ESA BUIES CREEK, LLC. SOLAR POWER GENERATION FACILITY

	PROJECT SPECIFICATIONS	DESIGN SUMMARY TABLE				
	SYSTEM SIZE (AC)	2.750				
	SYSTEM SIZE (DC)	3.94632 MW				
	DC/AC RATIO	1.435				
B	MV TRANSFORMER	(1) 2500KVA @ 22.86 kV				
	INVERTER(S)	SMA AMERICA SC2750-EV-US				
	INVERTER QTY	1				
	MODULE MAKE	FIRST SOLAR FS-6435				
	MODULE QUANTITY	9,072				
	MODULE STC RATING	435W				
	STRING SIZE AND VOLTAGE	6 MODS PER STRING, 1500VDC				
	STRING COUNT	1,512				
	RACKING SYSTEM	SOLAR FLEXRACK				
	RACK CONFIGURATION	2 HIGH IN PORTRAIT				
	TILT	20°				
	AZIMUTH	180°				
	SLA	29°				
	CLEAR ROW SPACING	VARIES, 8 FT. MIN.				
	LATITUDE	35.4147795				
	LONGITUDE	DE -78.7144972				
	UTILITY	DEP				
	CODE CYCLE	NEC 2017				
		1				

2

- 3

3

4

4

1887 LESLIE CAMPBELL AVE. LILLINGTON, NC 27546

Pure Power

Contractors Inc.

6

7

2812 GRAY FOX RD, MONROE NC 28110

[-		8 -	NEW F		
	DRAWING SC	HEDULE		D				42 OLD	
DWG.NO.	DRAWING T	ITLE	REV				-' 		
E-001	COVER SHEET		0			ΑΥΟΠ			
E-002	GENERAL NOTES 1 OF 2	2	0			S AND I			
E-003	GENERAL NOTES 2 OF 2	2	0			DULES			
E-101	GENERAL SITE OVERVIE	ΞW	0						
E-111	SHADING AND TREE RE	MOVAL	0		NOIS				
E-201	AC ONE LINE DIAGRAM		0		REVIS	R PERI			PM
E-211	DC ONE LINE DIAGRAM		0			ED FO			20 7:31 T.DWG
E-221	CONDUCTOR SCHEDUL	E AND CALCS	0			NSSI			3/18/20 3 SHEE
E-301	MONITORING AND LV AC	CWIRING	0			03/18/20			T STAMP CALVACHI 3 001 COVEF
E-311	COMMUNICATIONS DIAC	GRAM	0						Чх ш
E-312	METER WIRING DIAGRA	Μ	0	-		JJECT. 20-		144	
E-321	EQUIPMENT MOUNTING	DETAILS	0			С			
E-401	DC TRENCH AND CIRCU	IT LAYOUT	0						
E-501	EQUIPMENT PAD PLAN	VIEWS	0			\checkmark			
E-511	EQUIPMENT PAD DETAI	LS	0	В		È			
E-521	CONDUIT AND WIRE MA OF 2	NAGEMENT 1	0			Ц Ц Ц	AVF		
E-531	CONDUIT AND WIRE MA OF 2	NAGEMENT 2	0			S S		27546	
E-541	TRENCH DETAILS		0		-	H	M A C	NON	
E-601	GENERAL GROUNDING		0			B	Ц Ц	N N N N N	
E-602	STRUCTURE GROUNDIN	1G	0			∢	С. Ц	NGT	
E-603	MV EQUIPMENT GROUN	DING	0			S Ш	1887		
E-604	FENCE GROUNDING		0				`		
E-701	MV SITE PLAN		0			TE: AWN BY [.]	03	/18/ F(2020
E-801	LABELS AND SIGNAGE		0		СН	ECKED BY	:	Kl	-
E-811	GENERAL SIGNAGE		0			COVER	SHI	EET	
E-901	CUT SHEETS		0		-		<u> </u>	1	
	9	10				E-(JÜ		

	0	1		2	
				3 10 A	
H		<u>-IINITIONS</u> DC STRING: A DESIGNATED OLIANITI		5.10. A	HALL BE
	1.1.	WIRED IN SERIES (POSITIVE TO NEC	GATIVE)	PI 3.11. Al	REVENT LL UNTE
	1.2.	PV SOURCE CIRCUIT: A SINGLE DC S COMMON CONNECTION POINT	STRING CIRCUIT UP TO A	E	
	1.3.	PV OUTPUT CIRCUIT: A CIRCUIT BE		IN	IGRESS
		PV INVERTER	JRCE CIRCUITS AND THE	Λ ΝΛΛ	тері
	1.4.	COMBINER BOX: AN ELECTRICAL BO OUTPUT CIRCUITS ARE FUSED AND	X WHERE PV SOURCE OR ELECTRICALLY	4. <u>IVIA</u> 4.1. G	
	4.5	PARALLELED. TYPICALLY CONTAINS	A DC DISCONNECT.	4.1.1.	ALL M
	1.5.	CONVERTS DC OUTPUT OF PV MOD	ULES INTO AC.		RECO
G				412	SHALL
	1.1.	ALL INSTALLATION PRACTICES SHA	LL CONFORM TO THE NEC,	7.1.2.	TESTE
		NFPA, NFPA70E, NESC, AND OTHER CODES AND STANDARDS. ANY WOR	APPLICABLE LOCAL RK THAT DOES NOT		THEY
		COMPLY SHALL BE CORRECTED AT	THE CONTRACTOR'S	4.1.3.	ALL C
	1.2.	WHEN CODE AND PURE POWER SPI	ECIFICATIONS CONFLICT,		SUTMI
		DIRECTION.	NER'S ENGINEER FOR	4.1.4.	ALL EC
	1.3.	ALL TESTING PRACTICES MUST COI NETA-ATS UNLESS OTHERWISE SPE	MPLY WITH IEEE &/OR		PADLC
				4.2. R	ACEW
F	2.	ENERAL PROVISIONS	NTENDED TO OPERATE IN	4.2.1.	NEW C
		PARALLEL WITH POWER RECEIVED	FROM THE UTILITY. THIS		CONT
		POWER SYSTEM AT A SINGLE POCC	;		OTHEF WITH (
	2.2.	I HE CONTRACTOR SHALL BE RESPONDED AND PROTECTING ANY EXISTING U	UNSIBLE FOR LOCATING	4 7 7	
$\left - \right $	23	ENCOUNTERED IN THE WORK AREA ALL COMMUNICATION AND/OR APPR	S. ROVALS WITH PURF	T. <i>L</i>.<i>L</i>.	
		POWER ENGINEERS AND ENGINEER	R OF RECORD SHALL BE		INSTAI
	2.4.	THE CONTRACTOR SHALL CHECK A	ND VERIFY ALL	4.2.3.	
		DIMENSIONS ON THE DRAWINGS, AI THE ARRAY AND EQUIPMENT PRIOF	ND LAYOUT ALL AREAS OF	424	
E		WORK IN ORDER TO VERIFY THAT N EXISTING CONDITIONS. OR OBSTRU	O DISCREPANCIES, CTIONS EXIST. IF ISSUES	7.2.7.	
		ARE DISCOVERED, CONTRACTOR S	HALL SUBMIT A RFI TO THE	4.2.5.	APPLI
		UNTIL FORMAL DIRECTION IS RECEI	VED.		ENTEF ON RC
	2.5.	APPROVED BY ENGINEER OF RECO	RD IN WRITING.	4.2.6.	EMT, F
	2.6.	ALL CONTRACTORS SHALL PROVID	E TO ENGINEER OF HANGES TO DRAWINGS	4.2.7. 4.2.8.	ALL MI
	0.7	FOR USE IN RECORD DRAWINGS.		429	BE WA
	2.7.	WORK THAT IS BEING PERFORMED	OR NON-CONFORMING		BYEQ
		MATERIAL THAT IS BEING USED TO PROJECT MANAGER, ENGINEER AN	THE PURE POWER D ENGINEER OF RECORD.	4.2.10.	ALL R
	3 V				PAIN H EQUAL
	3.1.	ALL PV MODULES SHALL BE PHYSIC	CALLY INSPECTED PRIOR	4.2.11.	SCHEI
		TO INSTALLATION ON RACKING. MO SCRATCHES THAT PENETRATE THE	DULES WITH UNDERSIDE PROTECTIVE LAMINATE		
		LAYER SHALL NOT BE INSTALLED. A SHALL BE REPORTED TO SITE PRO.	LL DAMAGED MODULES		
	20	IMMEDIATELY.		4.2.12.	RACE
	5.2.	BUSBARS, WIRING TERMINALS, INSU	JLATORS, AND OTHER	4.2.13.	ROADS PVC IN
		FOREIGN MATERIALS SUCH AS DIRT	, MUD, PAINT, PLASTER,	1 2 11	BE LIS
С		CLEANERS, ABRASIVES, OR CORRO MANUFACTURER RECOMMENDED C	SIVE RESIDUES. LEANERS AND CLEANING	7.2.17.	MORE
		PROCESSES SHALL BE FOLLOWED A INSTALLATION MANUAL. THERE SHA	AS DESCRIBED IN THE		WHEN
		PARTS THAT MAY VOID LISTING OR OPERATION OR MECHANICAL STRE	ADVERSELY AFFECT SAFE	4.2.15.	ALL CO ABOVE
		SUCH AS PARTS THAT ARE BROKEN	I, BENT, CUT, OR		OR OT EXPAN
		OVERHEATING.	HENICAE ACTION, OR	4 0 16	300.5(
	3.3.	ALL HOT-DIPPED GALVANIZED FERF BE SUBJECT TO ANY DRILLING, ARE	ROUS MATERIAL THAT WILL PILE DRIVEN, AND/OR	4.2.10.	FITTIN
		COMPROMISE THE INTEGRITY OF THE PROTECTION, SHALL BE TREATED V	HE GALVANIZED	4.2.17.	MOIST L" ANI
	34	COMPOUND TO PREVENT CORROSI	ON. ED FOR TIGHTENING ANY		MOGU OWNE
В	0.4.	HARDWARE. CALIBRATED TORQUE	DRIVERS ARE	4.2.18.	HDPE
		PENDING PURE POWER QC REVIEW	OF CALIBRATION	4.2.19.	USE U
	3.5.	ALL PACKAGING SHALL BE REMOVE	D FROM ALL EQUIPMENT		PROVI ENTRA
	3.6	PRIOR TO COMMISSIONING. RACKING CONTRACTOR SHALL INST	ALL MODULES SOLIARE		BY NE
$\left - \right $		AND PLUMB WITH ADJACENT MODU	LES, IN AN AESTHETIC	4.2.20.	
		SUBJECT TO INSPECTION AND FIELD	D REVIEW BY PURE		SHALL
	3.7.	ALL WIRE MANAGEMENT SHALL BE	DONE NEATLY AND IN AN	4.2.21.	HORIZ
	3.8	ORDERLY AND PROFESSIONAL MAN ALL MODULE, DC STRING AND PV C	INER. DUTPUT CIRCUIT		MV CC COMM
A		CONNECTORS SHALL BE CLEAN AN	D KEPT DRY UNTIL	4.2.22.	MAINT
	3.9.	COPPER CONDUCTORS SHALL NOT	COME IN CONTACT WITH		
		DEVICE OR FITTING DESIGNED FOR	THE PURPOSE WITH		
		ANTI-OXIDATION COMPOUND.			

0

ERMINATED ENDS OF MEDIUM VOLTAG E SEALED WITH HEAT SHRINKABLE END MOISTURE INGRESS.

3

ERMINATED ENDS OF PV OUTPUT CABL INT ENCLOSURES SHALL BE PROTECT OR TAPING AND STORED TO MINIMIZE

ALS AND METHODS

- ATERIALS SHALL BE NEW, IN PROPER ITION, AND MARKED AND LISTED BY A GNIZED TESTING LABORATORY. THE . BE USED FOR THEIR INTENDED PURP
- QUIPMENT SHALL BE ASSEMBLED, INS ED PER MANUFACTURER'S SPECIFICAT ALS. IF INSTALLATION MANUALS ARE MUST BE REQUESTED, RECEIVED AND TO INSTALLATION.
- ONTRACTOR FURNISHED MATERIALS ITTED TO PURE POWER AND RECEIVE R TO CONSTRUCTION OF THIS PROJEC
- QUIPMENT SHALL BE SECURED FROM THORIZED AND UNQUALIFIED PERSONI OCKS PROVIDED BY THE CONTRACTOR

VAYS, CONDUIT BODIES, AND BO

- CONDUIT ROUTING SHOWN IS DIAGRA RACTOR SHALL LAY OUT RUNS TO SUI ITIONS AND THE COORDINATION REQU R TRADES. ALL CHANGES MUST BE PRE OWNER'S ENGINEER AND DOCUMENT INGS.
- LETELY INSTALL ALL CONDUIT RUNS A BANKS BEFORE PULLING CABLE. PULL REL AND BRUSH THROUGH EACH CON LLATION. IF WET, SWAB CONDUIT INT NG CABLES. LUBRICATE CONDUCTORS
- RACTOR MAY INCREASE RACEWAY SIZ APPROVAL FROM OWNER'S ENGINEER
- UT RACEWAY THREADS SHALL BE PRC OSION WITH COLD GALVANIZING ZINC ED TO THE CUT SURFACE.
- ATHER HEAD SHALL BE USED WHEN CO R CONDUITS WITHOUT AN ENCLOSURE DOF.
- FMC, LFNC, AND LFMC CONDUIT SHALL
- ETALLIC CONDUIT SHALL BE GROUNDE
- ACEWAY FITTINGS IN OUTDOOR LOCAT TERPROOF, UON.
- BLE CONDUIT OF ANY KIND WHICH IS N UIPMENT MANUFACTURER SHALL NOT
- SS APPROVED BY PURE POWER ENGIN
- MC CONDUIT IN CONTACT WITH EARTH ED WITH RUST-OLEUM C9578 EPOXY O L TO 6" ABOVE FINISHED GRADE.
- DULE 40 PVC SHALL BE USED FOR BUR JNDER ROADS), FOR CONDUITS ENCAS RETE, OR CONDUITS ENTERING THE I IOUNTED EQUIPMENT FROM BELOW G THE CONDUIT IS NOT EXPOSED, UON INGS.
- WAYS IN EXPOSED EXTERIOR LOCATIO S SHALL BE RMC OR SCHEDULE 80 PV(
- STALLED IN EXPOSED EXTERIOR LOC
- STED AND MARKED AS UV RESISTANT. STRAIGHT EXPOSED CONDUIT RUNS, , SHALL HAVE EXPANSION FITTINGS IN 00.7(B). EXPANSION FITTINGS SHALL A
- I CONDUIT SPANS AN EXPANSION JOIN ONDUITS TRANSITIONING FROM UNDE EGROUND AND TERMINATING ON A CO THER RAISED EQUIPMENT, SHALL HAVE **NSION/DEFLECTION FITTING INSTALLE**
- I TRANSITIONING FROM FREE AIR TO C IG SHALL BE USED TO PREVENT THE EI URE.
- ID "T" CONDUIT BODIES SHALL NOT BE IL-TYPE CONDUIT BODIES SHALL BE CO R'S ENGINEER UPON REQUEST.
- COUPLINGS WITH OTHER TYPES OF CO TED FOR BOTH CONDUIT TYPES.
- L-514B (OR APPROVED EQUAL) HUB LI **IDE MOISTURE PROTECTION FOR CONI** ANCES IN ALL APPLICABLE LOCATIONS C 314.15. CONDUITS SHALL NOT ENTER OP OF ANY OUTDOOR EQUIPMENT.
- ERTICAL MV CONDUIT SWEEPS SHALL H RADIUS. HORIZONTAL MV CONDUIT HAVE MINIMUM 60 INCH RADIUS.
- AIN MINIMUM 12 INCHES OF EDGE TO I ONTALLY AND VERTICALLY AT CROSSI ONDUITS OR DUCTBANKS AND LOW-VO IUNICATIONS CONDUITS.
- AIN ALL CONDUIT ENTRIES TO EQUIPM FACTURER'S DESIGNATED CONDUIT E NGE CONDUITS TO PERMIT THE MOST ING OF CABLES TO TERMINALS AND TC UATE SLACK FOR DISCONNECTION ANI BOW CONNECTORS.

