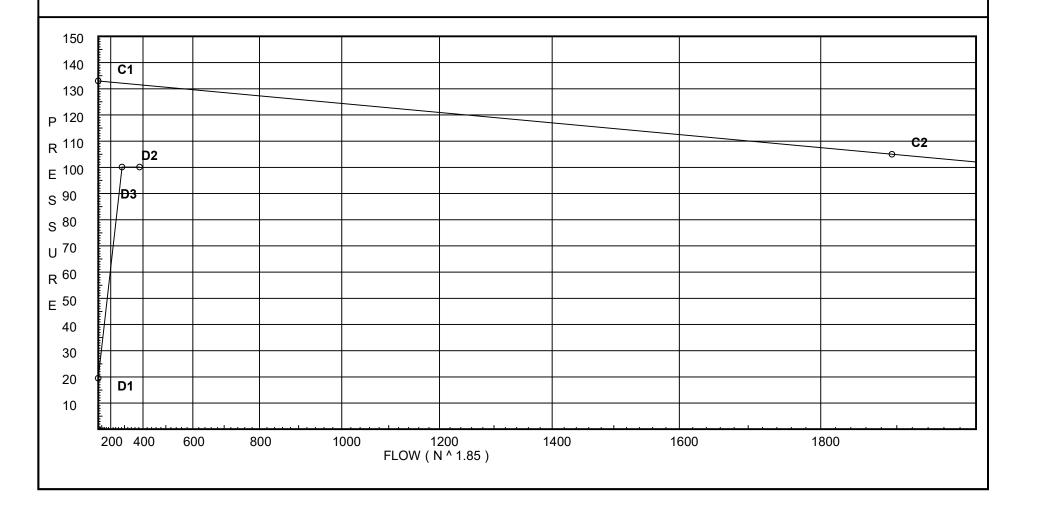
CONTRACTOR INFO Associated Fire Protection

Address PO Box 28022 / Raleigh, NC 27611 **Phone #** 919-553-4021

Name of designer WLH

Authority having jurisdiction TOWN OF LILLINGTON

NOTES:


text1(35) - invisible

Page 2

Date 11.20.23

City Water Supply: C1 - Static Pressure : 133 C2 - Residual Pressure: 105 C2 - Residual Flow : 1894 Demand:

D1 - Elevation : 19.490 D2 - System Flow : 284.02 D2 - System Pressure : 100.083 Hose (Demand) : 100 D3 - System Demand : 384.02 Safety Margin : 31.455

Fittings Used Summary

Associated Fire Protection	
CAPE FEAR MOB	

CAPE	FEAR MOB																	Da	ate 1	11.20.2	3
Fitting L	egend Name	1/2	3/4	1	11/4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
7.00.000		,,,		<u> </u>	.,,	.,,_					· ·										
Avc	Alarm Vic 751	0	0	0	0	3	9	8	17	0	21	0	22	50	0	0	0	0	0	0	0
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
Е	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
Fsp	Flow Switch Potter VSR	Fittir	ng gener	ates a F	ixed Los	s Based	d on Flo	W													
G '	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Page 3

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute
Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page Date 4

11.20.23

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	133.0	105	1894.0	131.538	384.02	100.083

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
H1	45.0	5.6	16.84	22.98	0.1 225
H2	45.0	5.6	16.24	22.57	0.1 225
H3	45.0	5.6	16.14	22.5	0.1 225
H4	45.0	5.6	16.22	22.55	0.1 225
H5	45.0	5.6	16.88	23.01	0.1 225
H6	45.0	5.6	16.92	23.03	0.1 225
H7	45.0	5.6	16.31	22.62	0.1 225
H8	45.0	5.6	16.22	22.55	0.1 225
H9	45.0	5.6	16.3	22.61	0.1 225
H10	45.0	5.6	16.96	23.06	0.1 225
H11	45.0	5.6	25.54	28.3	0.1 225
H12	45.0	5.6	25.44	28.24	0.1 225
M1	44.833		36.64		
1	44.833		17.95		
2	44.833		17.31		
3 4	44.833		17.21		
	44.833		17.3		
5 M2	44.833		17.99		
	44.833		36.78		
6	44.833		18.03		
7 8	44.833 44.833		17.39 17.29		
9	44.833		17.38		
10	44.833		18.08		
M3	44.833		37.3		
11	44.833		27.13		
12	44.833		27.13		
M4	44.833		38.23		
M5	44.833		39.46		
M6	44.833		46.04		
M7	44.833		47.07		
F1	44.833		27.76		
F2	44.833		27.89		
F3	44.833		28.38		
F4	44.833		29.01		
F5	44.833		29.44		
F6	44.833		29.68		
S1	44.833		56.36		
S2	12.167		71.38		
TOR	12.167		73.72		
BOR	1.0		83.12		
FLG	1.0		83.17		

Page Date

5 11.20.23

NODE	ANALYSIS	(cont)
NODL	AINAL I SIS	

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
HOSE	-3.0		85.33	100.0	
UG1	0.0		86.52		
BFP	-3.0		101.18		
TEST	0.0		100.08		

Page 6 Date 11.20.23

Node1 Elev1 Κ Qa Fitting Pipe **CFact** Pt Nom Pe to or **Ftngs** Notes Node2 Elev2 Fact Qt Act Eqiv Total Pf/Ft Pf Len H1 45 5.60 22.98 1 Τ 5.0 1.167 120 16.840 5.000 0.072 to 22.98 6.167 1.038 44.833 1.049 0.1683 Vel = 8.531 0.0 1 22.98 17.950 K Factor = 5.42Т H2 22.57 1 5.0 120 16.238 45 5.60 1.167 to 5.000 0.072 6.167 1.003 2 44.833 22.57 1.049 0.1626 Vel = 8.380.0 2 22.57 17.313 K Factor = 5.42H3 45 5.60 22.50 1 Т 5.0 1.167 120 16.143 5.000 0.072 to 3 44.833 22.5 1.049 6.167 0.1618 0.998 Vel = 8.350.0 3 22.50 17.213 K Factor = 5.42H4 45 5.60 22.55 1 Τ 5.0 1.167 120 16.221 to 5.000 0.072 4 44.833 22.55 1.049 6.167 0.1626 1.003 Vel = 8.37 0.0 4 22.55 17.296 K Factor = 5.42H5 45 5.60 23.01 1 Τ 5.0 1.167 120 16.879 5.000 0.072 to 5 44.833 23.01 1.049 6.167 0.1688 1.041 Vel = 8.540.0 17.992 5 23.01 K Factor = 5.42Т H6 45 5.60 23.03 1 5.0 1.167 120 16.916 5.000 0.072 to 6.167 6 44.833 23.03 1.049 0.1691 1.043 Vel = 8.550.0 6 23.03 18.031 K Factor = 5.42H7 22.62 Τ 5.0 16.312 45 5.60 1 1.167 120 5.000 to 0.072 6.167 7 44.833 22.62 1.049 0.1635 1.008 Vel = 8.400.0 7 22.62 17.392 K Factor = 5.42Τ **H8** 45 5.60 22.55 1 5.0 1.167 120 16.218 5.000 0.072 to 44.833 22.55 1.049 6.167 0.1625 8 1.002 Vel = 8.370.0 17.292 8 22.55 K Factor = 5.425.60 1 Τ 5.0 16.296 H9 45 22.61 1.167 120 5.000 0.072 to 44.833 22.61 1.049 6.167 0.1633 1.007 9 Vel = 8.390.0 9 22.61 17.375 K Factor = 5.42H10 45 5.60 23.06 1 Т 5.0 1.167 120 16.958 5.000 0.072 to 10 44.833 23.06 1.049 6.167 0.1695 1.045 Vel = 8.56

Page 7 Date 11.20.23

57 (I E I E	AK WOE	,								Date	11.20	.23
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	******	Notes	****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
			0.0									
10			23.06						18.075	K Factor =	5.42	
H11	45	5.60	28.30	1	Т	5.0	1.167	120	25.537			
to 11	44.833		28.3	1.049			5.000 6.167	0.2474	0.072 1.526	Vel = 10.51		
11	44.033		0.0	1.049			0.107	0.2474	1.320	Vei = 10.51		
11			28.30						27.135	K Factor =	5.43	
H12	45	5.60	28.24	1	Т	5.0	1.167	120	25.437			
to 12	44.833		28.24	1.049			5.000 6.167	0.2465	0.072 1.520	Vel = 10.48		
· -			0.0				0.107	3.2 100		10.10		
12			28.24						27.029	K Factor =	5.43	
M1	44.833		-57.65	1.25	Т	7.432	88.000 7.432	120	36.643 0.0			
to 1	44.833		-57.65	1.442			95.432	-0.1959	-18.693	Vel = 11.33		
1	44.833		22.98	1.25			8.333	120	17.950			
to	44.833		-34.67	1.442			8.333	-0.0764	0.0 -0.637	Vel = 6.81		
2	44.833		22.57	1.442			9.167	120	17.313	Vei - 0.61		
to									0.0			
3	44.833		-12.1	1.442			9.167	-0.0109	-0.100	Vel = 2.38		
3 to	44.833		22.50	1.25			10.000	120	17.213 0.0			
4	44.833		10.4	1.442			10.000	0.0083	0.083	Vel = 2.04		
4	44.833		22.55	1.25			10.000	120	17.296			
to 5	44.833		32.95	1.442			10.000	0.0696	0.0 0.696	Vel = 6.47		
5	44.833		23.01	1.25	T	7.432	45.250	120	17.992			
to							7.432		0.0	V/ 1 (2.25		
F1	44.833		55.96	1.442			52.682	0.1854	9.765	Vel = 10.99		
F1			0.0 55.96						27.757	K Factor = 1	0.62	
M2	44.833		-57.75	1.25	Т	7.432	88.000	120	36.785			
to	44 000		67 7E	1 110			7.432	0.4065	0.0	Vol = 44.05		
6	44.833 44.833		-57.75 23.03	1.442 1.25			95.432 8.333	-0.1965 120	-18.754 18.031	Vel = 11.35		
to								120	0.0			
7	44.833		-34.72	1.442			8.333	-0.0767	-0.639	Vel = 6.82		
7 to	44.833		22.62	1.25			9.167	120	17.392 0.0			
8	44.833		-12.1	1.442			9.167	-0.0109	-0.100	Vel = 2.38		
8 to	44.833		22.55	1.25			10.000	120	17.292 0.0			
9	44.833		10.45	1.442			10.000	0.0083	0.083	Vel = 2.05		
9	44.833		22.61	1.25			10.000	120	17.375			
to 10	44.833		33.06	1.442			10.000	0.0700	0.0 0.700	Vel = 6.49		