3

4		5 6		7 8		9	10	
4 GE CABLE D CAPS TO LE OUTSIDE OF ED BY E MOISTURE WORKING NATIONAL	4.2.23. ALL CONDUITS S EQUIPPED WITH E PREVENT ABRAS 4.2.24. ALL CONDUIT PAS ASSEMBLIES SHA LISTED FIRE STO 4.2.25. ALL CONDUIT PAS ASSEMBLIES SHA WATERPROOFING WASHERS OR NU CONDUIT ENTRY.	J 0 TUBBED OR ENTERING EQUIPMENT TO BE BUSHINGS OR APPROVED EQUAL TO ION PRIOR TO PULLING CABLE. SSING THROUGH FIRE-RATED ALL BE SEALED WITH A FIRE-RATED, PPING PRODUCT. SSING THROUGH WATERTIGHT ALL BE SEALED WITH A LISTED G PRODUCT. WATERTIGHT CONDUIT TS SHALL BE USED ON BOTH SIDES OF	4.3.10. MV CABLE SPLICE NOTIFIED IF AN UI REQUIRED BY FIE SHALL BE BROUG A SECTIONALIZIN ELBOWS AND MAR 4.3.11. MV CONDUCTORS CONNECTION OF EACH CABLE IN TH GRIPS APPLIED TO THE INSULATION USE OF KELLEMS CONDUCTOR OR	r8ES ARE PROHIBITED. ENGINEER SHALL BE NDERGROUND BREAK IN A MV FEEDER IS ELD CONDITIONS. IN THIS CASE, CABLES GHT ABOVEGROUND AND TERMINATED IN G CABINET WITH LOAD/DEAD-BREAK RKED ON RECORD DRAWINGS.S SHALL BE PULLED USING DIRECT PULLING EYES TO THE CONDUCTORS OF HE CIRCUIT OR BY INDIVIDUAL KELLEMS O EACH CABLE OF THE CIRCUIT OVER WITH THE TAPE SHIELDING REMOVED. GRIPS OVER THE OUTER JACKET OF THE OVER THE SHIELDING TAPE IS NOT	4.6.9. 4.6.10.	Y SOURCE CIRCUIT CONNECTORS MUST BE TO MAKE AND MODEL AS THE MODULE CONNI CONNECTION TO SOURCE CIRCUITS MUST BE MODULE AND CONNECTOR MANUFACTURER NSTRUCTIONS. CONNECTORS LISTED AS "CO BUT NOT IDENTICAL SHALL NOT BE ACCEPTED CONTRACTOR TO VERIFY THAT THE SOURCE CONDUCTOR DIAMETER IS COMPATIBLE WITH CONNECTOR USED. ALL LUG HOLE AND SPACING SIZE SHALL MAT EQUIPMENT STUD SIZE AND/OR BUSBAR HOLE SPACING.	IU IDENTICAL ECTORS. THE PER THE MPATIBLE" D. CIRCUIT I THE CH E SIZE AND RDINATE	Contractors Inc.
MATERIALS POSES. TALLED, AND FIONS AND NOT PROVIDED	4.2.26. ALL SPARE OR EI WITH A NYLON DI ENDS, AND LABEI 4.2.27. SEAL ALL CONDU WEATHERHEADS FOAM OR APPRO	AG LINE, SHALL BE CAPPED ON BOTH ED AS SPARE. IT OPENINGS, WITH THE EXCEPTION OF WITH APPROVED POLYWATER FST KIT VED EQUAL TO PREVENT TRANSMISSION	PERMITTED. 4.3.12. MV CABLES SHAL RATED FOR VOLT CABLES SHALL H/ AND/OR TESTED / STANDARDS: UL 1	L BE OF THE UL TYPE SPECIFIED AND BE AGE INDICATED IN THE DESIGN. THESE AVE BEEN DESIGNED, MANUFACTURED, ACCORDING TO THE FOLLOWING 1072 JCEA S-94-649 (NEMA WC 74)	4.6.12.	NSTALLATION OF FEEDER CONDUCTORS TO I CORRECT PHASE SEQUENCE AT ALL AC OVER FERMINATIONS. REFER TO GENERAL NOTE 5. FRANSFORMER TERMINATION STRANDED COMMUNICATION CABLE TERMINA	PROVIDE RHEAD 5.7 FOR ATIONS SHALL	Pure 2812 GRAY
SHALL BE APPROVAL T.	OF HUMID AIR BE EQUIPMENT AND COMPOUND WILL 4.2.28. CIC HDPE CONDU LOCATIONS. 4.2.29. CONDUITS STUBE	TWEEN INTERIOR AND EXTERIOR OF PREVENT PEST INGRESS. DUCT SEAL NOT BE AN APPROVED EQUAL JIT SHALL NOT BE INSTALLED IN EXPOSED BED UP FROM BELOW GROUND SHALL BE	4.3.13. CABLE PULLING T MANUFACTURER HANDHOLES OR F TENSION AS NEEI 4.3.14. WIRE NUTS SHAL	ENSION SHALL NOT EXCEED CABLE RECOMMENDATIONS. INSTALL PULL BOXES TO REDUCE PULLING DED. L NOT BE USED.	4.6.13.	WIRE SIZE BEING USED. TERMINATE ALL CONTROL WIRING BETWEEN EQUIPMENT ON FIELD WIRING TERMINAL BOA ALL CONTROL WIRES WITH TERMINAL BOARD TERMINAL NUMBER IDENTIFICATION AT BOTH	PIECES OF RDS. LABEL AND ENDS.	SEAL TH CARO
OXES MMATIC.	IN THE APPROPR 4.2.30. CONDUITS STUBE TO PREVENT WA 4.2.31. CABLES OR CONI DRAINAGE TRENO	IATE LOCATIONS AND PLUMB. BED UP SHALL IMMEDIATELY BE CAPPED TER ENTRY DURING CONSTRUCTION. DUIT BURIED BELOW STREAMS OR CHES SHALL MAINTAIN THEIR NEC	4.3.15. MAINTAIN MINIMU CALLED OUT IN N 4.4. <u>ALUMINUM CONI</u> 4.4.1. MINIMUM WIRE SI	EC 300.34. DUCTORS ZE FOR CURRENT CARRYING	4.6.14.	PRESSURE SENSITIVE VINYL; HEAT, COLD, MC AND FADE RESISTANT. USE COMPRESSION TO FOR USE WITH SELECTED COMPRESSION COM PER MANUFACTURER. ALL CONNECTORS AND CORRESPONDING CR	IMPING	F
IT FIELD UIREMENTS OF RE-APPROVED ED IN RECORD	REQUIRED DEPTH OR TRENCH. 4.2.32. ANY CONDUIT RU REQUIRE A PULL TO BE INSTALLED	H BELOW THE BOTTOM OF THE STREAM JN THAT EXCEEDS 360° IN BENDS WILL BOX TO BE INSTALLED. PULL BOX NEEDS OPER NEC 342 - 362.26	CONDUCTORS WH CONDUCTOR SHA ELECTRICAL GRA 4.4.2. ALL TERMINATION USE WITH ALUMIN	HEN IMPLEMENTING ALUMINUM AS A ALL BE 1/0 AWG STRANDED, COMPACT DE AA-8000 SERIES ALLOY. NS SHALL BE SPECIFICALLY LISTED FOR NUM CONDUCTORS.	4.6.15. (4.6.16. (TOOLS SHALL BE LISTED FOR THEIR SPECIFIC APPLICATION. JSE OF A "ONE-SHOT" CRIMPER OR "DIE-LESS SHALL NOT BE USED. COMPRESSION STYLE LUGS AND TERMINATIC	CRIMPERS"	PERMIT DRAWING - NOT RELEASED FOR CONSTRUCTION
L A FLEXIBLE NDUIT AFTER ERIOR BEFORE S AS NEEDED. ZE AS NEEDED	4.3. <u>CONDUCTORS</u> 4.3.1. <u>CONDUCTOR INS</u>	ULATION COLOR SPECIFICATION:	4.4.3. OXIDE INHIBITOR CONDUCTOR IMM BRUSHING AND IN THE LUG. IN ADD PRE-FILLED WITH	MUST BE APPLIED TO EXPOSED IEDIATELY AFTER STRIPPING AND MMEDIATELY PRIOR TO INSTALLATION OF ITION, COMPRESSION LUGS MUST BE OXIDE INHIBITOR.	4.7. <u>GF</u>	RATED FOR THE MAXIMUM DC AND AC VOLTAG SYSTEM. ROUNDING & BONDING SROUNDING SYSTEM COMPONENTS SHALL BI	GE OF THE	
R. DTECTED FROM COMPOUND	PHASE A PHASE B PHASE C	480/277V208/120VBROWNBLACKORANGEREDYELLOWBLUE	4.5. <u>MEDIUM VOLTAG</u> 4.5.1. ELBOWS, BUSHIN PROPERLY LUBRI	GE REQUIREMENTS GS, AND TEST CAPS MUST BE CLEAN AND CATED PER MANUFACTURER'S	472	THEIR PURPOSE, INCLUDING BUT NOT LIMITEI GROUND RODS, GROUNDING LUGS, GROUNDI ETC.	D TO ING CLAMPS,	E
ONDUCTORS E, WHEN NOT	GROUNDED CONDUCTOR EGC GEC	GRAY OR WHITEWHITEGREEN OR BAREGREEN OR BAREGREEN W/ ORANGE OR BAREGREEN W/ ORANGE OR BARE	4.5.2. POWER CABLE, E SHALL BE INSTAL THE REMOVAL, S	LEORE FINAL CONNECTION. LBOW, AND MV TERMINATION DRAINS LED IN A MANNER THAT WILL ALLOW FOR TANDING OFF, AND/OR LANDING OF		AND EXPOSED TO THE ENVIRONMENT SHALL FOR DIRECT BURIAL (DB). THIS INFORMATION CLEARLY NOTED ON PRODUCT SUBMITTALS T APPROVED BY PURE POWER.	BE LISTED I WILL BE TO BE	S, PLLC S, PLLC SE: P-1577 ATAWAY NJ 0885. (732) 465-1000
ED. TIONS SHALL	PHASE A PHASE B PHASE C	BLACK WITH RED MARKED ENDS BLACK WITH YELLOW MARKED ENDS BLACK WITH BLUE MARKED ENDS	4.5.3. TAPE SHIELD ADA POWER CABLE TH 4.5.4. WHEN REQUIRED	APTER KITS ARE TO BE USED WITH APTER KITS ARE SHIELDING. MOUNT MV FAULT INDICATORS SUCH	4.7.3. /	ALL GROUNDING ELECTRODE CONDUCTOR SI ABOVE GRADE MUST BE DONE WITH IRREVER JON.	PLICES RSIBLE CRIMP,	
NOT SUPPLIED T BE INSTALLED NEERING. H SHALL BE	PV DC COND	UCTORS - NEC 2014 OR EARLIER NEGATIVE GROUNDED UNGROUNDED BLUE BLUE	THAT INDICATOR THE NEED TO EN CONDUCTORS OF INDICATORS WITH	WINDOW IS READILY VISIBLE WITHOUT TER THE CABLE COMPARTMENT OR MOVE R OTHER COMPONENTS. LABEL FAULT I CIRCUIT ID CONSISTENT WITH SECTION	4.7.5.	AFTER INSTALLATION, ALL BARE CU WIRES SHALLATION, ALL BARE CU WIRES AND RATIONAL SHALLATIONAL SHAL	HALL NOT BE METALS, ACKING.	D NEW BRUNSV NE (732) 465-
DR APPROVED RIED CONDUITS SED IN NTERIOR OF GRADE SUCH	NEGATIVE (-) DC GEC/EGC PV DC	BLACK WITH WHITE MARKED ENDSBLACKGREEN OR BAREGREEN OR BARECONDUCTORS - NEC 2017NEGATIVE GROUNDED OR UNGROUNDED	4.5.5. ALL MV WORK SH OF ANSI C2 - NATI 4.5.6. SHOP DRAWINGS ENGINEER FOR R CONTRACTOR-FU	ALL COMPLY WITH THE LATEST EDITION IONAL ELECTRICAL SAFETY CODE (NESC). SHALL BE SUBMITTED TO PURE POWER EVIEW AND APPROVAL FOR ALL IRNISHED MV MATERIALS INCLUDING BUT	4.7.6. () 4.7.7.	GEC'S SHALL HAVE AS SHORT A DISTANCE TO GROUNDING ELECTRODE AS POSSIBLE AND A NUMBER OF TURNS. ALL BELOW GRADE GEC SPLICES AND CONNE SHALL BE IRREVERSIBLY CRIMPED OR EXOTH WELDED, UON.	A MINIMUM ECTIONS IERMICALLY	
ON THE ONS OR UNDER C. CATIONS SHALL	POSITIVE (+) NEGATIVE (-) DC GEC/EGC NOTE: MV PHASE LE	BLUE BLACK GREEN OR BARE TTERING TO MATCH ABOVE UNLESS	4.5.7. ARRANGE PHASE LEFT TO RIGHT O FRONT. 4.5.8 MV PAD MOUNTEI	CTIONALIZING CABINETS. S IN ALL MV EQUIPMENT AS A-B-C FROM R TOP TO BOTTOM AS VIEWED FROM THE	4.7.8. I	ALL NON-CURRENT CARRYING METAL PARTS N CONTACT WITH CURRENT-CARRYING CONE SHALL BE GROUNDED. IF THE EQUIPMENT GF POINT OF CONTACT IS PAINTED, THE PAINT/FI THAT LOCATION SHALL BE PROPERLY REMOV	THAT COME DUCTORS ROUNDING NISH AT /ED.	ONS DESCRIPTION IIT - REV. MODULES /
100 FEET OR ISTALLED PER ALSO BE USED IT.	4.3.2. ALL CONDUCTOR AND MATERIAL S DEVIATION REQU RECORD.	IED BY UTILITY S SHALL BE OF THE EXACT SIZE, TYPE, PECIFIED ON THESE DRAWINGS. ANY IRES APPROVAL FROM ENGINEER OF	4.5.9. LOADBREAK ELBO CAPACITIVE TEST	OWS SHALL BE CONFIGURED WITH POINTS.	4.7.9. 	RACKING COMPONENTS AND STRUCTURAL SU MUST BE ELECTRICALLY BONDED TOGETHER MEANS. NTER-RACK BONDING JUMPERS SHALL BE FL COATED COPPER BRAIDING (IE: WILEY WEEBS	JPPORTS BY A LISTED EXIBLE TIN S) OR SOLID	REVISI REVISI ISSUED FOR PERM NERAL NOTES.DWG
ER TO OMBINER BOX E AN D PER NEC	 4.3.3. ALL PV SOURCE / PV-WIRE TYPE, 90 RESISTANT. 4.3.4. ALL LV AC WIRING 90 DEGREES C, U ANY FOLUDMENT 	G SHALL BE XLPE INSULATION RATED AT ON. THIS NOTE WILL BE SUPERSEDED BY	4.5.10. FOLL MOUNTED F SHRINK KITS INTE COMPLY WITH IEE 4.5.11. SILICON BRONZE MEDIUM VOLTAGE	ENDED FOR OUTDOOR USE AND SHALL EE 48 AS A CLASS I TERMINATION. HARDWARE SHALL BE USED ON ALL E BOLTED TERMINATIONS.	4.7.11. 	COPPER WIRE OF SIZE, TYPE, AND TERMINAT SPECIFIED. MODULES SHALL BE GROUNDED TO RACKING WITH A METHOD APPROVED AND LISTED BY T MANUFACTURER. GROUNDING CLIPS OR WAS	ION METHOD SUPPORTS THE RACKING SHERS SHALL	PLT STAMP KLEARY 3/18/20 BLT STAMP KLEARY 3/18/ E-002-003 GE
CONDUIT, A ENTRY OF USED. ONSIDERED BY	4.3.5. ALL COMMUNICA APPROVAL. CABL APPROPRIATE SH	VOLTAGE OR INSULATION STANDARDS. TION CABLES SHALL BE SUBMITTED FOR ES SHALL BE PROVIDED WITH HELDS, DRAIN WIRES, AND COMMON	4.6. TERMINATIONS 4.6.1. ALL EQUIPMENT S RATING EQUAL TO ASSOCIATED COM	SHALL HAVE A TERMINAL TEMPERATURE O OR GREATER THAN THAT OF THE NDUCTORS.	4.7.12.	BE ARRANGED PER THE MANUFACTURER INS SO THAT THE REMOVAL OF A MODULE DOES N NTERRUPT THE RACKING GROUNDING CONN ANY OTHER MODULE ALL EQUIPMENT RACKS, COMBINER BOX RAC	TRUCTIONS NOT ECTION OF KS, AND	LLC.
STED TO	MANUFACTURER SHALL BE BELDE MINIMUM 2 PAIRS 4.3.6. NO CONDUCTOR	RECOMMENDATIONS. RS-485 CABLES N 9842 OR APPROVED EQUAL WITH AND SHIELD AND DRAIN WIRES. SHALL BE INSTALLED IN CONTACT WITH	4.6.2. STRIPPED CONDU FROM DAMAGE A 4.6.3. NEMA RATED, TIN LUGS SHALL BE U MECHANICAL LUG	JCTORS SHOULD BE CLEAN AND FREE T ALL TERMINATIONS. I COATED, LONG BARREL COMPRESSION JSED ON ALL TERMINATIONS.	4.8. <u>EQ</u> 4.8.1.	CHASE RACKS SHALL BE GROUNDED. UIPMENT ALL ELECTRICAL EQUIPMENT LOCATED OUTD	OORS	B H H H
IDUIT S AS REQUIRED ER THROUGH HAVE MINIMUM	SHARP EDGES OI COMPROMISE CC 4.3.7. ALL DC MATERIAI SYSTEM MAX SYS DESIGN.	F RACKING OR RACEWAYS THAT COULD ONDUCTOR INSULATION. LS SHALL BE NRTL LISTED FOR THE STEM VOLTAGE SHOWN IN THE DC	4.6.4. ALL ELECTRICAL BELLEVILLE LOCK SPECIFICATIONS. 4.6.5. ALL COPPER TER	CONNECTIONS SHALL USE CONICAL OR WASHERS UON BY MANUFACTURER MINATIONS SHALL HAVE KOPR-SHIELD OR	(JUNCTION BOXES, COMBINER BOXES, OTHER ENCLOSURES, ETC.) SHALL BE ENVIRONMENT TO AT LEAST NEMA 4 IF MOUNTED VERTICALL 4X IF MOUNTED WITH ACCESS DOOR/PANEL M OUT OF VERTICAL. PROVIDE NEMA 3R ENCLOS WHERE NEMA 4 IS NOT AVAILABLE	R ALLY RATED Y, AND NEMA MOUNTED SURES	JIES CI CAMPBELL AV NC 27546
SWEEPS EDGE SPACING SINGS BETWEEN OLTAGE OR	 4.3.8. CONDUCTORS SH CONDUITS IN ACC NEC 300.19. 4.3.9. LV CABLE SPLICE APPROVED BY PU CASE-BY-CASE B. 	ALL BE SUPPORTED IN VERTICAL CORDANCE WITH THE REQUIREMENTS OF S SHALL NOT BE USED UNLESS JRE POWER ENGINEER ON A ASIS. IN SUCH CASES, ALL SPLICES ARE	4.6.6. OXIDE INHIBITOR COMPRESSION LU ARE UNCOATED A 4.6.7. ALL MECHANICAL CONNECTORS SH	SHALL BE REQUIRED BETWEEN JGS AND BUS BARS WHEN ONE OR BOTH AND ALUMINUM. CONNECTIONS OTHER THAN ELBOW IALL BE MADE USING UL-LISTED	4.8.2.	ANY METAL SHAVINGS RESULTING FROM SITE SHALL BE CLEANED FROM ENCLOSURE INTER SURFACES OF ENCLOSURE, ROOF SURFACE, ADDITIONAL AREAS WHERE OXIDATION OR CO METAL SHAVINGS MAY CAUSE RUST, ELECTRI	E WORK RIORS, TOP AND ANY ONDUCTIVE ICAL SHORT	ESA BL
MENT WITHIN ENTRY SPACE. DIRECT O ALLOW ID PARKING OF	TO BE MADE IN A WATERPROOF SF	CCESSIBLE LOCATIONS WITH LISTED PLICE LUG KITS.	4.6.8. MODULE LEAD CO THAT THEY ARE E FROM EXPOSURE SHALL NOT BE INS MODULE GAPS.	E COMPRESSION LUGS, LUGS TO MATCH E AND TYPE. DNNECTORS SHALL BE INSTALLED SUCH EASILY ACCESSIBLE AND PROTECTED TO DIRECT SUNLIGHT OR RAIN. THEY STALLED WITHIN TUBING, CONDUIT OR	4.8.3. / 	ALL NEMA-3R OUTDOOR ENCLOSURES SHALL NSTALLED WITH A MANUFACTURER APPROVE ORAINAGE AND VENTILATION. ALL CIRCUIT BREAKERS THAT ARE SUBJECT T POWER FLOW SHALL BE LISTED AS BACKFEEI COMPATIBLE.	. BE ED MEANS OF TO REVERSE D	A DATE: 03/18/2020 DRAWN BY: EG CHECKED BY: KL GENERAL NOTES 1 OF 2
4		5 6		7 8		9	10	E-002