Page 8 Date 11.20.23

CAPE FE	EAR MUE	3								Date 11.20	.23
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	Notes	
10	44.833		23.06	1.25	Т	7.432	45.250	120	18.075		
to						1.432	7.432		0.0		
F2	44.833		56.12 0.0	1.442			52.682	0.1863	9.817	Vel = 11.02	
F2			56.12						27.892	K Factor = 10.63	
M3 to	44.833		-41.47	1.25	Т	7.432	88.000 7.432	120	37.298 0.0		
11	44.833		-41.47	1.442			95.432	-0.1065	-10.163	Vel = 8.15	
11 to	44.833		28.30	1.25			8.333	120	27.135 0.0		
12	44.833		-13.17	1.442			8.333	-0.0127	-0.106	Vel = 2.59	
12 to	44.833		28.24	1.25	T	7.432	75.000 7.432	120	27.029 0.0		
F3	44.833		15.07	1.442			82.432	0.0164	1.349	Vel = 2.96	
F3			0.0 15.07						28.378	K Factor = 2.83	
M4	44.833		-23.92	1.25	2T	14.864	195.000	120	38.226	N 1 actor = 2.00	
to F4	44.833		-23.92	1.442	8E	29.728	44.592 239.592	-0.0385	0.0 -9.219	Vel = 4.70	
F4			0.0 -23.92						29.007	K Factor = -4.44	
M5	44.833		-28.71	1.25	2T	14.864	170.833 14.864	120	39.460 0.0		
to F5	44.833		-28.71	1.442			185.697	-0.0539	-10.015	Vel = 5.64	
F5			0.0 -28.71						29.445	K Factor = -5.29	
M6 to	44.833		-35.93	1.25	2T 2E	14.864 7.432	178.000 22.296	120	46.036 0.0		
F6	44.833		-35.93	1.442	2 L	1.432	200.296	-0.0817		Vel = 7.06	
FC			0.0						20.000	V Fastar - 0.00	
F6 M7	44.833		-35.93 -38.59	1.25	2T	14.864	171.000	120	29.680 47.072	K Factor = -6.60	
to						14.004	14.864		19.417		
F7	0		-38.59 0.0	1.442			185.864	-0.0932	-17.323	Vel = 7.58	
F7			-38.59						49.166	K Factor = -5.50	
M1	44.833		57.65	2.5			13.667	120	36.643		
to M2	44.833		57.65	2.635			13.667	0.0104	0.0 0.142	Vel = 3.39	
M2 to	44.833		57.75	2.5			13.667	120	36.785 0.0		
M3	44.833		115.4	2.635			13.667	0.0375	0.513	Vel = 6.79	
M3 to	44.833		41.47	2.5			14.000	120	37.298 0.0		
M4	44.833		156.87	2.635			14.000	0.0663	0.928	Vel = 9.23	
M4 to	44.833		23.92	2.5			14.333	120	38.226 0.0		
M5	44.833		180.79	2.635			14.333	0.0861	1.234	Vel = 10.64	

Page 9 Date 11.20.23

APEFE	AK WU)								Date	11.20	.23
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
-	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		Notes	
M5 o	44.833		28.71	2.5	4E	32.948	25.167 32.948	120	39.460 0.0			
M6	44.833		209.5	2.635			58.115	0.1132	6.576	Vel = 12.33	3	
M6 o	44.833		35.93	2.5			6.833	120	46.036 0.0			
M7	44.833		245.43	2.635			6.833	0.1516	1.036	Vel = 14.4	4	
M7 o	44.833		38.59	2.5	E T	8.237 16.474	8.500 38.268	120	47.072 0.0			
S1	44.833		284.02	2.635	Eql	13.557	46.768	0.1987	9.292	Vel = 16.7	1	
S1			0.0 284.02						56.364	K Factor =	37.83	
F1 o	44.833		55.96	2.5			13.667	120	27.757 0.0			
F2	44.833		55.96	2.635			13.667	0.0099	0.135	Vel = 3.29	1	
F2 o	44.833		56.12	2.5			13.667	120	27.892 0.0			
F3	44.833		112.08	2.635			13.667	0.0356	0.486	Vel = 6.59	1	
F3 o	44.833		15.07	2.5			14.000	120	28.378 0.0			
F4	44.833		127.15	2.635			14.000	0.0449	0.629	Vel = 7.48	<u> </u>	
F4 o	44.833		-23.92	2.5			14.333	120	29.007 0.0			
F5	44.833		103.23	2.635			14.333	0.0306	0.438	Vel = 6.07		
F5 o	44.833		-28.71	2.5			14.083	120	29.445 0.0			
F6	44.833		74.52	2.635			14.083	0.0167	0.235	Vel = 4.38	<u> </u>	
F6 o	44.833		-35.93	2.5			13.833	120	29.680 19.417			
F7	0		38.59	2.635			13.833	0.0050	0.069	Vel = 2.27	,	
F7			0.0 38.59						49.166	K Factor =	5.50	
S1	44.833		284.02	4	Е	13.167	32.333	120	56.364			
0	10 10-7		004.00	4.00			13.167	0.0404	14.148	\/al = 0.00		
S2 S2	12.167 12.167		284.02 0.0	4.26	3E	39.501	45.500 82.667	0.0191 120	0.871 71.383	Vel = 6.39	1	
0	12.107		0.0	4	3E	39.301	39.501	120	0.0			
TOR	12.167		284.02	4.26			122.168	0.0191	2.339	Vel = 6.39	<u> </u>	
TOR			0.0 284.02						73.722	K Factor =	33.08	
TOR o	12.167		284.02	4	T Fsp	26.334 0.0	11.500 69.785	120	73.722 7.836	* * Fixed Lo	oss = 3	
BOR	1		284.02	4.26	Avc B	27.651 15.8	81.285	0.0192	1.557	Vel = 6.39		
BOR o	1		0.0	6	Е	17.603	3.000 17.603	120	83.115 0.0			
FLG	1		284.02	6.357			20.603	0.0027	0.056	Vel = 2.87	,	
FLG o	1		0.0	6	E 2F	20.084 20.084	94.000 86.074	140	83.171 1.732	-		
	-3		284.02	6.16	S	45.906	180.074	0.0024	0.431	Vel = 3.06	į	

Final Calculations: Hazen-Williams

Associated Fire Protection CAPE FEAR MOB

Page 10 Date 11.20.23

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total Pf/Ft		Pf			
HOSE	-3	H100	100.00	6	2E	40.168	546.000	140	85.334			
to					F	10.042	50.210		-1.299			
UG1	0		384.02	6.16			596.210	0.0042	2.488	Vel = 4.1	13	
UG1	0		0.0	6	4E	80.336	5.000	140	86.523			
to							80.336		14.299	* * Fixed I	Loss = 13	1
BFP	-3		384.02	6.16			85.336	0.0042	0.357	Vel = 4.1	13	
BFP	-3		0.0	8	2G	12.652	108.000	140	101.179			
to					2F	28.468	96.474		-1.299			
TEST	0		384.02	8.27	T	55.354	204.474	0.0010	0.203	Vel = 2.2	29	
			0.0									
TEST			384.02						100.083	K Factor :	= 38.39	

Associated Fire Protection PO Box 28022 Raleigh, NC 27611 919-553-4021

Job Name : CAPE FEAR MOB TI - 2ND FLOOR GRID

Drawing : FP-3

Location : 225 BRIGHTWATER DRIVE

Remote Area : 2

Contract : EDW-1588

Data File : RA#2 - 2ND FLOOR GRID.WXF

Page 1

Date 23.11.20

HYDRAULIC CALCULATIONS for

JOB NAME CAPE FEAR MOB TI - PRE-ACTION

Location 225 BRIGHTWATER DRIVE

Drawing # FP-3 Contract # EDW-1588

Date 23.11.20

DESIGN

Remote area # 2

Remote area location 2ND FLOOR GRID **Occupancy classification** LIGHT HAZARD

Density .10 - Gpm/SqFt

Area of application 1048 - SqFt

Coverage/sprinkler 225 MAX - SqFt

Type of sprinkler calculated SSQRRP

Sprinklers calculated 13

In-rack demand N/A - GPM

Hose streams 100 - GPM

Total water required (including hose streams) 402.836 - GPM @ 108.278 - Psi

Type of system WET

Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date 9.06.23

Location 215 BRIGHTWATER DRIVE

Source of info HYDRANT

CONTRACTOR INFO Associated Fire Protection

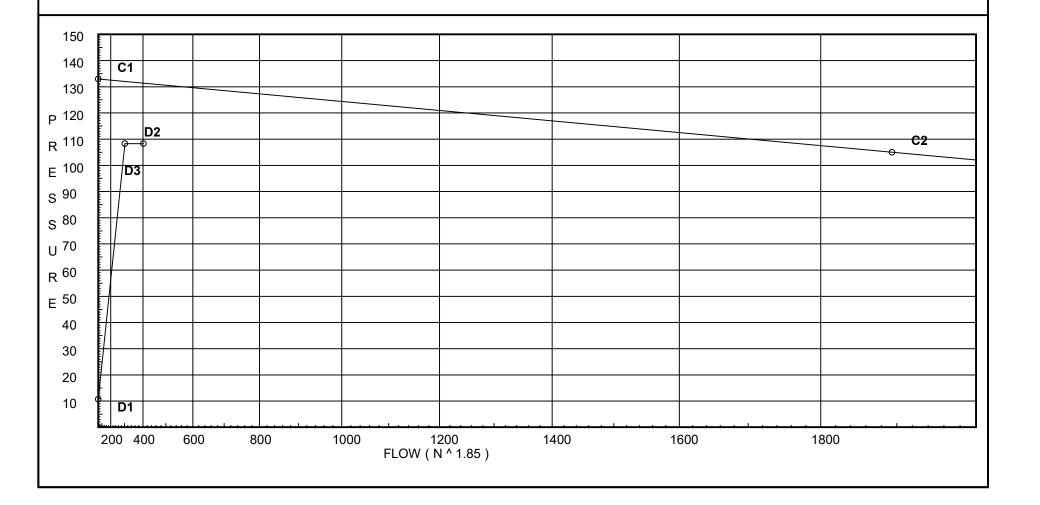
Address PO Box 28022 / Raleigh, NC 27611

Phone # 919-553-4021

Name of designer WLH

Authority having jurisdiction HARNETT COUNTY

NOTES:


text1(35) - invisible

Page 2

Date 23.11.20

City Water Supply: C1 - Static Pressure : 133 C2 - Residual Pressure: 105 C2 - Residual Flow : 1894 Demand:

D1 - Elevation : 10.683 D2 - System Flow : 302.836 D2 - System Pressure : 108.278 Hose (Demand) : 100 D3 - System Demand : 402.836 Safety Margin : 23.124

Fittings Used Summary

Associated Fire Protection

	FEAR MOB TI - 2ND FLOOF	R GRID)																9	23.11.20	0
Fitting Legend Abbrev. Name 1/2 3/4 1 11/4 11/2 2 21/2 3 31/2 4 5 6 8 10 12 14 16											40	20	24								
Abbrev.	Name	1/2	3/4	1	11/4	1½		2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
Avc	Alarm Vic 751	0	0	0	0	3	9	8	17	0	21	0	22	50	0	0	0	0	0	0	0
В	NFPA 13 Butterfly Valve	Ö	Ö	Ö	Ö	Ö	6	7	10	Ö	12	9	10	12	19	21	Ö	Ö	Ö	Ö	Ö
Е	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
Fsp	Flow Switch Potter VSR	Fittir	ng genei	rates a F	ixed Los	s Based	d on Flo	W													
G ·	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
Т	NEPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Page 3

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute
Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page Date 4

23.11.20

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	133.0	105	1894.0	131.402	402.84	108.278

NODE ANALYSIS

H21 H22 H23	24.667 24.667 24.667	5.6				Votes	
			16.35	22.64	0.1	225	
H23	24 667	5.6	16.16	22.51	0.1	225	
		5.6	16.14	22.5	0.1	225	
H24	24.667	5.6	16.24	22.57	0.1	225	
H25	24.667	5.6	16.74	22.91	0.1	225	
H26	24.667	5.6	20.28	25.22	0.1	225	
H27	24.667	5.6	20.22	25.18	0.1	225	
H28	24.667	5.6	20.32	25.24	0.1	225	
H29	23.667	5.6	16.68	22.87	0.1	225	
H30	23.667	5.6	16.42	22.69	0.1	225	
H31	23.667	5.6	16.41	22.69	0.15	130	
H32	23.667	5.6	16.5	22.75	0.1	225	
H33	23.667	5.6	16.96	23.06	0.1	225	
M21	25.333		45.59				
21	25.333		29.97				
22	25.333		29.63				
23	25.333		29.61				
24	25.333		29.78				
25	25.333		30.67				
M22	25.333		45.64				
26	25.333		36.98				
27	25.333		36.86				
28	25.333		37.04				
M23	25.333		45.82				
29	25.333		30.14				
30	25.333		29.68				
31	25.333		29.66				
32	25.333		29.82				
33	25.333		30.64				
M24	25.333		46.24				
M25	25.333		46.87				
M25A	25.333		47.4				
B1	25.333		45.33				
B2	25.333		44.64				
M26	25.333		48.4				
M27	25.333		49.12				
M28	25.333		53.12				
M29	25.333		56.81				
M30	25.333		58.19				
F21	25.333		42.3				
F22	25.333		42.38				
F23	25.333		42.63				

Associated Fire Protection CAPE FEAR MOB TI - 2ND FLOOR GRID Page Date

5 23.11.20

NODE ANALYSIS (cont.)

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
F24	25.333		43.21		
F25	25.333		43.83		
F25A	25.333		44.13		
F26	25.333		44.68		
F27	25.333		44.92		
F28	25.333		45.25		
F29	25.333		45.33		
ZCA	25.333		72.77		
S2	12.167		78.74		
TOR	12.167		81.38		
BOR	1.0		90.97		
FLG	1.0		91.03		
HOSE	-3.0		93.25	100.0	
UG1	0.0		94.67		
BFP	-3.0		109.36		
TEST	0.0		108.28		

Final Calculations: Hazen-Williams

Associated Fire Protection
CAPE FEAR MOB TI - 2ND FLOOR GRID

Page 6 Date 23.11.20

Node1 Elev1 Κ Qa Fitting Pipe **CFact** Pt Nom Pe to or **Ftngs** Notes Node2 Elev2 Fact Qt Act Eqiv Total Pf/Ft Pf Len H21 24.667 5.60 22.64 1 2E 4.0 76.000 120 16.347 Т 5.0 9.000 -0.288 to 1.049 21 25.333 22.64 85.000 0.1637 13.913 Vel = 8.400.0 21 22.64 29.972 K Factor = 4.14H22 22.51 1 2E 4.0 120 24.667 5.60 76.000 16.157 Т to 5.0 9.000 -0.28885.000 13.764 22 25.333 22.51 1.049 0.1619 Vel = 8.360.0 22 22.51 29.633 K Factor = 4.14H23 24.667 5.60 22.50 1 2E 4.0 76.000 120 16.143 Τ 5.0 9.000 -0.288to 23 25.333 22.5 1.049 85.000 0.1618 13.754 Vel = 8.350.0 23 22.50 29.609 K Factor = 4.13H24 2E 24.667 5.60 22.57 1 4.0 76.000 120 16.241 to Τ 5.0 9.000 -0.28824 25.333 22.57 1.049 85.000 0.1627 13.831 Vel = 8.38 0.0 K Factor = 4.1424 22.57 29.784 H25 24.667 5.60 22.91 1 2E 4.0 76.000 120 16.738 5.0 9.000 -0.288to Т 25 25.333 22.91 1.049 85.000 0.1673 14.221 Vel = 8.500.0 25 22.91 30.671 K Factor = 4.141 2E H26 24.667 5.60 25.22 4.0 76.000 120 20.283 Τ 5.0 9.000 -0.288to 1.049 85.000 26 25.333 25.22 0.1998 16.987 Vel = 9.360.0 26 25.22 36.982 K Factor = 4.15H27 1 2E 20.215 24.667 5.60 25.18 4.0 76.000 120 Т to 5.0 9.000 -0.288 1.049 85.000 27 25.333 25.18 0.1992 16.935 Vel = 9.350.0 27 25.18 36.862 K Factor = 4.15H28 24.667 5.60 25.24 1 2E 4.0 76.000 120 20.316 Т -0.288 5.0 9.000 to 25.333 25.24 1.049 85.000 0.2002 28 17.014 Vel = 9.370.0 28 37.042 25.24 K Factor = 4.151 2E 76.000 H29 23.667 5.60 22.87 4.0 120 16.680 9.000 -0.722to Т 5.0 29 25.333 22.87 1.049 85.000 0.1668 14.178 Vel = 8.490.0 29 22.87 30.136 K Factor = 4.17H30 22.70 1 2E 4.0 76.000 16.424 23.667 5.60 120 5.0 9.000 -0.722to Τ 30 25.333 22.7 1.049 85.000 0.1644 13.976 Vel = 8.43