	0	1	2
Н	4.8.5. UN	NDERGROUND PULL BOXES OR HANDHOLES SHALL BE	4.12.1
	OF ST TH	PEN BOTTOM TYPE WITH 12 INCHES MINIMUM OF CLASS 5 FONE AT THE BASE TO ALLOW FOR DRAINAGE, UON PER TE DRAWINGS. PULL BOXES SHALL BE RATED FOR THE	4.12.1 4.12.2.
	4.8.6. DC	CATION. DORS OR REMOVABLE PANELS PROVIDING ACCESS TO	4.12.3.
	4.8.7. M	CESSIBLE TO THE DUBLIC SHALL COMPLY WITH NESC	4.12.4.
	4.8.8. AL	EQUIREMENTS FOR TAMPER-PROOF CONSTRUCTION.	4.12.5.
G	4.8.9. EC	ALVANIZED OTTELET EATE OR CORLER TO TREVENT NTRY OF INSECTS AND RODENTS. QUIPMENT MOUNTED ON CONCRETE PADS SHALL NOT BE	4.12.6.
	RE EX	EQUIRED BY MANUFACTURER OR THE GAP (CEEDS 3/8" WIDE. USE ONLY EXTERIOR 100% ACRYLIC LICONE ELASTOMERIC CAULK. NOT USED.	4.12.7.
	4.8.10. EC	QUIPMENT SHALL BE INSTALLED SO AS NOT TO SHADE HE PV ARRAY. ANY POTENTIAL SHADING ISSUES SHALL E REVIEWED BY OWNER'S ENGINEER PRIOR TO	4.12.8.
	4.8.11. FL	STALLATION. JSES SHALL NOT BE INSTALLED UNTIL JUST PRIOR TO DMMISSIONING.	4.12.9.
F	4.8.12. UN TH 4.8.13. PA	NUSED MOUNTING HOLES SHALL BE PLUGGED TO PREVENT IE INGRESS OF MOISTURE AND INSECTS. ND MOUNTED EQUIPMENT LOCATED OUTSIDE OF FENCE	4.12.10.
	SH	IALL BE PROTECTED BY BOLLARDS IF SUBJECT TO VEHICULAR CTIVITY.	4.12.11.
	4.9. TRA 4.9.1. AL	NSFORMERS L CONDUCTORS SHALL BE ROUTED TO MAINTAIN	
	AC SV CC	CCESS TO INDICATORS, VALVES, SAMPLE PORTS, VITCHES, TAP CHANGES, FUSE WELLS, AND OTHER OMPONENTS AND ACCESSORIES REQUIRING OPERATOR	
	AC 4.9.2. VE	CESS. ERIFY THE FOLLOWING: EACTORY WIRING DIAGRAM IS ACCURATE	4.12.12.
E	4.9.2.2. 4.9.2.3.	TRANSFORMER IS LEVEL MEDIUM & LOW VOLTAGE CONDUITS ARE SEPARATED	4 13 RA
	4.9.2.4.	AND IN THEIR OWN COMPARTMENT CONICAL WASHERS SHALL BE USED FOR ALL TERMINATIONS UNLESS SUPPLIED WITH FACTORY	4.13.1.
	- 4.9.2.5.	HARDWARE OR INSTALLATION MANUAL SPECIFY DIFFERENTLY. HARDWARE IS THE PROPER LENGTH AND EXTEND AT	4.13.2.
	4.10.HAR	DWARE	4.13.3.
	4.10.1. AL ST	L HARDWARE IN EXPOSED LOCATIONS SHALL BE AINLESS STEEL OR HOT-DIPPED GALVANIZED STEEL.	
D	3F 4.10.2. AL	R OR HIGHER ENCLOSURES, UON. L HARDWARE USED FOR GROUNDING & BONDING	4.13.4.
	4.10.3. AN HA	ARDWARE.	
	4.10.4. AL _ TC _ RE	L ELECTRICAL AND MECHANICAL HARDWARE TO BE DRQUED PER DEVICE LISTING, OR MANUFACTURERS ECOMMENDATIONS USING A CALIBRATED TORQUE	4.14. <u>SA</u> 4.14.1.
		ERMANENT MARKING PAINT, AFTER TORQUING.	4.14.2.
С	4.11. <u>VVIR</u> 4.11.1. AL BE	<u>E MANAGEMENT</u> L WIRE MANAGEMENT METHODS AND MATERIALS SHALL E APPROVED BY OWNER PRIOR TO INSTALLATION.	4.14.3.
	4.11.2. AL CI OF	L EXPOSED CABLES, SUCH AS MODULE LEADS AND PV RCUIT WIRING SHALL BE SECURED WITH MECHANICAL R OTHER APPROVED SUNLIGHT RESISTANT MEANS. THE	4.14.4.
	4.11.3. PV	SE OF PLASTIC CABLE TIES IS NOT AN APPROVED ETHOD TO SUPPORT OR ATTACH WIRE TO A STRUCTURE. / SOURCE AND OUTPUT CONDUCTOR CABLE CLIPS	4.14.5.
	4.11.4. PL	QUIVALENT.) ASTIC CABLE TIES MAY ONLY BE USED TO BUNDLE PV	
	W W	DURCE CIRCUIT WIRING AND SHALL BE MADE OF EATHER-RESISTANT NYLON-12. FOR WIRE SUPPORT, NLY STAINLESS STEEL CLIPS OR PVC-COATED	4.14.6.
В	4.11.5. PV	PROVED EQUAL). / SOURCE OUTPUT CIRCUIT WIRING SHALL BE	4.14.7.
	I SU NE IN	JPPORTED ADEQUATELY IN LENGTHS NOT TO EXCEED EC REQUIREMENTS. MODULE TO MODULE TERCONNECTIONS SHALL BE SUPPORTED AT A	4.14.8.
	4.11.6. PF	CONNECTION POINT. COTECT WIRE FROM SHARP EDGES WITH UV RATED	
	BY	CABLE TIES.	4.14.9.
	4.12. <u>CON</u> 4.12.1. CO	ICRETE PADS AND UNDERGROUND DNCRETE SPECIFICATIONS, UON:	4.14.10
A	4.12.1.1. 4.12.1.2. 4.12.1.3.	2000 PSF SOIL BEARING CAPACITY 4000 PSI 28-DAY COMPRESSIVE STRENGTH 145 PCF UNIT WEIGHT	4.15. <u>IN</u> 4.15.1
	4.12.1.4. 4 12 1 5	REINFORCING INCLUDING TIES AND STIRRUPS CONFORMS TO ASTM A615 AND GR60 CONFORMS TO ACI301 ACI315 ACI318 ACI305 AND	4.15.2.
		ACI306	

0

1.6. REINFORCING BAR PLACEMENT CONFORM

3

- 1.7. AIR ENTRAINED FOR SEVERE EXPOSURE THE TOP OF ALL CONCRETE SHALL BE SLOPE FROM CENTER FOR POSITIVE DRAINAGE WITH 1% SLOPE.
- TOPS OF CONDUIT SHALL BE A MINIMUM OF 4 ABOVE THE CONCRETE PAD OR GRAVEL BEDD PREVENT INGRESS OF WATER.
- CONDUITS IN CONCRETE PADS SHALL BE PRO SECURED TO AVOID CONDUIT DISPLACEMENT POUR.
- DIRECT BURIAL CONDUCTORS SHALL ENTER PADS THROUGH UNDERGROUND CONDUIT SL EXTENDING AT LEAST 36" OUT FROM EQUIPM
- EQUIPMENT GROUND JUMPER AND GEC SHAL INSTALLED WITHIN CONCRETE PAD BE IN CON SHALL EXTEND AT LEAST 6" OUT FROM EQUIF **EXCAVATION & TRENCHING INSPECTIONS SHA**
- DOCUMENTED AND INSPECTED DAILY AND RIG RAIN EVENT.
- IN ANY EXCAVATION/TRENCH GREATER THAN OSHA-COMPLIANT ACCESS/EGRESS LADDERS PLACED NO MORE THAN EVERY 50'.
- CONDUITS WITH NEGATIVE SLOPE TOWARD E EQUIPMENT SHALL HAVE A PULL BOX OR VAU TO THE ENTRY POINT INTO THE ELECTRICAL WITH CRUSHED STONE IN THE BOTTOM FOR
- PROVIDE 12 INCHES OF CLASS 5 GRAVEL DF BEDDING IN THE BOTTOM OF ALL BOTTOM CO ENTRIES TO OPEN CABLE COMPARTMENTS.
- EQUIPMENT SHALL BE SECURELY ANCHORE CONCRETE PADS OR FOUNDATIONS PER MANUFACTURER'S INSTRUCTIONS USING 1/2" STEEL THREADED RODS EMBEDDED IN PAD 5 AND SECURED WITH ADHESIVE ANCHOR HILT OR APPROVED EQUAL. ANCHOR BOLTS MAY ONLY AFTER OWNER'S ENGINEER REVIEW ANI
- CONCRETE PAD TO BE CURED FOR MINIMUM PRIOR TO SETTING EQUIPMENT ON PAD.
- TRENCHES SHALL BE FREE OF STANDING OF WATER PRIOR TO BACKFILLING.

ACKING AND MODULES

- RACKING IS TO BE INSTALLED PER THE STAMF SIGNED STRUCTURAL SHEETS AND STRUCTU CALCULATIONS.
- ALL RACKING COMPONENTS ARE TO BE INSPE ACCEPTED AT TIME OF DELIVERY. ANY DEFE BE BROUGHT TO THE ATTENTION OF THE PRO MANAGER PRIOR TO INSTALLATION.
- MODULES SHALL NOT BE STACKED DURING IN WITHOUT APPROPRIATE DIVIDERS. EXTRA CA TAKEN TO NOT SCRATCH THE MODULE GLASS BACKSHEETS. ANY SCRATCHED MODULES SH REPLACED SOLELY AT THE CONTRACTOR'S E
- NO PERSONNEL SHALL STEP OR STAND ON M ANY TIME, NOR SHALL INSTALLERS LEAN ON GLASS. RACK STRUCTURE AND MODULES ARI DESIGNED FOR LIVE LOADS AND MAY VOID W/

AFETY SIGNS AND LABELING

- CONTRACTOR SHALL PROVIDE ALL SIGNS AND PER THESE DRAWINGS, LOCAL UTILITY REQUI OSHA AND THE NEC INCLUDING BUT NOT LIMIT SECTIONS 110, 690, AND 705.
- ALL SIGNS SHALL BE HDPE PLASTIC, TWO-COL ENGRAVED, AND UV STABILIZED.
- ALL EQUIPMENT SHALL BE LABELED ON THE F EXTERIOR TO CORRESPOND TO THE IDENTIF SHOWN ON THE DRAWINGS.
- SIGNS SHALL BE FIXED TO EQUIPMENT WITH RATED TWO-PART EPOXY. DOUBLE-SIDED TAP NOT BE USED UNDER ANY CONDITIONS.
- ALL CABLES SHALL BE LABELED AT EACH TER AND AT SPLICE LOCATIONS, AT AN ACCESSIBI INSIDE EQUIPMENT ENCLOSURE, IF POSSIBLE CIRCUIT AND PHASE IDENTIFICATION CORRES THE DRAWINGS.
- CABLE AND CONDUCTOR LABELS SHALL BE H AND APPROVED FOR THEIR ENVIRONMENT. LA NOT COVER COMPRESSION LUGS.
- MV CABLE LABELS SHALL BE ENGRAVED, TWO ENGRAVED PLASTIC, SECURED WITH UV-RESI TIES. THESE LABELS SHALL BE VISIBLE FROM THE ENCLOSURE WITHOUT REACHING INSIDE CABLES.
- PROVIDE ARC FLASH HAZARD WARNING LABE COMPLYING WITH ANSI Z535.4 AND NFPA 70E EQUIPMENT PER DRAWINGS. LABELS SHALL E ON ACCESSIBLE DOORS OR BARRIERS OF OU EQUIPMENT.
- ALL ELECTRICAL PANELS SHALL BE PROVIDED CLEARLY LEGIBLE AND ACCURATE PANEL SCH CIRCUIT DIRECTORY.
- PHASE TAPING OF LVAC, DC, COMMUNICATIO SENSOR WIRES IS NOT APPROVED.
- ISTRUMENTATION AND CONTROLS
- COMMUNICATION WIRES OR CABLES SHALL N SPLICED.
- ANALOG SENSOR CABLES SHALL NOT BE SHC SENSORS COMMUNICATING VIA RS485 DIGITAI MAY BE SHORTENED. 2 3

MS TO CRSI	4.15.3. WITHIN THE METER AND RECLOSER, GREEN WIRE SHALL	ACRONY	AND ABBREVIATIONS	— SWITCH	н 💶 с
	ONLY BE USED FOR GROUNDING.	AAC		- SWITCH WITH FUSED CUTOUT	
DAWAY	4.15.4. WITHIN THE METER AND RECLOSER, WHITE WIRE SHALL	AAAC	ALL ALUMINUM ALLOY CONDUCTOR		LIS C
AT LEAST A	UNLY BE USED FOR NEUTRAL WIRES.				
INCHES	SHALL LAND ON AN INSTALLED GROUND BAR. THE	AHJ	AUTHORITY HAVING JURISDICTION	GANG OPERATED AIR-BREAK	
DING TO	CABINETS SHALL NOT BE USED AS A GROUNDING	AL	ALUMINUM	SWITCH	
	CONDUCTOR.	ANSI	AMERICAN NATIONAL STANDARDS INSTITUTE	– — HOOK STICK SWITCH	
PERLY	4.15.6. RJ45 ETHERNET CABLE TERMINATIONS SHALL BE CRIMPED	APPROX	APPROXIMATE	-SO- FUSED CUT-OUT	M M
DURING	4 15 7 ALL FIELD TERMINATED COMMS CABLES INCLUDING BUT	ASTM	AMERICAN SOCIETY FOR TESTING AND MATERIALS		D D D D D D D D D D D D D D D D D D D
CONCRETE	NOT LIMITED TO FIBER OPTIC, ETHERNET, AND RS485	AWG	AMERICAN WIRE GAUGE		
EEVE	SHALL BE TESTED PRIOR TO LANDING.	AZ	AZIMUTH		AY .
NT PAD.	4.15.8. ALL EQUIPMENT BATTERIES SHALL BE INSTALLED AND	BOM			G H
		C		3 2	
	4.15.9. ALL METEOROLOGICAL STATIONS, MASTS, INSTRUMENTS,				
	CONNECTIONS, SCADA SYSTEM CONNECTIONS, AND				
GHT AFTER A	GROUNDING SYSTEMS SHALL BE INSTALLED SUCH THAT:	CIC			
	4.15.9.1. NO SHADING OF ANY PYRANOMETERS	COMM	COMMUNICATIONS		
4' IN DEPTH,	4.15.9.2. MINIMIZE SHADING OF PHOTOVOLTAIC MODULES	CONT'D	CONTINUED		
SHALL BE	4.15.9.3. PROPER FUNCTION OF INSTRUMENTATION IS NOT	CPT	CONTROL POWER TRANSFORMER		SEAL HITH CARO
ECTRICAL		СТ	CURRENT TRANSFORMER		I LOOFESSTON TO THE
	4.15.9.4. IN FULL CONFORMANCE WITH THE MANUEACTURERS' SPECIFICATIONS AND ANY	CU	COPPER		SEAL
QUIPMENT	APPLICABLE AHJ	DAS	DATA ACQUISITION SYSTEM		
RAINAGE.	4.15.10. ALL SENSOR CALIBRATION CERTIFICATES SHALL BE	DC	DIRECT CURRENT		
	PROVIDED TO PURE POWER	DG	DISTRIBUTED GENERATION		F FINITIAN LEAR WELL
ווטטו	4.15.11. PYRANOMETERS SHALL BE MOUNTED TO AVOID				PERMIT DRAWING - NOT RELEASED FOR CONSTRUCTION
о то	SHADING, REFLECTIONS FROM LIGHT-COLORED SURFACES AND EXCESS HEAT				
-	4.15.12. VERIFY TILT AND I FVFL OF ALL PYRANOMETERS LISING	FGC			
STAINLESS	AN INCLINOMETER. INCLINOMETERS MUST BE	EMT	ELECTRICAL METALLIC TUBING		
	MAGNETICALLY SHIELDED AND ACCURATE TO ±0.2° OR	 F	FAHRENHEIT		
BE USED	BEITER, SMART DEVICE-BASED INCLINOMETERS ARE NOT	GCR	GROUND COVERAGE RATIO		
D APPROVAL.	AUULFIADLE. 4 15 13 GHI PYRANOMETERS SHALL RE INSTALLED LEVEL IN ALL	GEC	GROUNDING ELECTRODE CONDUCTOR		
OF 2 DAYS	DIRECTIONS. VERIFY LEVEL USING SENSOR'S BUILT-IN	GET	GROUNDING ELECTRODE TERMINAL		
	BUBBLE LEVEL IF EQUIPPED OR WITH A MAGNETICALLY	GHI	GLOBAL HORIZONTAL IRRADIANCE		
R FLOWING	SHIELDED INCLINOMETER.	GND	GROUND		
	4.15.14. FIXED-TILT POA PYRANOMETERS SHALL BE INSTALLED	GOAB	GANG OPERATED AIR BREAK		E
	PHOTOVOLTAIC MODULES AND THE PLANE OF THE	GR			
PED AND	MATCH THE ARRAY.				
RAL	4.15.15. TRACKING POA PYRANOMETERS SHALL BE LEVELED BY	IMC	INTERMEDIATE METAL CONDUIT		
	MANUALLY PLACING TRACKER ROW IN STOW/LEVEL MODE	JB	JUNCTION BOX		
	(0° RUTATION, VERIFY WITH SHIELDED INCLINOMETER OR LEVEL PLACED ON MODULES) AND CONFIRM SENSOR IS	kV	KILOVOLT		
JECT	LEVEL IN ALL DIRECTIONS. PYRANOMETER SHALL BE	kW	KILOWATT		
0201	MOUNTED CENTRAL TO THE AXIS OF ROTATION.	LEA	LOW-ENERGY ANALOG		
ISTALLATION	4.15.16. BACK OF MODULE TEMPERATURE SENSORS SHALL BE	LFNC	LIQUID TIGHT FLEXIBLE NON-METALLIC CONDUIT		S-100
RE MUST BE	ADHERED TO THE BACK SIDE OF AN OPERATIONAL PV	LV	LOW VOLTAGE, <2000V		
	THE CENTER OF A ROW OF PV MODULES USING A	MEI	METEOROLOGICAL		
KPENSE.	THERMALLY CONDUCTIVE COMPOUND CONSISTENT WITH	MISC			
ODULES AT	THE PV MODULE MANUFACTURER'S AND THE BACK OF	MOV	METAL OXIDE VARISTOR		PH02
IODULE	MODULES MANUFACTURER'S RECOMMENDATIONS.	MCOV	MAXIMUM CONTINUOUS OPERATING VOLTAGE		
E NUT ARANTY		MV	MEDIUM VOLTAGE		
		MVA	MEGA VOLT-AMPS		
		MW	MEGAWATT		
LABELS		(N)	NEW		
REMENTS,		NEC	NATIONAL ELECTRICAL CODE		OTT
TED TO		NEG			
		NESC			
-011			ON CENTER		
RONT					
CATION			OUTSIDE DIAMFTER		
		OH	OVERHEAD		3/2020
		PDI	POLYMER DEADEND INSULATOR		118/2(118/2(ΛMP
		PH/Ø	PHASE		
MINATION		PNL	PANEL		N NO
E POINT		POA	PLANE OF ARRAY		PROJECT: 20-PP-044
		POCC	POINT OF COMMON COUPLING		
FUNDING TO		POI			
EAT SHRINK		POS T	PUSITIVE		
BELS SHALL		۲۱ D\/			
		PVC	POLYVINYL CHLORIDE		$ \times $
		RFI	REQUEST FOR INFORMATION		в Ш
		RMC	RIGID METAL CONDUIT		
OR MOVING		SCADA	SUPERVISORY CONTROL AND DATA ACQUISITION		
_		SCH	SCHEDULE		
		SW	SWITCH		N54
		TBD			
IDOOR					
			UNDERVITTERS LADURATURIES		
			ULTRAVIOLET		
IEDULE OR		V	VOLT		
		VA	VOLT AMPS		Ξ ³⁸ Π
,		VAC	VOLTS ALTERNATING CURRENT		
		VDC	VOLTS DIRECT CURRENT		DATE: 03/18/202
OT BE		VT	VOLTAGE TRANSFORMER		DRAWN BY: EG
		WS	WEATHER STATION		CHECKED BY: KL
		•			
RTENED.		XFMR	TRANSFORMER		GENERAL NOTES

1. REFER TO E-221 FOR WIRE SPECIFICATIONS 2. ALL RELAY SETTINGS REQUIRE UTILITY APPROVAL AND ARE SUBJECT TO CHANGE PENDING COORDINATION STUDY.