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		Notes	
30			0.0 22.70						29.678	K Factor =	: 4 17	
H31	23.667	5.60	22.69	1	2E	4.0	76.000	120	16.412	Tr dotoi		
0					T	5.0	9.000		-0.722			
31	25.333		22.69	1.049			85.000	0.1643	13.966	Vel = 8.4	2	
31			0.0 22.69						29.656	K Factor =	4.17	
H32	23.667	5.60	22.75	1	2E	4.0	76.000	120	16.502			
0	25 222		22.75	1.049	T	5.0	9.000 85.000	0.1650	-0.722	Vel = 8.4	E	
32	25.333		22.75 0.0	1.049			65.000	0.1652	14.038	Vei - 0.4	<u> </u>	
32			22.75						29.818	K Factor =	4.17	
H33	23.667	5.60	23.06	1	2E	4.0	76.000	120	16.963			
o 33	25.333		23.06	1.049	Т	5.0	9.000 85.000	0.1694	-0.722 14.400	Vel = 8.5	6	
	20.000		0.0	1.010			00.000	0.1001	11.100	70.		
33			23.06						30.641	K Factor =	4.17	
M21	25.333		-50.66	1.25	T	7.432	93.833 7.432	120	45.587 0.0			
o 21	25.333		-50.66	1.442			7.432 101.265	-0.1542	-15.615	Vel = 9.9	5	
21	25.333		22.64	1.25			6.583	120	29.972			
o 22	25.333		-28.02	1.442			6.583	-0.0515	0.0 -0.339	Vel = 5.5	n	
22	25.333		22.51	1.25			9.583	120	29.633	Vei - 0.0	0	
0									0.0		_	
23	25.333		-5.51	1.442			9.583	-0.0025	-0.024	Vel = 1.0	8	
23 o	25.333		22.50	1.25			8.583	120	29.609 0.0			
24	25.333		16.99	1.442			8.583	0.0204	0.175	Vel = 3.3	4	
24	25.333		22.57	1.25			9.083	120	29.784			
o 25	25.333		39.56	1.442			9.083	0.0977	0.0 0.887	Vel = 7.7	7	
25	25.333		22.91		Т	7.432	43.750	120	30.671			
0	25 222		60.47	1 110			7.432	0 0070	0.0	\/al = 10.1	7	
F21	25.333		62.47 0.0	1.442			51.182	0.2272	11.631	Vel = 12.2	21	
F21			62.47						42.302	K Factor =	9.60	
M22	25.333		-35.84	1.25	Т	7.432	99.083	120	45.641			
o 26	25.333		-35.84	1.442			7.432 106.515	-0.0813	0.0 -8.659	Vel = 7.0	4	
26	25.333		25.22	1.25			14.000	120	36.982	1.0	•	
0									0.0		•	
27	25.333		-10.62	1.442			14.000	-0.0086	-0.120	Vel = 2.0	9	
27 o	25.333		25.18	1.25			11.667	120	36.862 0.0			
28	25.333		14.56	1.442			11.667	0.0154	0.180	Vel = 2.8	6	
28	25.333		25.24	1.25	Т	7.432	46.667	120	37.042			
o F22	25.333		39.8	1.442			7.432 54.099	0.0987	0.0 5.339	Vel = 7.8	2	

Associated Fire Protection CAPE FEAR MOB TI - 2ND FLOOR GRID Page 8 Date 23.11.20

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes ****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	7,6,65
F22			0.0 39.80						42.381	K Factor = 6.11
M23	25.333		-50.96	1.25	Т	7.432	93.167 7.432	120	45.821 0.0	
29	25.333		-50.96	1.442			100.599	-0.1559	-15.685	Vel = 10.01
29 o	25.333		22.87	1.25			8.833	120	30.136 0.0	
30	25.333		-28.09	1.442			8.833	-0.0519	-0.458	Vel = 5.52
30 o	25.333		22.69	1.25			9.083	120	29.678 0.0	
31	25.333		-5.4	1.442			9.083	-0.0024	-0.022	Vel = 1.06
31 o	25.333		22.69	1.25			7.667	120	29.656 0.0	
32	25.333		17.29	1.442			7.667	0.0211	0.162	Vel = 3.40
32 o	25.333		22.75	1.25			8.250	120	29.818 0.0	
33	25.333		40.04	1.442			8.250	0.0998	0.823	Vel = 7.87
33	25.333		23.06	1.25	Т	7.432	44.333	120	30.641	
o F23	25.333		63.1	1.442			7.432 51.765	0.2315	0.0 11.985	Vel = 12.40
F23			0.0 63.10						42.626	K Factor = 9.66
M24 to	25.333		-15.00	1.25	2T	14.864	171.500 14.864	120	46.236 0.0	
F24	25.333		-15.0	1.442			186.364	-0.0162	-3.026	Vel = 2.95
F24			0.0 -15.00						43.210	K Factor = -2.28
M25	25.333		-12.74	1.25	Т	7.432	120.500	120	46.870	111 40101 2.20
io	_0.000			0	-		7.432		0.0	
B1	25.333		-12.74	1.442			127.932	-0.0120	-1.536	Vel = 2.50
B1			0.0 -12.74						45.334	K Factor = -1.89
M25A to	25.333		-13.93	1.25	2T E	14.864 3.716	127.750 18.580	120	47.404 0.0	
B1	25.333		-13.93	1.442			146.330	-0.0141	-2.070	Vel = 2.74
B1 to	25.333		-12.74	1.25			14.833	120	45.334 0.0	
B2	25.333		-26.67	1.442			14.833	-0.0471	-0.698	Vel = 5.24
B2 to	25.333		10.52	1.25	Т	7.432	36.000 7.432	120	44.636 0.0	
F25	25.333		-16.15	1.442			43.432	-0.0186	-0.808	Vel = 3.17
F25			0.0 -16.15						43.828	K Factor = -2.44
B2	25.333		-10.52	1.25	2T E	14.864 3.716	42.083 18.580	120	44.636 0.0	
to F25A	25.333		-10.52	1.442	_	3.7 10	60.663	-0.0084	-0.510	Vel = 2.07
			0.0				· -			

Page Date 9

23.11.20

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		110100	
F25A			-10.52						44.126	K Factor =	₋ 1 58	
M26	25.333		-16.76	1.25	2T	14.864	171.500	120	48.399	TOT GOLOT —	-1.00	
to	20.000		10.70	1.20		1 1.00 1	14.864	120	0.0			
F26	25.333		-16.76	1.442			186.364	-0.0199	-3.714	Vel = 3.29	9	
F26			0.0 -16.76						44.685	K Factor =	-2.51	
M27	25.333		-17.91	1.25	2T	14.864	171.500	120	49.116			
to F27	25.333		-17.91	1.442			14.864 186.364	-0.0225	0.0 -4.198	Vel = 3.52	>	
/	20.000		0.0	1.112			100.001	0.0220	1.100	V 01 0.02	=	
F27			-17.91						44.918	K Factor =	-2.67	
M28	25.333		-25.41	1.25	2T	14.864	168.000	120	53.117			
to F28	25.333		-25.41	1.442			14.864 182.864	-0.0430	0.0 -7.871	Vel = 4.99)	
1 20	20.000		0.0	1.772			102.007	0.0400	7.071	VOI - 7.00	,	
F28			-25.41						45.246	K Factor =	-3.78	
M29	25.333		-30.86	1.25	2T	14.864	171.500	120	56.812			
to F29	25.333		-30.86	1.442			14.864 186.364	-0.0616	0.0 -11 486	Vel = 6.06	3	
1 40	20.000		0.0	1.772			100.004	0.0010	11.700	V 51 - 0.00	,	
F29			-30.86						45.326	K Factor =	-4.58	
M30	25.333		-32.76	1.25	2T	14.864	171.500	120	58.185			
to F30	0		-32.76	1.442			14.864 186.364	-0.0689	10.972 -12.832	Vel = 6.44	1	
			0.0	-				2.0000				
F30			-32.76						56.325	K Factor =	-4.37	
M21	25.333		50.66	2.5			6.583	120	45.587			
to M22	25.333		50.66	2.635			6.583	0.0082	0.0 0.054	Vel = 2.98	3	
M22	25.333		35.84	2.5			8.167	120	45.641			
to									0.0	\/		
M23	25.333		86.5	2.635			8.167	0.0220	0.180 45.821	Vel = 5.09	9	
M23 to	25.333		50.96	2.5			8.000	120	45.821 0.0			
M24	25.333		137.46	2.635			8.000	0.0519	0.415	Vel = 8.09	9	
M24	25.333		15.00	2.5			10.083	120	46.236			
to M25	25.333		152.46	2.635			10.083	0.0629	0.0 0.634	Vel = 8.97	7	
M25	25.333		12.74	2.5			7.333	120	46.870	10.01		
to									0.0			
M25A	25.333		165.2	2.635			7.333	0.0728	0.534	Vel = 9.72	2	
M25A to	25.333		13.93	2.5			11.750	120	47.404 0.0			
M26	25.333		179.13	2.635			11.750	0.0847	0.995	Vel = 10.5	4	
M26	25.333		16.76	2.5			7.167	120	48.399			
to M27	25.333		195.89	2.635			7.167	0.1000	0.0 0.717	Vel = 11.5	2	
IVIZ /	20.000		190.09	∠.∪ა၁			1.101	0.1000	0.717	vei – 11.5	_	