GENERAL NOTES:

8					
		UTILITY AC SYSTEM SIZE (MW)	DUKE ENERGY PROGRESS 2.750	\exists_{H}	L ci
]	DC SYSTEM SIZE (MW) DC/AC RATIO	<u>3.8556</u> 1.40		
		PV MODULES DAS MANUFACTURER	(9,072) FIRST SOLAR FS-6425 TBD		tors
	A	IN INVERTER	VERTER (1) SMA AMERICA SC2750-EV-US	_	rac vc 28
		MAX AC KW MAX AC KVA	2750 2750		ont
	M	OUTPUT VOLTAGE	<u>600</u> 2646.0	_	WON C
	POV	VER FACTOR RANGE	+/- 0.95 TBD		X RD
	В	UL1741 AND IEEE1547	NSFORMER		AY FO
		MANUFACTURER QUANTITY	1 2500 (@ 50 dogC)	G	2 GR
			125 MIN. 30 MIN		78
	NO		22.86 kV 600V	_	
			6.0%, +/-7.5% @85°C GRDY		
	C				SFAL WILLING
		MANUFACTURER MODEL NUMBER	SEL 735VB10910FXXXXX16102XX	_	SEAL HINH CAROLULA
					SEAL
			ARTECHE ME-025/CCR25-20		
	INSTRUMEN	VTATION CLUSTER P/N QUANTITY	771029999-H 1	F	THE ASSOCION OF THE ASSOCION
		PT MODEL NUMBER	URN-24 757446290-H		PERMIT DRAWING - NOT RELEASED FOR CONSTRUCTION
		PT QUANTITY PT RATIO	<u>3</u> 120:1		
		CT MODEL NUMBER CT PART NUMBER	CRE-24 756246040-H		
		CT QUANTITY CT RATIO	<u>3</u> 200:5		
	<u> </u>	GANG OPERATED	D LOCKABLE AIR SWITCH COOPER		
		MODEL NUMBER QUANTITY	<u>M2HA2SR2CHTV2</u> 1		
	F	PRIMAF MANUFACTURER	RY RECLOSER TAVRIDA	_	
		MODEL NUMBER KV BIL	OSM25_AI_2(630_150_2) 150kV	E	
		CT RATIO PT RATIO	<u>600:1</u> 234.5:1		3854 3 6
	RI	ELAY MODEL NUMBER	0651R2ACXBA8AE1112DEXX		2-157 2-157 47 NJ 06 465-11
	G	BLADED			
		MANUFACTURER MODEL NUMBER	CP710232-PB	_	
			27 kV 200 A		
			OHIO BRASS		NC FI NC FI
		QUANTITY	13 15.3 kV	_	U (732)
				D	HONE
		MANUFACTURER	EATON 125 A NEMA 3R	_	
	J	MANUFACTURER	CPT		TAYOL
	ĸ	RATING EL BOW	5 kVA		
		MANUFACTURER	HUBBELL 15.3 kV	_	
		DUTY CYCLE	18 kV		SCRIPT SCRIPT
		MANUFACTURER MODEL NUMBER	S&C C 98052-P-C & 526003		
		QUANTITY RATING	1 29 kV 3 A		RE FOR P
				C	SSUED 3/2020 7
		RELAY S			8/20
	DEVICE		TIME DELAY		03/1 03/1 . <u>1 STA</u>
	<u>50</u>	550 A 91 Δ	<u>NONE</u> 1.0 (U4 CURVE)	\exists	<u>2</u> ○ □ □ [□] [□] □ PROJECT: 20-PP-044
	<u>51G</u> 59-1	21 A 110%	1.25 (U4 CURVE) 0.167		
	<u>81U-1</u> <u>81O-1</u>	57.0 Hz 60.5 Hz	0.167		
		INVERTER FA		B	
	<u>27-1</u> 27-2	90%	0.167		AVE AVE
	<u>59-1</u> 59-2	<u>110%</u> 110%	0.167		S (
	81U-1 810-1	57.0 Hz 60.5 Hz	0.167 0.167		IE:
					N S S S S S S S S S S S S S S S S S S S
					A E
				A	DATE: 03/18/2020
					CHECKED BY: KL
					AC ONE LINE DIAGRAM
					E_201
8		9	10		L-201

AC	MAX DC	NUMBER	NUMBER	NUMBER OF	MAX. POWER	MAX POWER	ΜΑΧ	MAX SHORT		DC /
VOLTAGE	INPUT	OF	OF	MODULES	POINT	POINT	SYSTEM	CIRCUIT	DC WATTS:	AC
OUTPUT:	VOLTAGE	MODULES	STRINGS:	PER	CURRENT	VOLTAGE	VOLTAGE	CURRENT		RATIO
600	1500	9,072	1512	6	3583.4	1101.6	1441.2	4819.5	3,946,320	1.435

4	5	6	7	

		0			1			2				3		
Н		CIRCUI	IT ID		AC VOLTAGE	MAX	MAX NO CURRE CARRY	. OF NT ING PA	NO OF ARALLEL	PHASES	WIRING CONFIG	ERMINAL RATING	WIRE RATING	
			11	(FT)	24	21	IN RACE	WAY		3	3\W/	(*C):	90	
		AC-0)2	20	120	16	2		5	1	2W	75	90	
G		NOTE: NO	WIRE FR	NOM POLE MO	DUNTED CPT	r to load <u>ATIO</u>	CENTER T	O BE UV	RATED.					
F												MAX		
		INVERTER	CIR	CUIT ID		MODULE		CIRCUIT LENGTH (FT)	NUMBEF	R MODULES PER S STRING	S NUMBER OF MODULE	POWE POINT POINT	R SYSTI SYSTI	(Em Ige
			CB. CB.	X-01-01 X-01-02	FIRST FIRST	SOLAR FS- SOLAR FS-	6435 6435	765 655	88 88	6 6	528 528	1101.6 1101.6	5 1441 5 1441	.2 .2
			CB	X-01-03	FIRST	SOLAR FS-	6435	565	92	6	552	1101.6	1441	.2
			CB	X-01-04 X-01-05	FIRST	SOLAR FS-	6435 6435	445 385	88	6	528	1101.6	i 1441	.2 .2
			CB	X-01-06	FIRST	SOLAR FS-	6435 6435	355	88	6	528	1101.6	i 1441	.2
			CB	X-01-07 X-01-08	FIRST	SOLAR FS-	6435 6435	295	92	6	552	1101.6	5 1441 5 1441	.2
E		INV-1	CB	X-01-09	FIRST	SOLAR FS-	6435	200	88	6	528	1101.6	1441	.2
			CB	X-01-10 X-01-11	FIRST	SOLAR FS-	6435 6435	110	88	6	528	1101.6	i 1441	.2 .2
			CB	X-01-12	FIRST	SOLAR FS-	6435	80	92	6	552	1101.6	1441	.2
			CB	X-01-13 X-01-14	FIRST	SOLAR FS- SOLAR FS-	6435 6435	100	88	6	528	1101.6	5 1441 5 1441	.2
			CB	X-01-15	FIRST	SOLAR FS-	6435	125	88	6	528	1101.6	1441	.2
			CB. CB	X-01-16 X-01-17	FIRST : FIRST :	SOLAR FS- SOLAR FS-	6435 6435	190 315	88	6	528	1101.6	5 1441 5 1441	.2 .2
		L						5,080	1,512	1	9,072			
D														
							CIRCUIT	NUMBEF		ES NUMB	ER MA	X MA	X	ЛАХ
	-	CIRCU	it id		MODULE		LENGTH (FT)	OF STRINGS	PER S STRIN	G MODU		AGE		OIN
		SINGLE S	STRING ING	FIRS	SOLAR FS	-6435	300	1	6	6	110	1.6 144	1.2	2.4
		HARNESS	<u>S (TYP.)</u>	FIRS	SOLAR FS	-6435	300	6	6	36	110	1.6 144	1.2	14.
С		8-STR HARNESS	ING S (TYP.)	FIRS	SOLAR FS	-6435	300	8	6	48	110	1.6 144	1.2	19.
		*S			SHEET. HO	DWEVER, F	PLEASE PL	ACE NO I	MORE TH	AN (8) #8 C	U PER CON	NDUIT.		
		E-221 SCA	LE: NTS											
В														
	-		T ID	FROM		то				NO OF PARALLEL	PHASES		MAX. CURRENT	
			1			סופבה המי ה			(VAC)	SETS			(A)	
		MV-0 MV-0	2	XFMR-1 RISER POL	E F	NIDER POLE POI	1	350	22,860 22,860	1	3	3VV 3W	63.1 63.1	
						^ -								
		(4) IV (E-221) so		ABLE (JALUU		JINS							
		00	., INI	-										

	4			5			6		7			3	;	9			10		
	AC						WIRE	EUSE AND CON									CONDUIT MIN SIZE		
CONT	T. CONDU		MAX. CUR / CONDIT	RENT IONS DROE	AGE % FILI	_ OCPD (A)	WIRE SIZE	E AND QTY (PER	MIN. BARE CU EGC SIZE (PER	CONDUIT MIN SIZE	-			DC-A	(2) CU #8 P (1) CU #6	V-WIRE BARE	1 IN.	el l	rs Inc
(A)	FACTO	DR FACTOR	OF USE	(A) 6.12	2% 29.6%	30	(3) #6	AL XHHW-2	(1) #6	AND QTY (1) 1"	*			DC-B	(6) CU #8 P (1) CU #6	V-WIRE BARE	1-1/2"		acto 3 28110
20	1.00	0.96	17	0.35	5% 3.6%	20	(2) #12	AL XHHW-2	(1) #12	(5) 1"				DC-C	(8) CU #8 F (1) CU #6	V-WIRE BARE	2"	0	ontr ROE NC
														DC-D	(10) CU #8 F (1) CU #6	PV-WIRE BARE	2"	2	C(
														DC-E	(14) CU #8 F (1) CU #6	PV-WIRE BARE	2-1/2"	D	FOX RE
														DC-F	(16) CU #8 F (1) CU #6	PV-WIRE BARE	2-1/2"		GRAY
														DC-G	(18) CU #8 F (1) CU #6	PV-WIRE BARE	2-1/2"		2812
													3 E-22	DC STF	RING (<u>CONDU</u>	IT SIZES	SEAL	ANIII/////
	D			ONDUIT S	CHEDULE														CARO ESSTO SEAL 039678
		MAX NO.	OF					UT	MAX				WIRE, FUSE, AND		E				N LEAR WHILE
POV PO CURF	VER SHO	CURRE RT CARRY UIT ENT N RACEN	NT TERMIN NG RATIN TORS (°C):	IAL WIRE G RATING (°C): (f	PARALLEL CUP SETS (I POS/NEG) 1.2	RRENT CURR SC X (ISC X 25) (A) X 1.25	ENT FILL 1.25 DERAT) (A) FACTO	TEMP. CORRECTIO R FACTOR	ON CURRENT / CONDITIONS OF USE (A)	VOLTAGE DROP (%	% FILL	OCPD (A)	WIRE SIZE AND QTY (PE PARALLEL SET/CONDU	ER EGC SIZE IT) (PER CONDUIT)	O CONDUIT MIN SIZE AND QTY	*		PERMIT I RELEASED F	DRAWING - NOT OR CONSTRUCTION
20	8.6 22 8.6 22	4 2 4 2	90	90	1 2 1 2	80.5 35 [.] 80.5 35 [.]	1 1.00 1 1.00	0.91	308 308	1.02%	33.8%	400	(2) 600 KCMIL AL PV WIF (2) 600 KCMIL AL PV WIF	RE (1) #3 RE (1) #3	(1) 3"				
21 20	8.0 23 8.6 22	5 <u>2</u> 422	90 90	90 90	1 2 1 2	93.3 367 80.5 35 ⁷	7 1.00 1 1.00	0.91	322 308	0.79% 0.60%	33.8% 33.8%	400 400	(2) 600 KCMIL AL PV WIF (2) 600 KCMIL AL PV WIF	RE (1) #3 RE (1) #3	(1) 3" (1) 3"	-	-		
20 20	8.6 22 8.6 22	4 2 4 2	90 90	90 90	1 2 1 2	80.5 35 ⁷ 80.5 35 ⁷	1 1.00 1 1.00	0.91 0.91	308 308	0.52% 0.47%	33.8% 33.8%	400 400	(2) 600 KCMIL AL PV WIF (2) 600 KCMIL AL PV WIF	RE (1) #3 RE (1) #3	(1) 3" (1) 3"				
20 21	8.6 22 8.0 23	4 2 5 2	90 90	90 90	1 2 1 2	80.5 35 [.] 93.3 36	1 1.00 7 1.00	0.91	308 322	0.39% 0.37%	33.8% 33.8%	400 400	(2) 600 KCMIL AL PV WIF (2) 600 KCMIL AL PV WIF	RE (1) #3 RE (1) #3	(1) 3" (1) 3"				
20	8.6 22 8.6 22	4 2 4 2	90	90	$ \begin{array}{c c} 1 & 2 \\ \hline 1 & 2 \\ \hline 1 & 2 \\ \hline \end{array} $	80.5 35 ⁻ 80.5 35 ⁻	1 1.00 1 1.00	0.91	308 308	0.27%	33.8% 33.8%	400 400	(2) 600 KCMIL AL PV WIF (2) 600 KCMIL AL PV WIF	RE (1) #3 RE (1) #3	(1) 3"	_			01 ~ ² 8
20	8.6 22 8.0 23	4 2 5 2	90	90		80.5 35 ⁷ 93.3 367	1 1.00 7 1.00	0.91	308	0.15%	33.8%	400	(2) 600 KCMIL AL PV WIF (2) 600 KCMIL AL PV WIF	$\begin{array}{ccc} \text{RE} & (1) \#3 \\ \text{RE} & (1) \#3$	(1) 3"			A A	PLL(P-157 47 NJ 088 465-100
20	8.6 22 8.6 22	4 2 4 2 4 2	90	90		80.5 35 80.5 35	1 1.00 1 1.00	0.91	308	0.08%	33.8% 33.8%	400	(2) 600 KCMIL AL PV WIF (2) 600 KCMIL AL PV WIF (2) 600 KCMIL AL PV WIF	$\begin{array}{c c} \hline (1) #3 \\ $	(1) 3"			K	ENSE: I ISCATAW AX (732)
20	8.6 22 8.0 23	4 2 5 2	90	90	1 2 1 2	80.5 35 ⁷ 93.3 367	1 1.00 7 1.00	0.91	308 322	0.25%	33.8% 33.8%	400	(2) 600 KCMIL AL PV WIF (2) 600 KCMIL AL PV WIF	RE (1) #3 RE (1) #3	(1) 3"	-	-		
		I	I			I	AVERAGE (BX DC VOLTAGE	E DROP	0.40%		1							AC FIR AC FIR AUNSWIC 465-100
		DC SOUF	RCE CIRC		DULE														242 OL
		MAX NO. OF			_								WIRE, FUSE, AND C	ONDUIT SIZ	=	_) LAYOUT	
K ER IT ENT (MAX SHORT CIRCUIT CURRENT	CURRENT CARRYING CONDUCTORS IN RACEWAY	TERMINAL V RATING RA (°C):	VIRE PARAL ATING SET (°C): (POS/N	DF MAX LEL CURREN S (ISC X 1.25 IEG) (A)	CONT. T CURRENT 5) (ISC X 1.25 X 1.25) (A)	FILL DERATE FACTOR	TEMP. CORRECTION FACTOR	MAX CURRENT / V CONDITIONS E OF USE (A)	OLTAGE PROP (%)	% FILL	OCPD (A)	WIRE SIZE AND QTY (PER PARALLEL SET/CONDUIT)	MIN. BARE CU EGC SIZE (PER CONDUIT)	CONDUIT MIN SIZE AND QTY*			PTION . MODULES ANI	DWG
L	2.6	8	90	90 1	3.2	4.0	0.70	0.91	5.0	0.16%	N/A	4	N/A	N/A	N/A	-		DESCRI MIT - REV	ND SCHEI
2	15.3	8	90	90 1	19.1	24.0	0.70	0.91	30.0	0.61%	25.3%	25	(2) #8 CU PV WIRE	(1) #6	(1) 2"	_		REVI:	:50 PM AND COI
0	20.4	8	90	90 1	25.5	32.0	0.70	0.91	40.0	0.81%	25.3% NOTE: 25	35 5.3% CO	(2) #8 CU PV WIRE	(1) #6 (1) #6 EGC IN 2"	(1) 2" CONDUIT	_		C	18/2020 7
																		DATE 03/18/20	STAMP LVACHI 3 1-221 DC
																			20-PP-044
																		Υ Υ	
																		C R	
		CONT.	CONDUIT	TEMP	MAX.				WIRE, FUSE,			E N. SIZE FO	GC .					S U	APBEL 27546
NEC	C TABLE	CURRENT (MAX I X 1.25) (A)	FILL DERATE FACTOR	CORRECTION FACTOR	CURRENT / CONDITIONS OF USE (A)	VOLTAGE DROP (%)	WIRE S	IZE AND QTY (PEF SET/CONDUIT	R PARALLEL)			(PER UP/COND	UIT)						N, NC
310.60(C)78, 1 CKT N/A	87 87	1.00 1.00	1.05 1.00	66 70	0.10%	(3) #1/0 (4) N	25kV MV 90, XLPE //ERLIN 336.4 KCM	OR EPR, AL IIL ACSR	1/3 N/A		N/A N/A	(1) 5" OVERHEAD					⊢ ► ►	NGTOI
																		E S	1887 LILLII
																			03/18/2020
																		DRAWN BY	MDBY:KL
													NOTE: WIRE	LENGTHS PROV	DED ARE N	NOT TO BE USE	ED FOR WIRE	CON SCHEDUL	DUCTOR E AND CALCS

	AC								WIRE	. FUSE. AND COI	NDUIT SIZE		_						(CONDUIT MIN SIZE			
CO CURI	NT. RENT	CONDUIT FILL DERATE	TEMP. DRRECTION	MAX. CURR / CONDITIC		TAGE %	FILL	OCPD (A)	WIRE SIZE PARALLEL	AND QTY (PER SET/CONDUIT)	MIN. BARE C EGC SIZE (P	CU CONDUI	Г [;			DC	C-A	(2) CU #8 PV-V (1) CU #6 BA	VIRE .RE	1 IN.		G	ors Inc
(/ 2	4) 26	FACTOR 1.00	0.96	22	4) 6.	12% 29	9.6%	30	(3) #6	AL XHHW-2	(1) #6	AND QTY (1) 1"	· *			DC	С-В	(6) CU #8 PV-V (1) CU #6 BA	VIRE .RE	1-1/2"		3	acto c 28110
2	20	1.00	0.96	17	0.	35% 3	3.6%	20	(2) #12	AL XHHW-2	(1) #12	(5) 1"				DC	C-C	(8) CU #8 PV-V (1) CU #6 BA	VIRE .RE	2"		0	Ontr
																DC	C-D (10) CU #8 PV-\ (1) CU #6 BA	WIRE .RE	2"			C, MON
																DC	С-Е (14) CU #8 PV-\ (1) CU #6 BA	WIRE .RE	2-1/2"			TOX RE
																DC	C-F (16) CU #8 PV-\ (1) CU #6 BA	WIRE .RE	2-1/2"			GRAY F
																DC)-G (18) CU #8 PV-V (1) CU #6 BA	WIRE .RE	2-1/2"	G		2812 (
																	I						
																3 E-221/5	DC STR	RING CO	ONDUI	T SIZES			
																					SEAL		
																						C FESS	
		DC CO	NDUCTOF	R AND CO		SCHEDUL	E														1111111	SEAL 03967	
	MAX	MAX	MAX NO. OF			NO OF	MAX	CONT	CONDL	лт	MAX					AND CC					F F	NIN LE	APINE 18/2020
P		SHORT	CURRENT CARRYING	TERMINA RATING	L WIRE RATING	PARALLEL	CURRENT	T CURREN	FILL	TEMP. F CORRECTIO			E % FILI		WIRE SIZE AND Q	TY (PER	EGC SIZE	CONDUIT MIN SIZE			PE RELEAS	RMIT DRAW	ING - NOT DINSTRUCTION
cu	IRRENT	CURRENT C	ONDUCTOR	:S (°C): /	(°C):	(POS/NEG)	1.25) (A)	X 1.25) (A) FACTO	R FACTOR	OF USE (/	A)					CONDUIT)	AND QTY*					
	208.6 208.6	224 224	2	90 90	90 90	1	280.5 280.5	351 351	1.00 1.00	0.91	308 308	1.02% 0.88%	33.8% 33.8%	400 400	(2) 600 KCMIL AL F (2) 600 KCMIL AL F	PV WIRE PV WIRE	(1) #3 (1) #3	(1) 3" (1) 3"					
	218.0 208.6	235 224	2	90 90	90 90	1	293.3 280.5	367 351	1.00	0.91	322 308	0.79%	33.8% 33.8%	400 400	(2) 600 KCMIL AL F (2) 600 KCMIL AL F	PV WIRE	(1) #3 (1) #3	(1) 3" (1) 3"					
	208.6 208.6	224 224	2	90 90	90 90	1	280.5 280.5	351 351	1.00	0.91 0.91	308 308	0.52%	33.8% 33.8%	400	(2) 600 KCMIL AL F (2) 600 KCMIL AL F	PV WIRE PV WIRE	(1) #3 (1) #3	(1) 3"					
	208.6 218.0	224	2	90	90	1	280.5 293.3	351	1.00	0.91	308	0.39%	33.8%	400	(2) 600 KCMIL AL F	PV WIRE	(1) #3	(1) 3"					
	208.6	224	2	90	90	1	280.5	351	1.00	0.91	308	0.27%	33.8%	400	(2) 600 KCMIL AL F		(1) #3	(1) 3"			E		
	208.6	224	2	90	90	1	280.5	351	1.00	0.91	308	0.15%	33.8%	400	(2) 600 KCMIL AL F	PV WIRE	(1) #3	(1) 3"					577 J 08854 -1005
	218.0 208.6	235	2	90	90	1	293.3	367	1.00	0.91	322	0.11%	33.8%	400	(2) 600 KCMIL AL F (2) 600 KCMIL AL F	PV WIRE PV WIRE	(1)#3 (1)#3	(1) 3"			C	5	
	208.6 208.6	224 224	2 2	90 90	90 90	1 1	280.5 280.5	351 351	1.00 1.00	0.91	308 308	0.13%	33.8% 33.8%	400 400 400	(2) 600 KCMIL AL F (2) 600 KCMIL AL F	PV WIRE PV WIRE	(1) #3 (1) #3	(1) 3" (1) 3"					
	208.6 218.0	224 235	2	90 90	90 90	1	280.5 293.3	351 367	1.00 1.00	0.91	308 322	0.25%	33.8% 33.8%	400 400 400	(2) 600 KCMIL AL F (2) 600 KCMIL AL F	PV WIRE PV WIRE	(1) #3 (1) #3	(1) 3" (1) 3"					ZM LIC
					•			A	/ERAGE C	BX DC VOLTAG	EDROP	0.40%											465-10
																						<u>م</u>	E (732)
			SOURCE																		D		PHON
	1									T					WIRE, FUSE, A		NDUIT SIZE					YOUT	
< = P	MAX	MAX NO	D. OF ENT TERI	MINAL WI						TEMP.							MIN. BARE CU	CONDUIT				S AND L/	
IT INT	CIRCU	LT CARR	YING RA CTORS (1	TING RAT °C): (°(ING SE	TS (ISC X	(1.25) (ISO	C X 1.25 D	ERATE	CORRECTION FACTOR	CONDITIONS OF USE (A)	DROP (%)	% FILL	(A)	PARALLEL SET/CON	NDUIT)	EGC SIZE (PER CONDUIT)	MIN SIZE AND QTY*					MG
	26	IN RAC	EWAY	00 0	0		2	4.0	0.70	0.01	5.0	0.16%	NI/A	1	N/A		NI/A	NI/A			SCRIPTI	- REV. M	CHED.D'
2	15.3	8		90 9	0	1 3. 1 19).1	24.0	0.70	0.91	30.0	0.61%	25.3%	25	(2) #8 CU PV WI	IRE	(1) #6	(1) 2"				PERMIT	CONDS
0	20.4	8		90 9	0	1 25	5.5	32.0	0.70	0.91	40.0	0.81%	25.3%	35	(2) #8 CU PV WI	IRE	(1) #6	(1) 2"				ED FOR	20 7:50 P NE AND
	1		ļ		1								NOTE:	25.3% CC	ONDUIT FILL FROM (8	 3) #8 + (1)	#6 EGC IN 2" C						1 3/18/202
																					DATE	03/18/2	STAMP STAMP ALVACH 11-221 D
																					PROJE	0	P-044
																						ן נ	
																						`	
																					в Ц		
																							Ë
								I					ס דוו וחע	17F								ך כ	ELL /
			NT. CON RENT F		TEMP	MAX. CURRENT	/ VOL	LTAGE	WIRE S	IZE AND QTY (PE	R PARALLEL			IN. SIZE E		1							AMPB C 275
N		= (MAX I	X 1.25) DE A) FAC	RATE CC	FACTOR	CONDITION OF USE (A	IS DRC	OP (%)		SET/CONDUI	Г)	NEUTR	AL GF		DUIT) SIZE AND QTY	**							DN, N, N
310.6	N/A N/A	UKI 8	57 1 57 1	1.00	1.05 1.00	66 70	0.	.10%	(3) #1/0 (4) N	∠5KV MV 90, XLPE IERLIN 336.4 KCI	L OK EPR, AL MIL ACSR	1/3 N/A		N/A N/A	(1) 5" OVERHEAD							Z	LESI
																						り 山	1887 LILLI
																					A DATE:	: (03/18/2020
																						/N BY:	MD KI
																						CONDUC	TOR

	AC								WIR	E, FUSE, AND CO	NDUIT SIZE		_							CONDUIT MIN SIZ	 Е		65
CO CURI	NT. RENT	CONDUIT FILL	TEMP. CORRECTION	MAX. CUI / CONDI			% FILL	OCPD (A)	WIRE SIZE		MIN. BARE C EGC SIZE (PE	U CONDUI R MIN SIZE	r E			DC-A	(2) CU #8 PV- (1) CU #6 BA	WIRE	1 IN.	-	e	rs Inc
(/	A) 26	FACTOR	FACTOR	OF US	E (A)	6.12%	29.6%	30	(3) #6	AL XHHW-2	(1) #6	AND QTY (1) 1"	*			DC-B	(6) CU #8 PV- (1) CU #6 BA	WIRE ARE	1-1/2"			acto) 5 28110
2	20	1.00	0.96	17		0.35%	3.6%	20	(2) #12	AL XHHW-2	(1) #12	(5) 1"				DC-C	(8) CU #8 PV- (1) CU #6 B/	WIRE ARE	2"		0	ontr IROE N
																DC-D	(*	10) CU #8 PV (1) CU #6 B/	-WIRE ARE	2"		2	C C
																DC-E	(*	14) CU #8 PV (1) CU #6 BA		2-1/2"		U	FOX R
																DC-F	(*	(1) CU #8 PV (1) CU #6 BA		2-1/2"	— G		2 GRAY
																DC-G	((1) CU #6 PV	ARE	2-1/2"		P	281
																3 D	C STR		ONDU	IT SIZES			
															Ē	-221 SCA	LE: NTS]		_ _		
																						SEAL HINNTH C NOCOCOCO	AROLINII STOREST
		DC C	CONDUCTO		CONDUI	T SCHEI	DULE															SE 039	AL 6678
1)F								1			WRE, FUSE, ANI		DUIT SIZE				F		EAR WHILE
P	MAX OWER	MAX SHORT	CURREN	T TERMI G RATII	NAL WIR NG RATIN		DF MAX		T. CONDU				% FILL		WIRE SIZE AND QTY ((PER	N. BARE CU EGC SIZE	CONDUIT MIN SIZE				PERMIT DRA RELEASED FOR	WING - NOT CONSTRUCTION
cu	JRRENT	CURRENT	CONDUCTO	ORS (°C) AY): (°C)	(POS/N	EG) 1.25)	(ISC X (A) X 1.25)	(A) FACTO	R FACTOR	OF USE (A)	(A)	PARALLEL SET/CONL			AND QTY*					
	208.6 208.6	224 224	2	90 90	90 90	1	280. 280.	5 351 5 351	1.00	0.91 0.91	308 308	1.02% 0.88%	33.8% 33.8%	400 400	(2) 600 KCMIL AL PV V (2) 600 KCMIL AL PV V	WIRE WIRE	(1) #3 (1) #3	(1) 3" (1) 3"					
	218.0 208.6	235 224	2	90	90	1	293. 280.	3 367 5 351	1.00	0.91	322 308	0.79%	33.8% 33.8%	400	(2) 600 KCMIL AL PV V (2) 600 KCMIL AL PV V	WIRE WIRE	(1) #3 (1) #3	(1) 3" (1) 3"					
	208.6 208.6	224 224	2	90	90	1	280. 280.	5 351 5 351	1.00	0.91	308 308	0.52%	33.8% 33.8%	400	(2) 600 KCMIL AL PV V (2) 600 KCMIL AL PV V	WIRE WIRE	(1) #3 (1) #3	(1) 3" (1) 3"					
	208.6 218.0	224 235	2	90	90	1	280. 293.	5 351 3 367	1.00	0.91	308 322	0.39%	33.8% 33.8%	400	(2) 600 KCMIL AL PV V (2) 600 KCMIL AL PV V	WIRE WIRE	(1) #3 (1) #3	(1) 3" (1) 3"					
	208.6 208.6	224 224	2	90	90	1	280.	5 351 5 351	1.00	0.91	308	0.27%	33.8%	400	(2) 600 KCMIL AL PV V (2) 600 KCMIL AL PV V		(1) #3 (1) #3	(1) 3" (1) 3"			E		22 → 1 (
	208.6	224	2	90	90	1	280.	5 351 3 367	1.00	0.91	308	0.15%	33.8%	400	(2) 600 KCMIL AL PV V (2) 600 KCMIL AL PV V		(1) #3 (1) #3	(1) 3"					7.157 9.157 47 NJ 088 465-100
	208.6	224	2	90	90	1	280.	5 351 5 351	1.00	0.91	308	0.08%	33.8%	400	(2) 600 KCMIL AL PV V (2) 600 KCMIL AL PV V		(1) #3 (1) #3	(1) 3"					X (732)
	208.6 218.0	224 224 235	2	90	90	1	280.	5 351 5 351 3 367	1.00	0.91	308	0.17%	33.8%	400	(2) 600 KCMIL AL PV V (2) 600 KCMIL AL PV V		(1) #3 (1) #3	(1) 3"					
	210.0		2	90	90	1	295.	5 507	AVERAGE	CBX DC VOLTAG	E DROP	0.40%	55.670	400			(1)#3	(1)5					C FIRN JNSWICK 465-1003
																							E (732)
						HEDULE															D		242 OLE
	1														WIRE, FUSE, AND		UIT SIZE					ΑΥΟυΤ	
K ER	MAX SHOR		X NO. OF JRRENT TE			NO OF ARALLEL	MAX. CURRENT	CONT. CURRENT	CONDUIT FILL	TEMP.	MAX. CURRENT /	VOLTAGE		OCPD	WIRE SIZE AND QTY (PE							ES AND L	
IT ENT	CIRCU CURRE			(°C):	(°C): (P	SETS (POS/NEG)	(ISC X 1.25) (A)	(ISC X 1.25 X 1.25) (A)	DERATE FACTOR	FACTOR	CONDITIONS OF USE (A)	DROP (%)	% FILL	(A)	PARALLEL SET/CONDU		CONDUIT)	AND QTY*				MODULE	DWG
ŀ	2.6		8	90	90	1	3.2	4.0	0.70	0.91	5.0	0.16%	N/A	4	N/A		N/A	N/A				DESCRIP IIT - REV.	0 SCHED
2	15.3		8	90	90	1	19.1	24.0	0.70	0.91	30.0	0.61%	25.3%	25	(2) #8 CU PV WIRE		(1) #6	(1) 2"				REVISI OR PERM	0 PM ND CONE
0	20.4		8	90	90	1	25.5	32.0	0.70	0.91	40.0	0.81%	25.3%	35	(2) #8 CU PV WIRE		(1) #6	(1) 2"			С	SSUED FO	3/2020 7:5
												L	NOTE: 2	25.3% CC	NDUIT FILL FROM (8) #8	3 + (1) #6	EGC IN 2" C	ONDUI				18/20 15	AMP ACHI 3/18 21 DC ON
																						0 03	PLT ST/ NCALV E-211-2
																						PROJECT: 20-	PP-044
																						U L	
																					В	Ш Х	
																						Ц Ц Ц	AVE.
											WIRE, FUS	E, AND CO	NDUIT SI	ZE								S S	546
N	IEC TABL		CONT. C	ONDUIT FILL FRATE	TEMP CORRECTI		AX. RENT / ITIONS		WIRE S	IZE AND QTY (PE	ER PARALLEL			IN. SIZE E (PER								Ĩ	CAMPI NC 27
310.6	50(C)78, 1	CKT	(A) F	ACTOR	FACTOR 1.05	0F U	SE (A)	0.10%	(3) #1/0	25kV MV 90, XLP	, E OR EPR, AL	1/3	GR(OUP/CONI	(1) 5"							B	SLIE (TON,
	N/A		8/	1.00	1.00	7	ru		(4)	VIERLIN 336.4 KC		N/A		N/A	OVERHEAD							SA	387 LE
																					A	Ш	
																						DATE: DRAWN BY:	03/18/2020 MD
																						CHECKED BY:	I KL