Node1		K	Qa	Nom	Fitting	1	Pipe	CFact	Pt	Date	23.11	
to		•	Qα	. 10111	or	,	Ftngs	J. 40t	Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
M27	25.333		17.91	2.5	2E	16.474	17.583	120	49.116			
1VI <i>Z I</i> :0	25.555		17.91	2.0	2⊏	10.474	16.474	120	0.0			
M28	25.333		213.8	2.635			34.057	0.1175	4.001	Vel = 12.5	58	
M28	25.333		25.42	2.5	2E	16.474	9.083	120	53.117			
to M29	25.333		239.22	2.635			16.474 25.557	0.1446	0.0 3.695	Vel = 14.0	07	
M29	25.333		30.85	2.5			7.583	120	56.812	701 11.	· ·	
to									0.0			
M30	25.333		270.07	2.635			7.583	0.1811	1.373	Vel = 15.8	39	
M30 to	25.333		32.77	2.5	2E T	16.474 16.474	5.333 59.856	120	58.185 0.0			
ZCA	25.333		302.84	2.635	-	26.908	65.189	0.2237	14.583	Vel = 17.8	32	
ZCA			0.0 302.84		-				72.768	K Factor =	: 35 50	
F21	25.333		62.47	2.5			6.500	120	42.302	Tr actor	00.00	
to									0.0			
F22	25.333		62.47	2.635			6.500	0.0122	0.079	Vel = 3.6	8	
F22 to	25.333		39.80	2.5			8.167	120	42.381 0.0			
F23	25.333		102.27	2.635			8.167	0.0300	0.245	Vel = 6.0	2	
F23	25.333		63.11	2.5			8.000	120	42.626			
to F24	25.333		165.38	2.635			8.000	0.0730	0.0 0.584	Vel = 9.7	3	
F24 to	25.333		-15.00	2.5			10.083	120	43.210 0.0		_	
F25	25.333		150.38	2.635			10.083	0.0613	0.618	Vel = 8.8	5	
F25	25.333		-16.16	2.5			6.000	120	43.828			
to	25 222		124.00	2 625			6.000	0.0407	0.0	Val = 7.0	0	
F25A F25A	25.333 25.333		134.22 -10.51	2.635 2.5			6.000 13.083	0.0497 120	0.298 44.126	Vel = 7.9	U	
to	25.555		-10.51	2.5			13.003	120	0.0			
F26	25.333		123.71	2.635			13.083	0.0427	0.559	Vel = 7.2	8	
F26	25.333		-16.77	2.5			7.167	120	44.685			
to F27	25.333		106.94	2.635			7.167	0.0325	0.0 0.233	Vel = 6.2	9	
F27	25.333		-17.90	2.5			14.083	120	44.918	V 0. U.Z		
to									0.0			
F28	25.333		89.04	2.635			14.083	0.0233	0.328	Vel = 5.2	4	
F28 to	25.333		-25.42	2.5			6.417	120	45.246 0.0			
F29	25.333		63.62	2.635			6.417	0.0125	0.080	Vel = 3.7	4	
F29	25.333		-30.86	2.5			7.583	120	45.326			
to	0		00.70	0.005			7.500	0.0000	10.972	\/_I	0	
F30	0		32.76	2.635			7.583	0.0036	0.027	Vel = 1.9	3	
F30			0.0 32.76						56.325	K Factor =	4.37	
ZCA	25.333		302.84	4			12.667	120	72.768			
to									5.702		_	
S2	12.167		302.84	4.26			12.667	0.0216	0.274	Vel = 6.8	2	

Final Calculations: Hazen-Williams

Associated Fire Protection CAPE FEAR MOB TI - 2ND FLOOR GRID Page 11 Date 23.11.20

Node1	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	Notes
S2	12.167		0.0	4	3E	39.501	82.667	120	78.744	
to TOR	12.167		302.84	4.26			39.501 122.168	0.0216	0.0 2.634	Vel = 6.82
TOR			0.0 302.84						81.378	K Factor = 33.57
TOR to	12.167		302.84	4	T Fsp	26.334 0.0	11.500 69.785	120	81.378 7.836	* * Fixed Loss = 3
BOR	1		302.84	4.26	Avc B	27.651 15.8	81.285	0.0216	1.753	Vel = 6.82
BOR to	1		0.0	6	Е	17.603	3.000 17.603	120	90.967 0.0	
FLG	1		302.84	6.357			20.603	0.0031	0.063	Vel = 3.06
FLG to	1		0.0	6	E 2F	20.084 20.084	94.000 86.074	140	91.030 1.732	
HOSE	-3		302.84	6.16	S	45.906	180.074	0.0027	0.485	Vel = 3.26
HOSE to	-3	H100	100.00	6	2E F	40.168 10.042	546.000 50.210	140	93.247 -1.299	
UG1	0		402.84	6.16			596.210	0.0046	2.719	Vel = 4.34
UG1 to	0		0.0	6	4E	80.336	5.000 80.336	140	94.667 14.299	* * Fixed Loss = 13
BFP	-3		402.84	6.16			85.336	0.0046	0.389	Vel = 4.34
BFP to	-3		0.0	8	2G 2F	12.652 28.468	108.000 96.474	140	109.355 -1.299	
TEST	0		402.84	8.27	Т	55.354	204.474	0.0011	0.222	Vel = 2.41
TEST			0.0 402.84						108.278	K Factor = 38.71

Associated Fire Protection PO Box 28022 Raleigh, NC 27611 919-553-4021

Job Name : CAPE FEAR MOB TI - PRE-ACTION

Drawing : FP-2

Location : 225 BRIGHTWATER DRIVE

Remote Area : 3

Contract : EDW-1588

Data File : RA#3 - 1ST FLOOR PRE-ACTION.WXF

Page

@ 93.3528 - Psi

Date 23.11.20

HYDRAULIC CALCULATIONS for

JOB NAME CAPE FEAR MOB TI - PRE-ACTION

Location 225 BRIGHTWATER DRIVE

Drawing # FP-2 Contract # EDW-1588

Date 23.11.20

DESIGN

Remote area # 3

Remote area location LINAC

Occupancy classification LIGHT HAZARD

Density .10 - Gpm/SqFt **Area of application** 639 - SqFt

Coverage/sprinkler 225 MAX - SqFt

Type of sprinkler calculated SSQRRP/SSQRCP

Sprinklers calculated 8 In-rack demand N/A - GPM Hose streams 100 - GPM

Total water required (including hose streams) 286.23 - GPM

Type of system PRE-ACTION

Volume of system (dry or pre-action) - Gal

WATER SUPPLY INFORMATION

Test date 9.06.23

Location 215 BRIGHTWATER DRIVE

Source of info HYDRANT

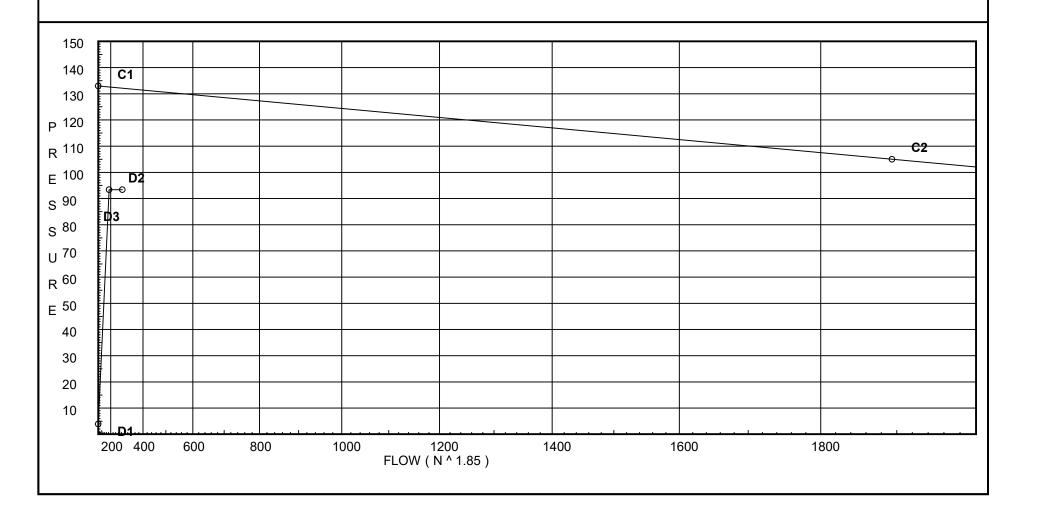
CONTRACTOR INFO Associated Fire Protection

Address PO Box 28022 / Raleigh, NC 27611

Phone # 919-553-4021 **Name of designer** WLH

Authority having jurisdiction HARNETT COUNTY

NOTES:


text1(35) - invisible

Page 2

Date 23.11.20

City Water Supply: C1 - Static Pressure : 133 C2 - Residual Pressure: 105 C2 - Residual Flow : 1894 Demand:

D1 - Elevation : 3.898 D2 - System Flow : 186.23 D2 - System Pressure : 93.353 Hose (Demand) : 100 D3 - System Demand : 286.23 Safety Margin : 38.798 : 38.798

Fittings Used Summary

	ated Fire Protection FEAR MOB TI - PRE-ACTIO	N																_	ige 3 ite 2	3 23.11.2	0
Fitting L Abbrev.		1/2	3/4	1	11⁄4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
B E	NFPA 13 Butterfly Valve NFPA 13 90' Standard Elbow	0 1	0	0	0	0	6 5	7 6	10 7	0	12 10	9 12	10 14	12 18	19 22	21 27	0 35	0 40	0 45	0 50	0 61
F G S	NFPA 13 45' Elbow NFPA 13 Gate Valve NFPA 13 Swing Check	1 0 0	1 0 0	1 0 5	1 0 7	2 0 9	2 1 11	3 1 14	3 1 16	3 1 19	4 2 22	5 2 27	7 3 32	9 4 45	11 5 55	13 6 65	17 7	19 8	21 10	24 11	28 13

15

17

12

101

121

50

60

71

Units Summary

Inches **Diameter Units** Length Units Feet

NFPA 13 90' Flow thru Tee

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page Date 4

23.11.20

		YSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	133.0	105	1894.0	132.151	286.23	93.353