	AC							WIR	E FUSE AND CC										
CO	ONT. CO	NDUIT TEMP	MAX. C		VOLTAGE	% FIL1	OCPD (A)	WIRE SIZE	E AND QTY (PER	MIN. BARE C		 T =			DC-A	(2) CU #8 PV-WIRE (1) CU #6 BARE	= 1 IN.		's Inc
(/	A) D F/	ACTOR FACTO	OF U	JSE (A)	0ROP (%)	29.6%	30	(3) #6	AL XHHW-2	CONDUIT)	AND QT				DC-B	(6) CU #8 PV-WIRE (1) CU #6 BARE	1-1/2"		actol
2	20	1.00 0.96		17	0.35%	3.6%	20	(2) #12	2 AL XHHW-2	(1) #12	(5) 1"				DC-C	(8) CU #8 PV-WIRE (1) CU #6 BARE	2"		ontro Roe NC
															DC-D	(10) CU #8 PV-WIRE (1) CU #6 BARE	E 2"	Ω	D, MON
															DC-E	(14) CU #8 PV-WIRE (1) CU #6 BARE	E 2-1/2"		FOX R
															DC-F	(16) CU #8 PV-WIRE (1) CU #6 BARE	E 2-1/2"	G	2 GRAY
															DC-G	(18) CU #8 PV-WIRE (1) CU #6 BARE	E 2-1/2"		281
														3		RING CON	IDUIT SIZES		-
														E-2	21/SCALE: NTS				
																		SEAL	TH CAROLINI
		DC CONDUC			UIT SCHE	DULE													SEAL 039678
		MAX N									1			WRE, FUSE, AND		E		F F	Concession of the second
P	MAX OWER		RENT TER	MINAL W	/IRE PARAL	OF MA	X. CON ENT CURRI	T. CONDUENT FILL	UIT TEMP.			E % FIL		WIRE SIZE AND QTY (PI	MIN. BARE C ER EGC SIZE	U CONDUIT MIN SIZE		PERM	MIT DRAWING - NOT D FOR CONSTRUCTION
cu		URRENT CONDUC IN RAC	CTORS (EWAY	°C): (°	°C): (POS/I	NEG) 1.25)	(A) X 1.25)	(A) FACTO	DR FACTOR	OF USE (A		•)	(A)	PARALLEL SE 1/CONDU	CONDUIT)	AND QTY*			
	208.6 208.6	224 2 224 2		90 9 90 9	90 1 90 1	280 280	.5 351 .5 351	1.00) 0.91) 0.91	308 308	1.02% 0.88%	33.8% 33.8%	6 400 6 400	(2) 600 KCMIL AL PV WI (2) 600 KCMIL AL PV WI	RE (1) #3 RE (1) #3	(1) 3" (1) 3"			
	218.0 208.6	235 2 224 2		90 90 90	90 1 90 1	293 280	.3 367 .5 351	1.00	0 0.91 0 0.91	322 308	0.79%	33.8% 33.8%	6 400 6 400	(2) 600 KCMIL AL PV WI (2) 600 KCMIL AL PV WI	RE (1) #3 RE (1) #3	(1) 3" (1) 3"			
	208.6	224 2 224 2 224 2		90 90 90 90	90 1 90 1	280	.5 351 .5 351	1.00	0.91	308	0.52%	33.8%	6 400 6 400	(2) 600 KCMIL AL PV WI (2) 600 KCMIL AL PV WI	RE (1)#3 RE (1)#3	(1) 3"			
	208.6	224 2 235 2 224 2		90 90 90	90 1 90 1	280	.5 351 .3 367	1.00	0.91	308	0.39%	33.89	6 400 6 400	(2) 600 KCMIL AL PV WI (2) 600 KCMIL AL PV WI	$\begin{array}{ccc} RE & (1) \# 3 \\ RE & (1) \# 3 \\ RE & (1) \# 3 \\ RE & (1) \# 2 \\ \end{array}$	(1) 3"			
	208.6	224 2 224 2 224 2		90 90 90 90 90 90 90 90 90 90 90 90 90 9	90 1 90 1 90 1	280	.5 351 .5 351	1.00	0.91	308	0.27%	33.8%	6 400 6 400	(2) 600 KCMIL AL PV WI (2) 600 KCMIL AL PV WI (2) 600 KCMIL AL PV WI	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1) 3"		E	
	218.0	224 2 235 2 224 2		90 9	90 1 90 1	293	.3 367 .3 367	1.00	0.91	300	0.11%	33.8%	6 400 6 400	(2) 600 KCMIL AL PV WI (2) 600 KCMIL AL PV WI	$\begin{array}{c c} \text{RE} & (1) \# 3 \\ \text{RE} & (1) \# 3 \\ \text{RE} & (1) \# 3 \\ \end{array}$	(1) 3"			PLL P157 AY NJ 088
	208.6 208.6	224 2 224 2		90 90	90 1 90 1	280	.5 351 .5 351	1.00	0.91	308 308	0.13%	33.8% 33.8%	6 400 6 400	(2) 600 KCMIL AL PV WI (2) 600 KCMIL AL PV WI	RE (1)#3 RE (1)#3	(1) 3" (1) 3"			ERSF: PISCATAW AX (732
	208.6 218.0	224 2 235 2		90 90 90 9	90 1 90 1	280 293	.5 351 .3 367	1.00) 0.91) 0.91	308 322	0.25%	33.8% 33.8%	6 400 6 400	(2) 600 KCMIL AL PV WI (2) 600 KCMIL AL PV WI	RE (1) #3 RE (1) #3	(1) 3" (1) 3"			
			·					AVERAGE	CBX DC VOLTA	GE DROP	0.40%	·	·						ENG NC FIR RUNSWIC
																			NE (732
		DC SOL			CHEDULI	E													242 O PHO
		MAXNO OF												WIRE, FUSE, AND C		E		LAYOUT	
ER T	MAX SHORT	CURRENT	TERMINAL RATING	WIRE RATING	NO OF PARALLEL	MAX. CURRENT	CONT. CURRENT	CONDUIT FILL	TEMP. CORRECTION	MAX CURRENT /		% FILL	OCPD	WIRE SIZE AND QTY (PER	MIN. BARE CU EGC SIZE (PER	CONDUIT MIN SIZE		ILES AND	
INT	CURREN	T CONDUCTORS IN RACEWAY	(°C):	(°C):	(POS/NEG)	(ISC X 1.25) (A)	(ISC X 1.25 X 1.25) (A)	FACTOR	FACTOR	OF USE (A)	DROP (%)		(A)	PARALLEL SEI/CONDUIT)	CONDUIT)	AND QTY*		KIPTION EV. MODU	ED.DWG
	2.6	8	90	90	1	3.2	4.0	0.70	0.91	5.0	0.16%	N/A	4	N/A	N/A	N/A		SIONS DESCR	ND SCHE
2	15.3	8	90	90	1	19.1	24.0	0.70	0.91	30.0	0.61%	25.3%	25	(2) #8 CU PV WIRE	(1) #6	(1) 2"		REVI FOR PEF	7:50 PM
)	20.4	8	90	90	1	25.5	32.0	0.70	0.91	40.0	0.81%	25.3% NOTE:	35 25.3% C0	(2) #8 CU PV WIRE DNDUIT FILL FROM (8) #8 +	(1) #6 (1) #6 EGC IN 2"			C	118/2020
																		DATE 03/18/20	STAMP LVACHI 3 1-221 DC
																			T: 20-PP-044
																		B U	
																			AVE.
		CONT				MAX.				WIRE, FUS	E, AND CO								PBELL 7546
N	IEC TABLE	CURRENT (MAX I X 1.25)	FILL	TEN CORREC FACT	IP CTION OR CON	RENT / DITIONS	VOLTAGE DROP (%)	WIRE S	SIZE AND QTY (P SET/CONDU	ER PARALLEL IT)		ITRIC	VIIN. SIZE E (PER ROUP/CON	EGC CONDUIT MIN DUIT) SIZE AND QTY*					, NC 2
10.6	60(C)78, 1 C	(A) KT 87 87	FACTOR 1.00 1.00	1.0	5 OF U	0SE (A) 66 70	0.10%	(3) #1/0 (4)	25kV MV 90, XLF MERLIN 336.4 KC	E OR EPR, AL MIL ACSR	1/3		N/A	(1) 5" OVERHEAD				□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	ESLIE GTON
						- I	_					- -		· · · · · · · · · · · · · · · · · · ·					-11LIN
																			03/18/2020
																			BY: MD
																			ONDUCTOR

NOTE: WIRE LENGTHS PROVIDED ARE NOT TO BE USED FOR WIRE TAKEOFFS AND ARE ONLY USED FOR CALCULATION OF VOLTAGE DROP.

E-221

4	5	6	7	

8	9	10		
	LEGEND AC AC CABLE NET ETHERNET COM PLC DC DC ABLE FOP FIBER CABL FOP RS-485 CAB TRANSFORI	CABLE .E LE MER I/O	н	Pure Power
 PT/CT PT/CT SENS 	NOTES: 1. USE SHIELDED CONNEC 2. NEW EQUIPMENT MOUN CUSTOMER PLATE INSI 3. SEE SHEETS E-221 FOR WIRES - 12AWG, COPPER, STRA WIRES - 12AWG, COPPER, STRA OR WIRES - SUPPLIED BY VENDO	CTORS FOR ETHERNET. NTED ON DIN RAIL ON DE INVERTER. AC AND DC WIRING.	F	SEAL SEAL SEAL SEAL 039678 SEAL SEAL 039678 SEAL
POI LO MAIN CI BRANCH CIRCUIT ID 1 2 3 4 4 5 6 7 8 EQUIPMENT PAD MAIN CI BRANCH CIRCUIT ID 1 2 3 6 7 8 3 5 5 6 7 8 8 3 5 5 6 7 8 8	AD CENTER - 125A BUS RCUIT BREAKER - 30A 2P TO CB SIZE GFCI 20A 1P METER 20A 1P SPARE 20A 1P SPARE 20A 1P SPACE - SPACE - SPACE - TO CB SIZE GFCI 20A 1P DAS 20A 1P SPARE 2	Ē	E D C	ESA BUIES CREEK, LLC. REVISIONS No. DATE DESCRIPTION 0 03/18/20 ISSUED FOR PERMIT - REV. MODULES AND LAYOUT 1 A DESCRIPTION 1 1 ISSTERE CAMPBELL AVE 1 1 1 1 1

E-301

VERTER AREAS					
V-01					

8	9	10		
	1 FIBER OPTIC CABI FIBER OPTIC TERN FUSION SPLICE	LE - CORNING 012ZU4-T4F22D20 MINATIONS SHALL BE MADE VIA	н	OWET Intractors Inc. ROE NC 28110
			G	CC 2812 GRAY FOX RD, MONF
			F	SEAL SEAL SEAL SEAL O39678 SEAL SEAL O39678 SEAL O39678 SEAL O39678 SEAL O39678 SEAL O39678 SEAL O39678 SEAL O39678 SEAL O39678 SEAL O39678 SEAL O39678 SEAL SEAL O39678 SEAL SEAL O39678 SEAL SE
			E	A C FIRM COCA ENGINEERS, PLLC NC FIRM LICENSE: P-1577 D NEW BRUNSWICK ROAD PISCATAWAY NJ 08854 NE (732) 465-1005 F X (732) 465-1005
			C	REVISIONS REVISIONS NO: DATE DESCRIPTION 00 00/1482b09 ISSULED-660PERGIRMREV. MODULES AND LAYOUT 00 00/1482b09 ISSULED-660PERGIRMREV. MODULES AND LAYOUT 01 01 01 02 03/1482b0 ISSULED-660PERGIRMREV. MODULES AND LAYOUT 03 03/1482b0 ISSULED-660PERGIRMREV. MODULES AND LAYOUT 03 03/1482b0 ISSULED-660PERGIRMREV. MODULES AND LAYOUT 04 0 03/1482b0 ISSULED-660PERGIRMEVER 05 0 0 03/1482b0 ISSULED-660PERGIRMEVER 05 0 0 0 0 ISSULED-660PERGIRMET 05 0 0 0 0 0 ISSULED-660PERGIRMET 05 0 0 0 0 0 ISSULED-660PERGIRMET 05 0 0 0 0 0 0 ISSULED-660PERGIRMET 05 0 0 0 0 0 0 ISSULED-660PERGIRMET 05 0 0 0 0 0 0 0
			В	ESA BUIES CREEK, LLC. 1887 LESLIE CAMPBELL AVE. LILLINGTON, NC 27546
2	0	10	A	DATE: 03/18/2020 DRAWN BY: LK CHECKED BY: KL COMMUNICATIONS DIAGRAM E-311

CONDUIT LEGEND

A - 1.5" SPARE BETWEEN XFMR LV & INVERTER B - 2" CONDUIT FOR FIBER FROM PAD 1 TO FPP INSIDE INVERTER

C - 1.25" CONDUIT FOR (3) #14 AWG CU XHHW-2 + RS-485 (BELDEN 3106A) BETWEEN INVERTER & MET STATION

D - 2" SPARE OUT TO PERIMETER OF PAD

6

8

3 EQUIPMENT PAD CONDUIT WINDOW BOX-OUT DETAIL E-501 SCALE: NTS

9

NC	IOTE:							
1.	FIELD VERIFY ALL EQUIPMENT CONDUIT ENTRY AREAS.							
2.	EQUIPMENT DIMENSIONS AND CONDUIT WINDOWS ARE							
	ESTIMATED. SEE MANUFACTURER DRAWINGS AND/OR							
	MANUALS PRIOR TO CONSTRUCTION.							
3.	ALL EQUIPMENT MOUNTED TO EQUIPMENT PAD PER							
	MANUFACTURERS INSTRUCTION.							
4.	ALL CONDUIT TO BE INSTALLED BENEATH PAD UNLESS							
	OTHERWISE NOTED.							
5.	"C.J" ON PLAN INDICATES CONTROL JOINT LOCATIONS.							
6.	WORKING CLEARANCES SHALL BE IN ACCORDANCE WITH							
	NEC ARTICLE 110-III AND MANUFACTURER'S							
	REQUIREMENTS.							
7.	INVERTER GLAND PLATES ON SIDES AND BOTTOMS TO							
	BE REINSTALLED AS REQUIRED BY INVERTER							
	MANUFACTURER.							
8.	CONDULT BOX-OUTS SHALL BE FILLED WITH POLYWATER							
	INSTAGROUT SEALANT (OAE) TO BLOCK MOISTURE							
	WHILE ALLOWING THE CONDULT TO REMAIN							
9.	UNLESS UTHERWISE SPECIFIED, CUNDUIT SIZE AND							
	SCHEDULES							
10								
11	PROVIDE AND INSTALL ANCHOR BOLTS' HILTI KWIK BOLT							
	$RDS_{\overline{4}} \land 7 \ SS304 \#200020 (OR APPROVED EQUAL).$							
<u>K</u>	<u>EY:</u>							
L								

9

10

10

8

Γ	0	1	2	3
ł	Н			
(3			MAX 5"-
F	F			· · · · · · · · · · · · · · · · · · ·
E	E			
-	D			Τι Γ
(C			
E	B			CRADE CONTRACTOR CONTR
-	A			
	0	1	2	3

5

6

7

8

8

GENERAL NOTES:

4

- 28-DAY COMPRESSIVE STRENGTH SHALL BE MINIMUM 4000 PSI. 2. SEE SPECIFICATION SHEETS E-002 AND E-003 FOR ADDITIONAL
- REQUIREMENTS. 3. DO NOT LOAD PAD BEFORE CONCRETE REACHES DESIGN STRENGTH.

PAD ELEVATION VIEW

4	5	6	7	

NOTES

4

- ALL HARDWARE SHALL BE STAINLESS STEEL
- ALL GROUNDING LUGS AND BRAIDS MUST BE LISTED TO UL2703. SEE RACKING MANUAL FOR ADDITIONAL DETAILS.
- EGC SHALL BE #6 BARE SOLID CU, UON.
- ILSCO DE-OX (OR APPROVED EQ) APPLIED TO BOTH SIDES PRIOR TO LUG AND HARDWARE INSTALLATION.

5	6	7	

G	Pure Power	Contractors Inc.	2812 GRAY FOX RD, MONROE NC 28110
F	SEAL	AL AL AL AL AL AL AL AL AL AL	
E	AVOCA ENGINEERS, PLLC	IC FIRM LICENSE: P-1577 UNSWICK ROAD PISCATAWAY NJ 08854	465-1002 FAX (732) 465-1005
D	S AND LAYOUT		PHONE (732) 4
С	REVISIONS NO. DATE DESCRIPTION 0 03/18/20 ISSUED FOR PERMIT - REV. MODULE PROJECT: 20-F	PP-044	PLT STAMP NCALVACHI 3/18/2020 7:34 PM E-601-602-603-604 GROUNDING.DWG
В	BUIES CREEK, LLC.	SLIE CAMPBELL AVE. TON NC 27546	
A	DATE: DRAWN BY: CHECKED BY: FENCE GR		8/2020 G (L DING

6"	
DANGE	R
SH AND SHOCK HAZAF PROPRIATE PPE REQ	RD PRESENT UIRED
ARY N CAL/CM ² POSURE S CLASS <u>EN COVERS REMOVE</u> BOUNDARDY DACH BOUNDARY ON	XX FT XX XX IN XXX VAC XX D XX FT XX IN XX FT XX IN XX FT XX IN TBD
	XX-XX-XXXX

1. RED & WHITE BACKGROUND WITH BLACK TEXT. 2. APPLY ADJACENT TO ALL DOOR OPENING HANDLES AND

3. SEE FAULT STUDY FOR ALL VALUES AND EQUIPMENT

Н	re Power	Contractors Inc. Gray fox RD, Monroe NC 28110
F	SEAL SEAL SEAL SEAL SEAL SEAL SEAL SEAL	ARO ARO STOLEN AL BRO STOLEN AL BRO STOLEN AL BRO STOLEN AL BRO STOLEN AL BRO STOLEN S
E	IDCA	LICENSE: P-1577 OAD PISCATAWAY NJ 08854 FAX (732) 465-1005
D		242 OLD NEW BRUNSWICK R PHONE (732) 465-1002
С	NO: DATE REVISIONS 0 03/18/20 ISSUED FOR PERMIT - REV. MODULES AND I 10 03/18/20 ISSUED FOR PERMIT - REV. MODULES AND I	PF0-044
В	JIES CREEK, LLC.	CAMPBELL AVE. NC 27546
A	DATE: DRAWN BY: CHECKED BY: GENERAL	NOLDNI 1282 1282 1282 1282 1282 1292 1292 1292

	SC 2000-EV-US	
# 50°C)	1425 V /1200 V / 1200 V	
	778 V / 928 V	
	1500 V	
	2610 A	
	6400 Å	
	•/0	
al allow a	2200 Junit 2 4002	
	2 X 800 Kcmi, 2 X 400 mm-	
rs		
	200 A, 250 A, 315 A, 350 A, 400 A, 450 A, 500 A	
	2200 kVA / 2000 kW	
it 50°C]	1760 kW	
	2310 A	
	2100 A	
	< 3% at nominal power	
e ^{1}8}	550 V / 440 V to 660 V	
	50 Hz / 47 Hz to 53 Hz	
	60 Hz / 57 Hz to 63 Hz	
ver factor adjustable ^{8}}	1 / 0.8 overexcited to 0.8 underexcited	
622		
	98.0%	
	DC brackbarah as the	
	DC TOOD-DFECK SWITCH	
	AC circuit brecker	
	Surge arrester, type	
	Surge arrester, dass l	
	Lightning Protection Level III	
C, ANSI/NFPA 70)	3600 A	
onitoring / insulation monitoring	0/0/0	
inection area (as per IEC 60529)	IP65 / IP34 / IP34	
	Type 3R	
	0700 / 0010 / 1500 mm /100 / /01 0 / /01 5 / /01	
	2780 / 2318 / 1388 mm (109.4 / 91.3 / 62.5 inch)	
(a)	< 3400 kg / < / 496 lb	
ge°i	< 8100 W / < 1800 W / < 2000 W	
	< 370 W	
	O Integrated 8.4 kVA transformer	
	−25 to 60°C / −13 to 140°F	
	−40 to 60°C / −40 to 140°F	
	-40 to 70°C / -40 to 158°F	
	66,3 dB(A)	
densing / non-condensing	95% to 100% (2 month/year) / 0 to 95%	
m / 2000 m	 / O (earlier temperature-dependent derating) 	
line antenderer	6500 m³/h	
	Toming his on each insult () (how then)	
	Mith husher suctors (three husher and the sectors)	
	With busbar system (three busbars, one per line conductor)	
	Ethernet, Ethernet/IP, Modbus ICP/IP	
	RAL 9016 / RAL 7004	
	0 (2.5 kVA)	
	UL 62109-1, UL 1741 (Chopter 31, CDR 6I), UL 1741-SA, NEC 2011/2014, UL 1996 IEEE 1547, IEEE 693, MILSTD-810G, BDEW, CE,	
	CISPR 22:2008 modified class A, FCC Part 15 Class A	
	VUI/VDE 2862 page 2, DIN EN ISO 9001	
ry	\$ 	
	SC-2000-EV-US-10	
ver decreases in the same proportion	 6) Self-consumption averaged out to 5% to 100% Pn at 25°C 7) Sound pressure level at a distance of 32.8 ft (10 m) 8) Values apply only to inverters. Permissible values for SMA MV solutions from SMA can be found in the corresponding data sheets. 	

fechnical Data	Sunny Central 2500-EV-US	Sunny Central 2750-EV-US
nput (DC)		
٨٩٩ voltage range V _{oc} (at 25 °C / at 35 °C / at 50 °C)	850 V to 1425 V / 1200 V / 1200 V	875 V to 1425 V / 1200 V / 1200 V
Vin. input voltage V _{DC, min} / Start voltage V _{DC, Start}	778 V / 928 V	849 V / 999 V
Aax. input voltage V _{ocimen}	1500 V	1 500 V
Aax. input current I _{DC, max} (at 25°C / at 50°C)	3200 A / 2956 A	3200 A / 2956 A
Aax. short-circuit current rating	6400 A	6400 A
umber of DC inputs (20/24)	•/ 0	•/ •
Aax. number of DC cables per DC input (for each polarity)	2 x 800 kcmil, 2 x 400 mm ²	2×800 kcmil, 2×400 mm ²
ntegrated zone monitoring	0	0
Valiable DC fuse sizes (per input)	200 A, 250 A, 315 A, 351	J A, 400 A, 450 A, 500 A
lominal AC power at cost $h = 1$ (at 35 °C / at 50 °C)	2500 WA / 2250 WA	2750 W/A / 2500 W/A
Jominal AC power at cos $\phi = 1$ (at 35°C / at 50°C)	2250 KVA / 2250 KVA	2475 WW / 2250 WW
Jominal AC current = Max_output current	2624 Å	2646 A
Jorning AC current	2624 A	2646 A
Acx. total harmonic distortion	< 3% at nominal power	< 3% at nominal power
Jominal AC valtage / nominal AC valtage range ¹⁾	550 V / 440 V to 660 V	600 V / 480 V to 690 V
C power frequency	50 Hz / 47 Hz to 53 Hz	50 Hz / 47 Hz to 53 Hz
	60 Hz / 57 Hz to 63 Hz	60 Hz / 57 Hz to 63 Hz
Ain, short-circuit ratio at the AC terminals	> 2	> 28
'ower factor at rated power / displacement power tactor adjustable *	 1 / 0.8 overexcite 	d to 0.8 underexcited
ff dame.	0 1/0.0 overexcite	d to 0.0 underexcited
Adv. efficiency ² / European efficiency ² / CEC efficiency ³	98.6% / 98.3% / 98.0%	08.7% / 98.5% / 98.5%
rotective Devices	1 70.0%7 70.3%7 70.0%	70.7787 70.3787 70.378
nutside disconnection point	DC load-break switch	DC load-break switch
Putput-side disconnection point	AC circuit breaker	AC circuit breaker
C overvoltage protection	Surge arrester, type	Surge arrester, type
C overvaltage protection (optional)	Surge arrester, class I	Surge arrester, class I
ightning protection (according to IEC 62305-1)	Lightning Protection Level III	Lightning Protection Level III
Dvercurrent protection device (according to NEC, ANSI/NFPA 70)	3600 A	3600 A
Ground-fault monitoring / remote ground-fault monitoring / insulation monitoring	0/0	0/0
Degree of protection: electronics / air duct / connection area (as per IEC 60529)	IP65 / IP34 / IP34	IP65 / IP34 / IP34
Degree of protection (as per UL 50)	Type 3R	Type 3R
General Data	→ [8-/	
Dimensions (W / H / D)	2780 / 2318 / 1588 mm	(109.4 / 91.3 / 62.5 inch)
Veight	< 3400 kg ,	/ < 7496 lb
elf-consumption (max.4) / partial load ^{s)} / average ⁶)	< 8100 W / < 180	00 W / <2000 W
elf-consumption (standby)	< 37	0 W
nternal auxiliary power supply	Integrated 8.4	VA transformer
Operating temperature range	−25 to 60°C / −13 to 140°F	
emperature range (standby)	−40 to 60°C / −40 to 140°F	
emperature range (storage)	-40 to 70°C / -40 to 158°F	
yoise emission" Any normitable value for relative humidity from device of the sector o	66.3 dB(A) 64.3 dB(A)	
Advinuim operating altitude above MSC 2000 m	93% to 100% (2 month / year) / 0 % to 95%	
resh dir consumption	6500	
actures		11 Z I
Connection	Terminal lua	an each input
Connection	With bushor system (three bu	bars, one per line conductor)
Communication	Ethernet. Ethernet/	P. Modbus TCP/IP
nclosure / roof color	RAL 9016	(RAL 7004
Visplay	HML touchscreen (10.1%)	
upply transformer for external loads	o (2.	5 kVA)
tandards and directives complied with	UL 62109-1, UL 1741 (Chapter 31, CE	DR 61, UL 1741-SA, NEC 2011/2014,
	UL 1998, IEEE 1547, IEEE 693, MILSTD 81	0G, BDEW, CE, CAN/CSA C22.2 107.1-1
MC standards (pending)	CISPR 22:2008 modified class A, FCC Part 15 Class A	
Quality standards and directives complied with	VDI/VDE 2862 pag	je 2, DIN EN ISO 9001
Standard tectures O Optionalw		
ype designation	SC-2500-EV-US-10	SC-2750-EV-US-10
) At nominal AC voltage, nominal AC power decreases in the same proportion 2) Efficiency measured without internal power supply	 Self-consumption averaged out Sound pressure level at a distant 	rom 5% to 100% Pn at 35 °C ce of 10 m