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node		Notes			
PH1	8.0	5.6	16.16	22.51	0.1	225			
PH2	9.0	5.6	16.14	22.5	0.1	225			
PH3	8.0	5.6	17.27	23.27	0.1	225			
PH4	9.0	5.6	17.27	23.27	0.1	225			
PH5	8.0	5.6	17.27	23.27	0.1	225			
PH6	9.0	5.6	17.27	23.28	0.1	225			
PH7	8.0	5.6	18.45	24.05	0.1	225			
PH8	9.0	5.6	18.48	24.07	0.1	225			
1	11.417		17.5						
2	11.417		17.91						
2 3	11.417		18.79						
4 5	11.417		19.22						
5	11.417		18.79						
6	11.417		19.23						
7	11.417		20.16						
8	11.417		20.62						
PM1	11.417		20.57						
PM2	11.417		22.05						
TPR	11.417		65.68						
BPR	3.0		77.06						
FLG	1.0		77.95						
HOSE	-3.0		79.88	100.0					
UG1	0.0		80.03						
BFP	-3.0		94.53						
TEST	0.0		93.35						

Final Calculations: Hazen-Williams

Associated Fire Protection
CAPE FEAR MOB TI - PRE-ACTION

Page 5 Date 23.11.20

	· · · · · · · · · · · · · · · · · · ·								Date 23.11.20
Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
8	5.60	22.51	1	2E	2.855	6.000	100	16.163	
				Т	3.568	6.423		-1.480	
11.417			1.049			12.423	0.2270	2.820	Vel = 8.36
		0.0 22.51						17.503	K Factor = 5.38
9	5.60	22.50	1		2.855	6.000	100		
11 417		22 5	1 049	ı	3.568		0 2268		Vel = 8.35
		0.0	1.010			12.120	0.2200		K Factor = 5.32
8	5.60		1	2E	2.855	6.000	100		111 40101 0.02
	0.00			T	3.568	6.423		-1.480	
11.417		23.27	1.049			12.423	0.2413	2.998	Vel = 8.64
		0.0 23.27						18.786	K Factor = 5.37
9	5.60	23.27	1	2E	2.855	6.000	100	17.270	
44 447		00.07	4 040	Т	3.568		0.0440	-1.047	V-I 0.04
11.41/			1.049			12.423	0.2413	2.998	Vel = 8.64
								19.221	K Factor = 5.31
8	5.60	23.27	1	2E	2.855	6.000	100	17.273	
				Т	3.568	6.423		-1.480	
11.417			1.049			12.423	0.2413	2.998	Vel = 8.64
		0.0 23.27						18.791	K Factor = 5.37
9	5.60	23.28	1	2E	2.855	6.000	100	17.275	
11 117		22.20	1 040	Т	3.568		0.0444		Val = 0.64
11.417			1.049			12.423	0.2414	2.999	Vel = 8.64
		23.28						19.227	K Factor = 5.31
8	5.60	24.05	1	2E	2.855	6.000	100	18.450	
				Т	3.568	6.423		-1.480	
11.41/			1.049			12.423	0.2565	3.186	Vel = 8.93
								20 156	K Factor = 5.36
9	5.60		1	2E	2.855	6.000	100		40.01
	2.50			T	3.568	6.423		-1.047	
11.417		24.07	1.049			12.423	0.2569	3.192	Vel = 8.94
		0.0 24.07						20.620	K Factor = 5.30
11.417		22.51	1.25			8.500	100	17.503 0.0	
11.417		22.51	1.442			8.500	0.0482	0.410	Vel = 4.42
11.717									
11.417		22.50	1.25	Т	5.304	10.000 5.304	100	17.913 0.0	
	Elev1 Elev2 8 11.417 9 11.417 8 11.417 9 11.417 8 11.417 9 11.417	Elev1 K Elev2 Fact 8 5.60 11.417 9 5.60 11.417 9 5.60 11.417 9 5.60 11.417 9 5.60 11.417	Elev2 Fact Qt 8 5.60 22.51 11.417 22.51 9 5.60 22.50 11.417 22.5 0.0 22.50 8 5.60 23.27 11.417 23.27 9 5.60 23.27 11.417 23.27 8 5.60 23.27 11.417 23.27 9 5.60 23.27 11.417 23.28 11.417 23.28 8 5.60 23.28 11.417 23.28 8 5.60 24.05 11.417 24.05 9 5.60 24.05 9 5.60 24.07 11.417 24.07 11.417 24.07 0.0 24.07 11.417 24.07 0.0 24.07	Elev1 K Qa Nom Elev2 Fact Qt Act 8 5.60 22.51 1 11.417 22.51 1.049 0.0 22.51 1 1 9 5.60 22.50 1 11.417 23.27 1.049 0.0 23.27 1 1 11.417 23.27 1.049 0.0 23.27 1 1 11.417 23.27 1.049 0.0 23.27 1 1 11.417 23.27 1 11.417 23.27 1 11.417 23.28 1 11.417 23.28 1 11.417 23.28 1 11.417 24.05 1 11.417 24.05 1 9 5.60 24.05 1 9 5.60 24.07 1 11.417 24.07 1.049 0.0 24.05 0.0 24.07 1 11.417 24.07 1.049	Elev1 K Qa Nom Act Fitting or Eqiv 8 5.60 22.51 1.049 1.049 9 5.60 22.51 1.049 1.049 9 5.60 22.50 1 2E T T 11.417 22.5 1.049 1.049 1.049 8 5.60 23.27 1.049	Elev1 K Qa Nom or Eqiv Fitting or Len 8 5.60 22.51 1.049 2.855 T 3.568 11.417 22.51 1.049 2.855 T 3.568 11.417 22.51 1.049 2.855 T 3.568 11.417 22.50 1.049 2.855 T 3.568 11.417 22.50 1.049 2.855 T 3.568 11.417 23.27 1.049 2.855 T 3.568 11.417 23.28 1.049 2.855 T 3.568 11.417 23.28 1.049 2.855 T 3.568 11.417 23.28 1.049 2.855 T 3.568 11.417 24.05 1.049	Elev1 K Qa Nom or Equivalence of Equi	Elev1	Elev1

Node1	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	Notes
PM1			45.01						20.570	K Factor = 9.92
3	11.417		23.27	1.25			8.500	100	18.786	
to	44 447		00.07	1 110			0.500	0.0540	0.0	Val. 4.57
4	11.417		23.27	1.442	_	T 204	8.500	0.0512	0.435	Vel = 4.57
4 to	11.417		23.27	1.25	Т	5.304	2.000 5.304	100	19.221 0.0	
PM1	11.417		46.54	1.442			7.304	0.1847	1.349	Vel = 9.14
			0.0							
PM1			46.54						20.570	K Factor = 10.26
5	11.417		23.27	1.25			8.500	100	18.791	
to 6	11.417		23.27	1.442			8.500	0.0513	0.0 0.436	Vel = 4.57
6	11.417		23.28		Т	5.304	10.000	100	19.227	1.01
to			_00		•	0.00	5.304	. • •	0.0	
PM2	11.417		46.55	1.442			15.304	0.1848	2.828	Vel = 9.14
DMO			0.0						22.055	K Fastar - 0.04
PM2 7	11 117		46.55 24.05	1.25			8.500	100	22.055	K Factor = 9.91
to	11.417		24.03	1.23			0.500	100	20.156 0.0	
8	11.417		24.05	1.442			8.500	0.0546	0.464	Vel = 4.72
8	11.417		24.07	1.25	Т	5.304	2.000	100	20.620	
to PM2	11.417		48.12	1.442			5.304 7.304	0.1965	0.0 1.435	Vel = 9.45
_ FIVIZ	11.417		0.0	1.442			7.304	0.1905	1.433	Vei - 9.43
PM2			48.12						22.055	K Factor = 10.25
PM1	11.417		91.56	2			16.333	100	20.570	
to	44 447		04.50	0.457			40.000	0.0000	0.0	
PM2	11.417		91.56	2.157	45	47.507	16.333	0.0909	1.485	Vel = 8.04
PM2 to	11.417		94.67	2	4E	17.567	111.500 17.567	100	22.055 0.0	
TPR	11.417		186.23	2.157			129.067	0.3380	43.621	Vel = 16.35
			0.0							
TPR			186.23						65.676	K Factor = 22.98
TPR	11.417		186.23	2	2B	10.54	8.500	100	65.676	
to BPR	3		186.23	2.157	Eql	3.865	14.404 22.904	0.3380	3.645 7.741	Vel = 16.35
BPR	3		0.0	6	E	17.603	2.000	120	77.062	
to							17.603		0.866	
FLG	1		186.23	6.357			19.603	0.0013	0.025	Vel = 1.88
FLG to	1		0.0	6	E 2F	20.084 20.084	94.000 86.074	140	77.953 1.732	
to HOSE	-3		186.23	6.16	2F S	45.906	180.074	0.0011	0.197	Vel = 2.00
HOSE	-3	H100	100.00	6	2E	40.168	546.000	140	79.882	
to					F	10.042	50.210		-1.299	
UG1	0		286.23	6.16	4=	00.000	596.210	0.0024	1.445	Vel = 3.08
UG1 to	0		0.0	6	4E	80.336	5.000 80.336	140	80.028 14.299	* * Fixed Loss = 13
BFP	-3		286.23	6.16			85.336	0.0024	0.207	Vel = 3.08

Final Calculations: Hazen-Williams

Associated Fire Protection CAPE FEAR MOB TI - PRE-ACTION

Page 7 Date 23.11.20

Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
BFP	-3		0.0	8	2G	12.652	108.000	140	94.534			
to	-5		0.0	O	2F	28.468	96.474	140	-1.299			
TEST	0		286.23	8.27	Т	55.354	204.474	0.0006	0.118	Vel = 1.7	' 1	
			0.0									
TEST			286.23						93.353	K Factor =	= 29.62	

Post Office Box 28022 – Raleigh, NC 27611 O: 919-553-4021 | F: 919-553-2169 | www.afp-nc.com


Fire Flow Test Report

Cape Fear MOB

Test Performed: September 6, 2023

Test Location: 215 Brightwater Drive Lillington, NC

Harnett GIS

FIRE HYDRANT FLOW TEST RESULTS

TEST LOCATION
Address: 215 Brightwater Drive, Lillington (12" Valve CLOSED)
Proposed Tap Location:
Requested Flow Location: nearest hydrant to the proposed point of connection
APPLICANT
Name: The Keith Corporation
Address: 4500 Cameron Valley Parkway, Suite 400, Charlotte, NC 28211
Contact Person: <u>Eric Larson</u> Phone: <u>704.365.6000</u> Fax: <u>704.365.0733</u>
TECTING ACENTE
TESTING AGENT Firm Name: Associated Fire Protection, Inc.
Address: PO Box 28022, Raleigh, North Carolina 27611-28022
Phone: (919) 553-4021 Fax: (919) 553-2169
Thome. (515) 555 1021
SYSTEM ANALYSIS
Main Size: Elevation of Test Location: Test Location:
Nearest Elevated Tank: <u>MW BPS 1</u> Time of Test: <u>9:15 AM</u>
Tank Elevation: N/A Pressure Zone: N/A
Theoretical Pressure: N/A
Calculated by: _Drew King Witnessed by: _N/A
<u>RESULTS</u>
Static Pressure:133 psi 2" Pitotless Nozzle Reading:18,18 psi
Residual Pressure: psi
Disclaimer: These results are an instantaneous snap-shot of the system. It is recommended that
the designer allow adequate safety to include low tank level.
Comments: Flowed (2) 2-1/2" Hose Monster(s) with 2" pitotless
nozzle(s). (2" $Nozzle C = 1.38$)
Completed by:Drew King
Completed by:
Date: 9/6/2023

FIRE HYDRANT FLOW TEST RESULTS

TEST LOCATION
Address: 215 Brightwater Drive, Lillington (12" Valve OPEN)
Proposed Tap Location:
Requested Flow Location: nearest hydrant to the proposed point of connection
APPLICANT
Name: The Keith Corporation
Address: 4500 Cameron Valley Parkway, Suite 400, Charlotte, NC 28211
Contact Person: <u>Eric Larson</u> Phone: <u>704.365.6000</u> Fax: <u>704.365.0733</u>
TESTING AGENT
Firm Name: Associated Fire Protection, Inc.
Address: PO Box 28022, Raleigh, North Carolina 27611-28022
Phone: (919) 553-4021 Fax: (919) 553-2169
Thome. (517) 555 1021
SYSTEM ANALYSIS
Main Size:12" Elevation of Test Location:172'
Nearest Elevated Tank: MW BPS 1 Time of Test: 9:20 AM
Tank Elevation: N/A Pressure Zone: N/A
Theoretical Pressure: N/A
Calculated by: _Drew King Witnessed by: _N/A
Withessed by:
<u>RESULTS</u>
Static Pressure:133 psi 2" Pitotless Nozzle Reading:33,33 psi
Residual Pressure: 105 psi Volume: 947 + 947 = 1,894 gpm
Disclaimer: These results are an instantaneous snap-shot of the system. It is recommended that
the designer allow adequate safety to include low tank level.
Comments: Flowed (2) 2-1/2" Hose Monster(s) with 2" pitotless
nozzle(s). (2" Nozzle C = 1.38)
Completed by:Drew King
Completed by
Date: 9/6/2023

Hydrant Flow Test Report

Test Date 9/6/2023

Test Time 9:15 AM

Location

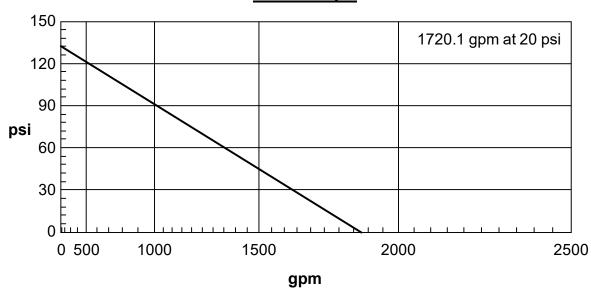
Cape Fear MOB 215 Brightwater Drive Lillington, NC

Tested by

Associated Fire Protection, Inc. PO Box 28022 Raleigh, NC 27611-28022 DKing@afp-nc.com 919-906-5236

Notes

12" Valve CLOSED to prove fire flow still available during construction.


Read Hydrant

133 psi static pressure56 psi residual pressure172 ft hydrant elevation

Flow Hydrant(s)

Outlet	Elev	Size	С	Pitot Pressure	Flow
#1	178	2	1.38	18	699 gpm
#2	178	2	1.38	18	699 gpm
				Total	1398 gpm

Flow Graph

Hydrant Flow Test Report

Test Date 9/6/2023

Test Time 9:20 AM

Location

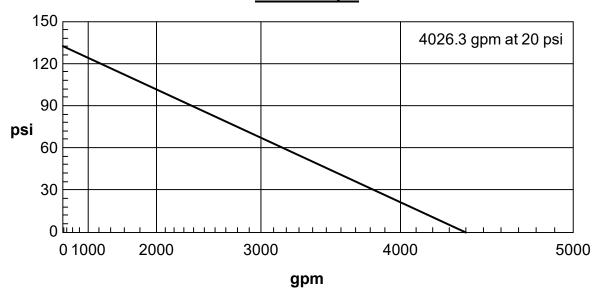
Cape Fear MOB 215 Brightwater Drive Lillington, NC

Tested by

Associated Fire Protection, Inc. PO Box 28022 Raleigh, NC 27611-28022 DKing@afp-nc.com 919-906-5236

<u>Notes</u>

12" Valve OPEN


Read Hydrant

133 psi static pressure105 psi residual pressure172 ft hydrant elevation

Flow Hydrant(s)

Outlet	Elev	Size	С	Pitot Pressure	Flow
#1	178	2	1.38	33	947 gpm
#2	178	2	1.38	33	947 gpm
				Total	1894 gpm

Flow Graph

		itel				ites				ints	ites		
		se Mons	osphere	/		se Mons	osphere			Test Por	se Mons	osphere	
10.40 PE	Ali Ho	se Monster de II Open Art		M. 70 PE	3/2 40	se Monster del I Open Art	,,		'ex tion	Test Points	se Monster de II Open Art	,,	
<u>∕ ް</u> PSI	GPM	GPM		PSI	GPM	GPM			GPM	ノンペ PSI	PSI		
10	521	529		41	1055	1071			500	9.5	9.1		
11	547	555		42	1068	1084		_	562.5	11.7	11.3		
12	571	579		43	1081	1096		_	750	20.7	20.1		
13	594	603		44	1093	1109		_	1000	36.8	35.8		
14	617	626		45	1106	1122		_	1125	46.6	45.3		
15	638	648		46	1118	1134		_	1500	82.8	80.5		
16	659	669		47	1130	1146		The readings	on this chart are	based on which	h device the Pit	totless Nozzle	
17	679	689		48	1142	1158		is connected t	о.				
18	699	709		49	1154	1170		It is the user's responsibility to verify that the correct chart and column is being used. - 2 ½" Hose Monster Model II or Flusher with flow splitter (HM2H, HM2HF). Use this column if the Pitotless Nozzle is connected to the 2 ½" Hose Monster or Flusher. The built-in pitot or flow splitter must					
19	718	729		50	1165	1182							
20	737	748		51	1177	1194		be installed for accuracy. If you do not have the built-in pitot or flow splitter must be splitter, please contact us.					
21	755	766		52	1188	1206		Open Atmosphere. Use this column when the Pitotless Nozzle is					
22	773	784		53	1200	1217		connected directly to a test header or hydrant flowing openly to atmosphere. This chart is FM Approved for flow rate accuracy. Please call us or instruct the Authority Having Jurisdiction to call us if there are any questions. Additional copies of flow charts are available at: www.hosemonster.com/ilterature.html					
23	790	802		54	1211	1229							
24	807	819		55	1222	1240							
25	824	836		56	1233	1251							
26	840	853		57	1244	1262				THE COLD		_	
27	856	869		58	1255	1273					APPRO	OVED	
28	872	885		59	1266	1284				-			
29	887	900		60	1277	1295							
30	903	916		61	1287	1306					1		
31	918	931		62	1298	1317			The I	Pitotless Nozzle 2"	(Here		
32	932	946		63	1308	1327			RM Appn	US Patent 6.874,375 Hydro Flow Products, Inc. 2-9987, www.HoseMonther.so wed Operating Rangs 10 - 80	46		
33	947	960		64	1318	1338			1	SN 20-01022			
34	961	975		65	1329	1348							
35	975	989		66	1339	1358							
36	989	1003		67	1349	1369			1	. The	_		
37	1002	1017		68	1359	1379				HO	SE		
38	1016	1031		69	1369	1389			MA	NST	ER		
39	1029	1044		70	1379	1399			CC	MPA	NY		
40	1042	1057							Divisio	n of Hydro Flow Prod	ucts, Inc.	Updated Jun. 2015	

MANUFACTURED BY: Hydro Flow Products, Inc. 888.202.9987 TOLL FREE 847.434.0073 FAX Service@FlowTest.com EMAIL www.HoseMonster.com

Calculating Flow-rates

The flow charts we provide with the Pitotless Nozzle[™], Hose Monster® and Nozzle Inserts are correct and should be referred to first. Our flow charts are calculated using K-Factors derived from testing performed at FM Approvals. It is common for third-party software to use the pitot formula to compute flow-rate. The 2½ " Hose Monster uses a pitot to measure velocity pressure. The Pitotless Nozzle and 4" and 4½ " Hose Monsters do not use a pitot, and the pitot formula has to be tricked into calculating correct flow-rates. Entering the coefficients into a program that uses orifice diameter, coefficient and velocity pressure should give relatively accurate flow-rates. Check results against our flow charts.

Here are the equations used for calculating flow-rates and predicting flow-rates. Use the orifice diameter, coefficient or K-factor found on the next page.

K-factor Formula

Computes a flow-rate in GPM given a psi and a K-factor of the flow device.

 $Q = \sqrt{P \times K}$

Q = flow-rate in GPM, P = velocity pressure in psi, K = K-factor of flow device

Pitot Formula

Computes a flow-rate in GPM given a psi and coefficient of the flow device.

 $Q = 29.84 \times \sqrt{P} \times D^2 \times C$

Q = flow-rate in GPM, P = velocity pressure in psi, D = orifice diameter in inches

C = coefficient of flow device

Equation for Determining Rated Capacity

Computes the flow-rate available at a specified residual pressure (a.k.a. Rated Capacity).

The example below enables you to find the predicted flow-rate at 20 psi residual pressure.

 $Q_R = Q_E \times (H_R^{0.54}/H_E^{0.54})$

Q_o = Flow-rate predicted at the desired residual pressure in GPM

 Q_F = Total test flow-rate measured during test in GPM (GPM measured from Hose Monster or Pitotless Nozzle)

H_R = Pressure drop from static pressure to desired residual pressure (Static – 20 psi [if 20 psi is the desired residual pressure])

H_c = Actual pressure drop measured during the test (Static – Actual Residual)

(Source: NFPA 291, 2010)

Conversion Factors

Here are some conversion factors for switching between US and metric units:

Flow-rate:

US Gallons per Minute x 3.785 = Liters per Minute Liters per Minute x 0.264 = US Gallons per Minute

US Gallons per Minute x 0.1337 = Cubic Feet per Minute Cubic Feet per Minute x 7.481 = US Gallons per Minute

Volume:

US Gallons x 3.785 = LitersLiters x 0.264 = US Gallons

US Gallons x 0.8327 = Imperial Gallons Imperial Gallons x 1.201 = US Gallons

Cubic Feet x 7.48051945 = US Gallons US Gallons x 0.1337 = Cubic Feet

Pressure:

 $psi \times 0.0689 = Bars$ Bars x 14.5038 = psi

psi x 6894.757 = PascalsPascals x 0.000145 = psi

Bars x 100,000 = Pascals Pascals x 0.00001 = Bars

Weight of Water:

US Gallons of Water x 8.3454 = Pounds Cubic Feet of Water x 62.42796 = Pounds

Length:

Meters x 3.2808 = FeetFeet x 0.3048 = Meters

last update: 2/14/2012

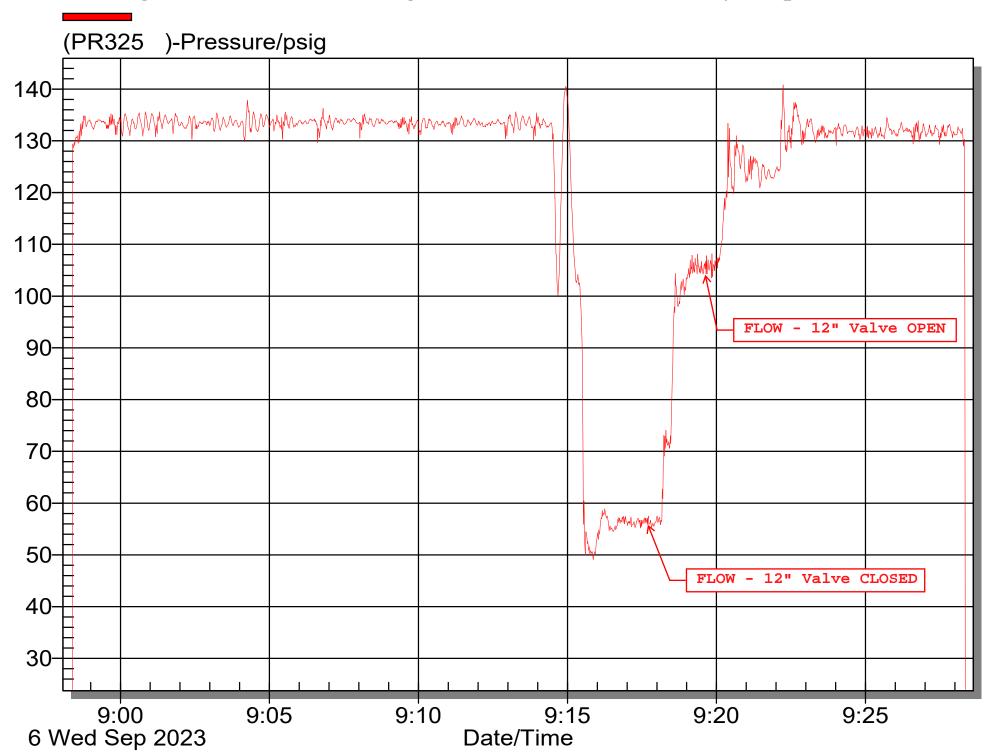
Coefficient and K-Factor Table for Various Flow Devices

					last apaate. 271-77201
Pitotless Nozzle [™]					
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)
2" Pitotless Nozzle + Little Hose Monster™	156.0	1.31	2"	10–70	490–1300
2" Pitotless Nozzle + 2½" Hose Monster Steel	164.8	1.38	2"	10-80	520-1380
2" Pitotless Nozzle + Open Atmosphere	167.2	1.40	2"	10–70	530-1400
1¾" Pitotless Nozzle + Little Hose Monster	104.7	1.15	1.75"	10–90	330-1000
1¾" Pitotless Nozzle + 2½" Hose Monster Steel	106.6	1.17	1.75"	10–90	340-1010
1¾" Pitotless Nozzle + Open Atmosphere	109.7	1.20	1.75"	10–90	350-1040
11/8" Pitotless Nozzle + Little Hose Monster	37.2	0.98	1.125"	5–90	80–350
11/8" Pitotless Nozzle + 21/2" Hose Monster Steel	37.4	0.99	1.125"	5–90	80–350
11/8" Pitotless Nozzle + Open Atmosphere	37.0	0.98	1.125"	5–90	80–350
1" Pitotless Nozzle + Little Hose Monster	27.2	0.91	1 "	3–90	50–260
1" Pitotless Nozzle + 2½" Hose Monster Steel	27.6	0.93	1 "	3–90	50–260
1" Pitotless Nozzle + Open Atmosphere	27.7	0.93	1 "	3–90	50-260
In-Line Pitotless Nozzle™					
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)
2" In-line Pitotless Nozzle	165.3	1.38	2"	10–75	530–1430
1¾" In-line Pitotless Nozzle	109.9	1.20	1.75"	5–80	250-980
11/8" In-line Pitotless Nozzle	38.4	1.02	1.125"	5–70	90–320
BigBoy Hose Monster™					
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)
4 to 10 psi (BigBoy Hose Monster)	382.9	1.38	3.05"	4–10	766–1211
11 to 36 psi (BigBoy Hose Monster)	376.0	1.35	3.05"	11–36	1247–2256
37 to 53 psi (BigBoy Hose Monster)	372.0	1.34	3.05"	37–53	2263-2708
Note: Due to the shape and size of the BigBoy Pitotles.	s Nozzle, the BigBo	y Hose Monster	uses three different k	-factors over its op	erating range.

2½" Hose Monster®					
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)
2½" Hose Monster	168.67	0.906	2.5"	10–75	530–1460
1¾" Nozzle Insert	89.04	0.975	1.75"	10–75	280-770
11/8" Nozzle Insert	37.36	0.99	1.125"	10–75	120-320
4" and 41/2" Hose Monster®					
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)
4½" Hose Monster	331.07	0.548	4.5"	10–75	1050–2870
4" Hose Monster	339.65	0.712	4"	10–75	1070–2940

Using Software

Use the table below if you are using software that requires the coefficient input to be less than '1.0'. Notice that the orifice diameter must be changed from its true diameter in order to accommodate the lower coefficient. This is necessary only for the 2" Pitotless Nozzle and the ¾" Pitotless Nozzle.


Device	Coefficient	Orifice Diameter
2" Pitotless Nozzle + Little Hose Monster	0.99	2.30"
2" Pitotless Nozzle + 21/2" Hose Monster Steel	0.99	2.36"
2" Pitotless Nozzle + Open Atmosphere	0.99	2.38"
1¾" Pitotless Nozzle + Little Hose Monster	0.99	1.88"
1¾" Pitotless Nozzle + 2½" Hose Monster Steel	0.99	1.90"
1¾" Pitotless Nozzle + Open Atmosphere	0.99	1.93"

Note: If your software uses the Theoretical Discharge Formula, found in NFPA 291, 4.7.3, the coefficient of discharge can be used to produce flow rates that will match our flow charts.

A hand-held pitot directly at a h	Classifying and Marking of Hydrants			
Outlet Type	Coefficient	Rated Capacity at 20 psi	Class	Marking Color of Hydrant Tops and Nozzles
Outlet smooth and rounded	0.9	≥1500 GPM	AA	Light Blue
Outlet square and sharp	0.8	1000-1499 GPM	Α	Green
Outlet square and projecting into barrel	0.7	500-999 GPM	В	Orange
If a stream straightener is used	0.95	≤499 GPM	С	Red

The above are the NFPA hydrant classifications and color markings for various rated capacities. Source: NFPA 291, 5.1, 2010.

215 Brightwater Drive, Lillington flow test - Wednesday, September 6, 2023

